Hemosporidian Blood Parasites in Seabirds—A Comparative Genetic Study of Species from Antarctic to Tropical Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Hemosporidian Blood Parasites in Seabirds—A Comparative Genetic Study of Species from Antarctic to Tropical Habitats Naturwissenschaften (2010) 97:809–817 DOI 10.1007/s00114-010-0698-3 ORIGINAL PAPER Hemosporidian blood parasites in seabirds—a comparative genetic study of species from Antarctic to tropical habitats Petra Quillfeldt & Javier Martínez & Janos Hennicke & Katrin Ludynia & Anja Gladbach & Juan F. Masello & Samuel Riou & Santiago Merino Received: 21 May 2010 /Revised: 7 July 2010 /Accepted: 7 July 2010 /Published online: 23 July 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Whereas some bird species are heavily affected by ranging from Antarctica to the tropical Indian Ocean. We did blood parasites in the wild, others reportedly are not. Seabirds, not detect parasites in 11 of these species, including one in particular, are often free from blood parasites, even in the Antarctic, four subantarctic, two temperate, and four tropical presence of potential vectors. By means of polymerase chain species. On the other hand, two subantarctic species, thin- reaction, we amplified a DNA fragment from the cytochrome billed prions Pachyptila belcheri and dolphin gulls Larus b gene to detect parasites of the genera Plasmodium, scoresbii, were found infected. One of 28 thin-billed prions Leucocytozoon,andHaemoproteus in 14 seabird species, had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites P. Quillfeldt (*) : K. Ludynia : A. Gladbach : J. F. Masello Max-Planck-Institut für Ornithologie, Vogelwarte Radolfzell, species isolated from passeriform birds such as Haemopro- Schlossallee 2, teus lanii, Haemoproteus magnus, Haemoproteus fringillae, 78315 Radolfzell, Germany Haemoproteus sylvae, Haemoproteus payevskyi,andHae- e-mail: [email protected] moproteus belopolskyi. In addition, we found a high parasite J. Martínez prevalence in a single tropical species, the Christmas Island Departamento de Microbiología y Parasitología, frigatebird Fregata andrewsi, where 56% of sampled adults Universidad de Alcalá, Alcalá de Henares, were infected with Haemoproteus. The latter formed a Madrid, Spain monophyletic group that includes a Haemoproteus line from J. Hennicke Eastern Asian black-tailed gulls Larus crassirostris.Our Abteilung Ökologie und Naturschutz, Biozentrum Grindel, results are in agreement with those showing that (a) seabirds Universität Hamburg, are poor in hemosporidians and (b) latitude could be a Martin-Luther-King Platz 3, determining factor to predict the presence of hemosporidians 20146 Hamburg, Germany in birds. However, further studies should explore the relative K. Ludynia importance of extrinsic and intrinsic factors on parasite Animal Demography Unit, Department of Zoology, prevalence, in particular using phylogenetically controlled University of Cape Town, comparative analyses, systematic sampling and screening of Rondebosch, 7701 Cape Town, South Africa vectors, and within-species comparisons. S. Riou Keywords Avian hematozoa . Blood parasites . Institute of Integrative and Comparative Biology, Hemoparasites . Innate immunity. Seabirds University of Leeds, Leeds LS2 9JT, UK S. Merino Introduction Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Parasites exert important ecological and evolutionary Madrid, Spain pressures on their hosts. Blood parasites (hematozoa) were 810 Naturwissenschaften (2010) 97:809–817 considered to be organisms of low pathogenicity in wild may not detect parasites if the intensity is low (e.g., populations, but it has been demonstrated that hematozoa can Plasmodium and Haemoproteus spp. during early spring; have important implications for bird community structure and Valkiūnas 2005). Genetic methods, using sensitive poly- conservation (e.g., van Riper et al. 1986), as well as life merase chain reaction (PCR), can detect some parasitemia history traits of avian hosts (e.g., Merino et al. 2000;Hõrak missed by blood smears (e.g., Feldman and Freed 1995; et al. 2001;Sanzetal.2001a, b; Sol et al. 2003;Marzaletal. Bensch et al. 2000; Perkins and Schall 2002; Ricklefs et al. 2005). Knowledge about the prevalence of hematozoa is thus 2005; Parker et al. 2006; Merino et al. 