Interactions of Mitomycin C with Mammalian DMA Detected by Alkaline Elution1
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Use of Anti-Vegf Antibody in Combination With
(19) TZZ __T (11) EP 2 752 189 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/337 (2006.01) A61K 39/395 (2006.01) 26.10.2016 Bulletin 2016/43 A61P 35/04 (2006.01) A61K 31/513 (2006.01) A61K 31/675 (2006.01) A61K 31/704 (2006.01) (2006.01) (21) Application number: 13189711.8 A61K 45/06 (22) Date of filing: 20.11.2009 (54) USE OF ANTI-VEGF ANTIBODY IN COMBINATION WITH CHEMOTHERAPY FOR TREATING BREAST CANCER VERWENDUNG VON ANTI-VEGF ANTIKÖRPER IN KOMBINATION MIT CHEMOTHERAPIE ZUR BEHANDLUNG VON BRUSTKREBS UTILISATION D’ANTICORPS ANTI-VEGF COMBINÉS À LA CHIMIOTHÉRAPIE POUR LE TRAITEMENT DU CANCER DU SEIN (84) Designated Contracting States: (74) Representative: Denison, Christopher Marcus et al AT BE BG CH CY CZ DE DK EE ES FI FR GR HR Mewburn Ellis LLP HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT City Tower RO SE SI SK SM TR 40 Basinghall Street London EC2V 5DE (GB) (30) Priority: 22.11.2008 US 117102 P 13.05.2009 US 178009 P (56) References cited: 18.05.2009 US 179307 P US-A1- 2009 163 699 (43) Date of publication of application: • CAMERON ET AL: "Bevacizumab in the first-line 09.07.2014 Bulletin 2014/28 treatment of metastatic breast cancer", EUROPEAN JOURNAL OF CANCER. (60) Divisional application: SUPPLEMENT, PERGAMON, OXFORD, GB 16188246.9 LNKD- DOI:10.1016/S1359-6349(08)70289-1, vol. 6, no. -
Induction with Mitomycin C, Doxorubicin, Cisplatin And
British Journal of Cancer (1999) 80(12), 1962–1967 © 1999 Cancer Research Campaign Article no. bjoc.1999.0627 Induction with mitomycin C, doxorubicin, cisplatin and maintenance with weekly 5-fluorouracil, leucovorin for treatment of metastatic nasopharyngeal carcinoma: a phase II study RL Hong1, TS Sheen2, JY Ko2, MM Hsu2, CC Wang1 and LL Ting3 Departments of 1Oncology, 2Otolaryngology and 3Radiation Therapy, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan Summary The combination of cisplatin and 5-fluorouracil (5-FU) (PF) is the most popular regimen for treating metastatic nasopharyngeal carcinoma (NPC) but it is limited by severe stomatitis and chronic cisplatin-related toxicity. A novel approach including induction with mitomycin C, doxorubicin and cisplatin (MAP) and subsequent maintenance with weekly 5-FU and leucovorin (FL) were designed with an aim to reduce acute and chronic toxicity of PF. Thirty-two patients of NPC with measurable metastatic lesions in the liver or lung were entered into this phase