2008). However, essential for understanding the ecological and evolutionary false negatives are not completely excluded by molecular implications of these parasites on their hosts and, ultimately, methods (Gomez-Diaz et al. 2010). Furthermore, molecular on ecosystems (see Sol et al. 2003). methods are still inaccurate for the identification of the Birds are infected by a number of intracellular blood parasite species and should be combined with light parasites, including Hemosporidia of the genera Plasmodium, microscopy (Valkiūnas et al. 2008). Haemoproteus,andLeucocytozoon, and Haemogregarinidae In the present study, we used genetic methods to detect of the genus Hepatozoon and piroplasmids of the genus parasites in a suite of 14 seabird species, ranging from Babesia. It has been established that once birds become Antarctica to the tropical Indian Ocean. Specifically, we infected with hemosporidian parasites, they remain infected aimed to validate the hypothesis that hemosporidian blood either for life or many years (Garnham 1966;Valkiūnas 2005). parasite prevalences are low among seabirds and especially The intracellular hematozoa occurring in vertebrates in cold climates. belong to the phylum Apicomplexa, and their life cycle generally consists of three major phases (Bush et al. 2001). Schizogony is an asexual phase in which multiple mitoses Methods take place, resulting in daughter cells. Schizogony occurs within the vertebrate host and causes disease by destroying Study species host erythrocytes (Plasmodium, Haemoproteus, Leucocyto- zoon) or leucocytes (Leucocytozoon, Hepatozoon). The Wilson’s storm-petrels Oceanites oceanicus were sampled remaining phases of the life cycle, gametogony and in their Antarctic breeding grounds at King George Island sporogony, occur within an arthropod vector and result in (62°14′ S, 58°40′ W), during fieldwork described in detail the production of infective sporozoites. Transmission can previously (summarized in Quillfeldt 2004; Büßer et al. occur through different hematophagous arthropods. Plas- 2008; Gladbach et al. 2009). Out of previously collected modium is transmitted by mosquitoes (Culicidae) and less blood samples (breeding season 1999–2000), we randomly commonly by sandflies (Psychodidae). Haemoproteus is selected samples of six males and six females for the transmitted by louse flies (Hippoboscidae) and biting present analysis. We observed no biting insects at the midges (Ceratopogonidae) and Leucocytozoon by blackflies breeding grounds of Wilson’s storm-petrels, the only (Simulidae). Hepatozoon is most commonly transmitted by ectoparasites found being the Mallophaga Philoceanus ticks (Ixodidae, Smith 1996). robertsi (Phthiraptera: Ischnocera; Quillfeldt et al. 2004a). The prevalence of infection varies greatly among different Subantarctic species were sampled at New Island, bird orders (e.g., Bennett et al. 1993a, b; Valkiūnas 2005), but Falkland Islands (51°43′ S, 61°17′ W). We included the reasons for interspecific variation in parasite prevalence samples of two seasons (2007−2008 and 2008−2009) into or diversity are still poorly understood (Scheuerlein and the analysis for thin-billed prions Pachyptila belcheri, Ricklefs 2004). Absence or scarcity of blood parasites has imperial shags Phalacrocorax atriceps, and southern been reported from avian groups such as seabirds (e.g., rockhopper penguins Eudyptes chrysocome. General field- Peirce and Brooke 1993;Merinoetal.1997a;Merinoand work techniques have been described in detail previously Minguez 1998;Engströmetal.2000), swifts (Tella et al. for thin-billed prions (e.g., Quillfeldt et al. 2003, 2007a, b, 1995), waders (Figuerola et al. 1996), raptors (e.g., Tella et 2008) and southern rockhopper penguins (e.g., Poisbleau et al. 1996), and parrots (Masello et al. 2006). There is also al. 2008). Additionally, in 2008−2009, we collected some evidence that blood parasites are less common in samples from dolphin gulls Larus scoresbii, Magellanic certain habitats such as the Arctic tundra (e.g., Bennett et al. penguins Spheniscus magellanicus, and gentoo penguins 1992), arid environments (e.g., Little and Earlé 1995; Valera Pygoscelis papua. All adult birds in New Island were et al. 2003), island environments (e.g., Little and Earlé sampled at their nest when attending young chicks. Adults 1994), or marine environments (e.g., Piersma 1997;Figuerola were captured by hand, blood-sampled and measured (for 1999;Jovanietal.2001). sample sizes, see Table 1). Potential arthropod vectors in Most previous studies used blood smears to detect blood the New Island seabird community include fleas Para- parasites. However, it has been suggested that blood smears psyllus sp. that are common in nest burrows of thin-billed Naturwissenschaften (2010) 97:809–817 811 Table 1 Data on the bird species sampled in the present study Species Scientific name Breeding site Number Parasites found Prevalencea Antarctic Wilson’s storm-petrel Oceanites oceanicus King George Island (62°14′ S, 58°40′ W) 12 (6f, 6m) –– Subantarctic Rockhopper penguin Eudyptes chrysocome New Island (51°43′ S, 61°17′ W) 28 (14f, 14m) –– Magellanic penguin Spheniscus magellanicus New Island (51°43′ S,
Recommended publications
  • Energetics of Free-Ranging Seabirds
    University of San Diego Digital USD Biology: Faculty Scholarship Department of Biology 2002 Energetics of Free-Ranging Seabirds Hugh I. Ellis University of San Diego Geir Wing Gabrielsen Follow this and additional works at: https://digital.sandiego.edu/biology_facpub Part of the Biology Commons, Ecology and Evolutionary Biology Commons, Ornithology Commons, and the Physiology Commons Digital USD Citation Ellis, Hugh I. and Gabrielsen, Geir Wing, "Energetics of Free-Ranging Seabirds" (2002). Biology: Faculty Scholarship. 20. https://digital.sandiego.edu/biology_facpub/20 This Book Chapter is brought to you for free and open access by the Department of Biology at Digital USD. It has been accepted for inclusion in Biology: Faculty Scholarship by an authorized administrator of Digital USD. For more information, please contact [email protected]. Energetics of Free-Ranging Seabirds Disciplines Biology | Ecology and Evolutionary Biology | Ornithology | Physiology Notes Original publication information: Ellis, H.I. and G.W. Gabrielsen. 2002. Energetics of free-ranging seabirds. Pp. 359-407 in Biology of Marine Birds (B.A. Schreiber and J. Burger, eds.), CRC Press, Boca Raton, FL. This book chapter is available at Digital USD: https://digital.sandiego.edu/biology_facpub/20 Energetics of Free-Ranging 11 Seabirds Hugh I. Ellis and Geir W. Gabrielsen CONTENTS 11.1 Introduction...........................................................................................................................360 11.2 Basal Metabolic Rate in Seabirds........................................................................................360
    [Show full text]
  • Imperial Shag (Heard Island)
    RECOVERY OUTLINE Imperial Shag (Heard Island) 1 Family Phalacrocoracidae 2 Scientific name Leucocarbo atriceps nivalis Falla, 1937 3 Common name Imperial Shag (Heard Island) 4 Conservation status Vulnerable: D1+2 5 Reasons for listing The subspecies has a small population (Vulnerable: D1) found at a single location (D2). Estimate Reliability Extent of occurrence 60 km2 high trend stable high Area of occupancy 3 km2 high trend stable high No. of breeding birds 500 medium trend fluctuating medium No. of sub-populations 1 high Generation time 15 years low 10 Threats 6 Infraspecific taxa The species is considered threatened because the L. a. purpurascens (Macquarie I.) is also Vulnerable. The population is small and variable. However, fluctuations other 6 subspecies on remote subantarctic islands are in population size and breeding success can be more numerous and widespread. Globally, the species attributed to frequently inclement weather (Pemberton is Least Concern. and Gales, 1987) or cycles of abundance over resource availability (E. Woehler). The subspecies could be 7 Past range and abundance adversely affected by offshore fishing or the effects of Endemic to Heard I. and not recorded from nearby climate change on sea temperature and food supply. McDonald or Shag Is. Breeding confined to three sites on north-western coast, Stephenson Lagoon, Saddle 11 Information required Point and Sydney Cove. Roosting sites are more None. widespread (Pemberton and Gales, 1987, Woehler, 1991, Green, 1997a). Population has varied between 12 Recovery objectives 40 and 100 breeding pairs over the last 40 years 12.1 Persistence of existing population. (Woehler, 1991, Green, 1997b, Green and Williams, 1997).
    [Show full text]
  • Black-Flies and Leucocytozoon Spp. As Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada
    Black-flies and Leucocytozoon spp. as Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada D. Bruce Hunter1, Christoph Rohner2, and Doug C. Currie3 ABSTRACT.—Black fly feeding and infection with the blood parasite Leucocytozoon spp. caused mortality in juvenile Great Horned Owls (Bubo virginianus) in the Yukon, Canada during 1989-1990. The mortality occurred during a year of food shortage corresponding with the crash in snowshoe hare (Lepus americanus) populations. We postulate that the occurrence of disease was mediated by reduced food availability. Rohner (1994) evaluated the numerical re- black flies identified from Alaska, USA and the sponse of Great Horned Owls (Bubo virginianus) Yukon Territory, Canada, 36 percent are orni- to the snowshoe hare (Lepus americanus) cycle thophilic, 39 percent mammalophilic and 25 from 1988 to 1993 in the Kluane Lake area of percent autogenous (Currie 1997). Numerous southwestern Yukon, Canada. The survival of female black flies were obtained from the car- juvenile owls was very high during 1989 and casses of the juvenile owls, but only 45 of these 1990, both years of abundant hare populations. were sufficiently well preserved for identifica- Survival decreased in 1991, the first year of the tion. They belonged to four taxa as follows: snowshoe hare population decline (Rohner and Helodon (Distosimulium) pleuralis (Malloch), 1; Hunter 1996). Monitoring of nest sites Helodon (Parahelodon) decemarticulatus combined with tracking of individuals by radio- (Twinn), 3; Simulium (Eusimulium) aureum Fries telemetry provided us with carcasses of 28 ju- complex, 3; and Simulium (Eusimulium) venile owls found dead during 1990 and 1991 canonicolum (Dyar and Shannon) complex, 38 (Rohner and Doyle 1992).
    [Show full text]
  • Parasites of the Neotropic Cormorant Nannopterum (Phalacrocorax) Brasilianus (Aves, Phalacrocoracidae) in Chile
    Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile Parasitos da biguá Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) do Chile Daniel González-Acuña1* ; Sebastián Llanos-Soto1,2; Pablo Oyarzún-Ruiz1 ; John Mike Kinsella3; Carlos Barrientos4; Richard Thomas1; Armando Cicchino5; Lucila Moreno6 1 Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 2 Laboratorio de Vida Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 3 Helm West Lab, Missoula, MT, USA 4 Escuela de Medicina Veterinaria, Universidad Santo Tomás, Concepción, Chile 5 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina 6 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile How to cite: González-Acuña D, Llanos-Soto S, Oyarzún-Ruiz P, Kinsella JM, Barrientos C, Thomas R, et al. Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile. Braz J Vet Parasitol 2020; 29(3): e003920. https://doi.org/10.1590/S1984-29612020049 Abstract The Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Suliformes: Phalacrocoracidae) is widely distributed in Central and South America. In Chile, information about parasites for this species is limited to helminths and nematodes, and little is known about other parasite groups. This study documents the parasitic fauna present in 80 Neotropic cormorants’ carcasses collected from 2001 to 2008 in Antofagasta, Biobío, and Ñuble regions. Birds were externally inspected for ectoparasites and necropsies were performed to examine digestive and respiratory organs in search of endoparasites.
    [Show full text]
  • Why the –Omic Future of Apicomplexa Should Include Gregarines Julie Boisard, Isabelle Florent
    Why the –omic future of Apicomplexa should include Gregarines Julie Boisard, Isabelle Florent To cite this version: Julie Boisard, Isabelle Florent. Why the –omic future of Apicomplexa should include Gregarines. Biology of the Cell, Wiley, 2020, 10.1111/boc.202000006. hal-02553206 HAL Id: hal-02553206 https://hal.archives-ouvertes.fr/hal-02553206 Submitted on 24 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article title: Why the –omic future of Apicomplexa should include Gregarines. Names of authors: Julie BOISARD1,2 and Isabelle FLORENT1 Authors affiliations: 1. Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier 75231 Paris Cedex 05, France. 2. Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du vivant (AVIV), Muséum National d'Histoire Naturelle, CP 26, 57 rue Cuvier 75231 Paris Cedex 05, France. Short Title: Gregarines –omics for Apicomplexa studies
    [Show full text]
  • Detecting Avian Malaria: an Improved Polymerase Chain Reaction Diagnostic
    J. Parasilol, 89(5), 2003, pp. 1044-1047 O American Society of Parasitologists 2003 DETECTING AVIAN MALARIA: AN IMPROVED POLYMERASE CHAIN REACTION DIAGNOSTIC S. M. Fallon, R. E. Ricklefs, B. L. Swanson, and E. Bermingham* Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, Missouri 63121-4499. e-mail: smfce4@studentmail. umsl. edu ABSTRACT: We describe a polymerase chain reaction (PCR) assay that detects avian malarial infection across divergent host species and parasite lineages representing both Plasmodium spp. and Haemoproteus spp. The assay is based on nucleotide primers designed to amplify a 286-bp fragment of ribosomal RNA (rRNA) coding sequence within the 6-kb mitochondrial DNA malaria genome. The rRNA malarial assay outperformed other published PCR diagnostic methods for detecting avian infections. Our data demonstrate that the assay is sensitive to as few as 10~5 infected erythrocytes in peripheral blood. Results of avian population surveys conducted with the rRNA assay suggest that prevalences of malarial infection are higher than previously documented, and that studies based on microscopic examination of blood smears may substantially underestimate the extent of parasitism by these apicomplexans. Nonetheless, because these and other published primers miss small numbers of infections detected by other methods, including inspection of smears, no assay now available for avian malaria is universally reliable. Avian malaria is caused by a group of apicomplexan species regions of the parasites' genome. Two assays (A and B) were of Plasmodium and Haemoproteus, which infect, among other designed in the nuclear-encoded 18S small subunit (SSU) of tissues, peripheral red blood cells of their vertebrate hosts.
    [Show full text]
  • Phylogenetic Patterns of Size and Shape of the Nasal Gland Depression in Phalacrocoracidae
    PHYLOGENETIC PATTERNS OF SIZE AND SHAPE OF THE NASAL GLAND DEPRESSION IN PHALACROCORACIDAE DOUGLAS SIEGEL-CAUSEY Museumof NaturalHistory and Department of Systematicsand Ecology, University of Kansas, Lawrence, Kansas 66045-2454 USA ABSTRACT.--Nasalglands in Pelecaniformesare situatedwithin the orbit in closelyfitting depressions.Generally, the depressionsare bilobedand small,but in Phalacrocoracidaethey are more diversein shapeand size. Cormorants(Phalacrocoracinae) have small depressions typical of the order; shags(Leucocarboninae) have large, single-lobeddepressions that extend almost the entire length of the frontal. In all PhalacrocoracidaeI examined, shape of the nasalgland depressiondid not vary betweenfreshwater and marine populations.A general linear model detectedstrongly significant effectsof speciesidentity and gender on size of the gland depression.The effectof habitat on size was complexand was detectedonly as a higher-ordereffect. Age had no effecton size or shapeof the nasalgland depression.I believe that habitat and diet are proximateeffects. The ultimate factorthat determinessize and shape of the nasalgland within Phalacrocoracidaeis phylogenetichistory. Received 28 February1989, accepted1 August1989. THE FIRSTinvestigations of the nasal glands mon (e.g.Technau 1936, Zaks and Sokolova1961, of water birds indicated that theseglands were Thomson and Morley 1966), and only a few more developed in species living in marine studies have focused on the cranial structure habitats than in species living in freshwater associatedwith the nasal gland (Marpies 1932; habitats (Heinroth and Heinroth 1927, Marpies Bock 1958, 1963; Staaland 1967; Watson and Di- 1932). Schildmacher (1932), Technau (1936), and voky 1971; Lavery 1972). othersshowed that the degree of development Unlike most other birds, Pelecaniformes have among specieswas associatedwith habitat. Lat- nasal glands situated in depressionsfound in er experimental studies (reviewed by Holmes the anteromedialroof of the orbit (Siegel-Cau- and Phillips 1985) established the role of the sey 1988).
    [Show full text]
  • Absence of Blood Parasites in the Red-Necked Nightjar
    J. Field Ornithol., 68(4):575-579 ABSENCE OF BLOOD PARASITES IN THE REI•-NECKFJ• NIGHTJAR M•uEI• G. FO•RO •I• Jose L. TEI•I• Estacitn Bioltgicade Do•ana, C.S.I.C., Avda. M a Luisa s/n, Pabelltndel Perd, 41013 Sevilla,Spain ALVAROGAJON Serviciode Diagntsticode Fauna Silvestre,Facultad de Veterinaria, Universidadde Zaragoza,Miguel Servet177 Zaragoza,Spain Abstract.--One-hundredand six Red-NeckedNighjars (Caprimulgusruficollis) were sampled in southern Spain to determine the incidence of haematozoainfection in relation to their expressionof sexual ornaments (i.e., white wing and tail patches). Birds were sampledjust after breeding and during molt, when blood parasitescould affect plumagecoloration, but none of these birds was infected by haematozoa.The low prevalenceof blood parasitesin this and other nightjarspecies cannot be satisfactorilyexplained at present. AUSENCIA DE PAR•ITOS SANGUiNEOS EN CAPRIMULGUS RUFICOLLIS Sinopsis.--Semuestrearon 106 individuosde Caprimulgusruficollis con el fin de determinar la posiblerelacitn entre la presenciade parfisitossangulneos y la expresi0nde ornamentos sexuales(manchas blancas en el ala y la cola) en estaespecie. Las avesfueron capturadas en Dofiana (sur de Espafia),coincidiendo con el final de la reproducci6ny la muda, finico momento en que podria verseafectada la coloraci6ndel plumaje. Sin embargo,ninguna de las avesestuvo parasitada. La bajaprevalencia de parfisitossanguineos en •sta y otrasespecies de chotacabrasno puede ser explicadaen basea la informacitn disponibleen la actualidad. In recent years, the incidence of avian blood parasitismhas received considerableattention from both evolutionistsand behavioral ecologists. Severalstudies have focusedon the possibledetrimental effectson host fitness (Allander and Bennett 1995, KorpimSki et al. 1993, RStti et al. 1993, Tella et al. 1996). Hamilton and Zuk (1982) have suggesteda re- lationship between a heritable resistanceto parasitesand bright colora- tion in birds.
    [Show full text]
  • Appendix 1. Literature Review of Stable Isotope Ratios, in Relation to Sexual Size Dimorphism in Seabirds and Trophic/Spatial Segregation, During
    Appendix 1. Literature review of stable isotope ratios, in relation to sexual size dimorphism in seabirds and trophic/spatial segregation, during the breeding season. D = dimorphism, M = monomorphism, T = tropical, NT = No tropical, B= blood, F = feather, M = muscle, P = plasma. Order: Cha = Charadriiformes, Pha = Phaethontiformes, Pro = Procellariiformes, Sph = Sphenisciformes, Sul = Suliformes, * = segregation only by δ13C values. Common name Scientific name Order SSD SI Dif sex Region Tissue Area References Razorbill Alca torda Cha M yes NT B Gulf of St. Lawrence, Canada Lavoie et al. (2012) Dovekie Alle alle Cha D no NT B Spitsbergen, Norway Harding et al. (2008) Dovekie Alle alle Cha D no NT M Northwater Polynya, Canada Hobson and Bond (2012) Fernando de Noronha Archipelago, Black noddy Anous minutus Cha M no T B This study Brazil São Pedro and São Paulo Black noddy Anous minutus Cha M no T B This study Archipelago Brown noddy Anous stolidus Cha M no T B Abrolhos Archipelago, Brazil This study Brown noddy Anous stolidus Cha M no T B Atol das Rocas, Brazil This study São Pedro and São Paulo Brown noddy Anous stolidus Cha D no T B This study Archipelago Marble murrelet Brachyramphus Cha M no NT F Monterey Bay, USA Becker et al. (2007) marmoratus Catharacta a. Brown skua Cha D no NT B South Georgia Is. Anderson et al. (2008) lonnbergi Black guillemot Cepphus grylle Cha M yes NT M Northwater Polynya, Canada Hobson and Bond (2012) Tufted puffin Fratercula cirrhata Cha D no NT B Kodiak Is., Alaska Williams et al. (2008) Herring gull Larus argentatus Cha D yes NT B Gulf of St.
    [Show full text]
  • No Evidence of Extra-Pair Paternity Or Intraspecific Brood Parasitism in The
    J Ornithol (2012) 153:399–404 DOI 10.1007/s10336-011-0754-6 ORIGINAL ARTICLE No evidence of extra-pair paternity or intraspecific brood parasitism in the Imperial Shag Phalacrocorax atriceps Luciano Caldero´n • Walter S. Svagelj • Flavio Quintana • Stephen C. Lougheed • Pablo L. Tubaro Received: 24 May 2011 / Revised: 22 July 2011 / Accepted: 23 August 2011 / Published online: 9 September 2011 Ó Dt. Ornithologen-Gesellschaft e.V. 2011 Abstract In long-lived birds with significant paternal of EPP within the family, probably as consequence of care contribution, as the case of seabirds, extra-pair different copulation and courtship behaviours, mostly paternity (EPP) is an infrequent phenomenon. Intriguingly, related to male’s solicitation display and females active and in contrast to the general pattern exhibited by seabirds, search for extra pair copulations. EPP rates appear relatively high in the two species of cormorants and shags (Phalacrocoracidae family) analyzed Keywords Cormorants Á Genetic parents Á so far. We test for EPP in the Imperial Shag Phalacrocorax Microsatellites Á Phalacrocoracidae Á Seabirds atriceps, a medium-sized colonial seabird, using four DNA microsatellites originally developed for Great Cormorants Zusammenfassung P. carbo, and successfully cross-amplified in our focal species. We assessed the parentage of 110 chicks from 37 Keine Belege fu¨r Fremdvaterschaft oder intraspezifis- broods sampled at Punta Leo´n, Argentina, during the 2004 chen Brutparasitismus bei der Blauaugenscharbe and 2005 breeding seasons. We found no evidence of EPP Phalacrocorax atriceps or intraspecific brood parasitism (IBP). Given our sample sizes, the upper 95% confidence limits for both EPP and Bei langlebigen Arten, bei denen die Ma¨nnchen signifi- IBP were estimated at 3.3% for the chicks and 8.4% for the kant zur Brutpflege beitragen, wie es bei Seevo¨geln der Fall broods.
    [Show full text]
  • Morphology, Taxonomy and Life Cycles of Some Saurian
    MORPHOLOGY, TAXONOMY AND LIFE CYCLES OF SOME SAURIAN HAEMATOZOA by Keith Robert Wallbanks B.Sc. (Lond.) A.R.C.S. 1982 A thesis submitted for the Degree of Doctor of Philosophy of the University of London Department of Pure and Applied Biology Imperial College Silwood Park Ascot Berkshire ii TO MY MOTHER AND FATHER WITH GRATITUDE AND LOVE iii Abstract The trypanosomes and Leishmania parasites of lizards are reviewed. The development of Trypanosoma platydactyli in two sandfly species, Sergentomyia minuta and Phlehotomus papatasi and in in vitro culture was followed. In sandflies the blood trypomastigotes passed through amastigote, epimastigote and promastigote phases in the midgut of the fly before developing into short, slender, non-dividing trypomastigotes in the mid- and hind-gut. These short trypomastigotes are presumed to be the infective metatrypomastigotes. In axenic culture T. platydactyli passed through amastigote and epimastigote phases into a promastigote phase. The promastigote phase was very stable and attempts to stimulate -the differentiation of promastigotes to epi- or trypo-mastigotes, by changing culture media, pH values and temperature failed. The trypanosome origin of the promastigotes was proved by the growth of promastigotes in cultures from a cloned blood trypomastigote. The resultant promastigote cultures were identical in general morphology, ultrastructure and the electrophoretic mobility of 8 enzymes to those previously considered to be Leishmania tarentolae. T. platydactyli and L. tarentolae are synonymised and the present status of saurian Leishmania parasites is discussed. Promastigote cultures of T. platydactyli formed intracellular amastigotes. in mouse macrophages, lizard monocytes and lizard kidney cells in vitro. The parasites were rapidly destroyed by mouse macrophages jlii vivo and in vitro at 37°C.
    [Show full text]
  • Lousy Chicks: Chewing Lice from the Imperial Shag, Leucocarbo Atriceps
    International Journal for Parasitology: Parasites and Wildlife 6 (2017) 229e232 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Lousy chicks: Chewing lice from the Imperial Shag, Leucocarbo atriceps * María Soledad Leonardi , Flavio Quintana Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina article info abstract Article history: Forty-one imperial shag chicks were sampled for lice during the breeding season of 2014 in Punta Leon, Received 31 May 2017 Argentina. We found 2 lice species, Pectinopygus turbinatus infesting the body and Piagetiella capu- Received in revised form tincisum present in the oral cavity of the birds. This constitutes the first host record for P. turbinatus and 28 July 2017 the first record for the continental Argentina for P. caputincisum. Ninety-three percent of the chicks were Accepted 2 August 2017 infested by at least one lice species. P. turbinatus was present in all of the lousy chicks, while P. caputincisum infested 84.2% of them. The mean intensity was 29.5 and the range 1e129. There was no Keywords: difference in prevalence, mean intensity or mean abundance between louse species. However, we found Chewing lice Patagonia differences among the pattern of infestation of each species. Imperial shag chicks were infested by their fi Pectinopygus turbinatus parents during their rst days of life by P. turbinatus, mainly in nymphal stage and by P. caputincisum as Piagetiella caputincisum adult lice. Our results showed differences among lice species that could be related to the restrictions that Seabirds lice from seabirds faced during their life cycle.
    [Show full text]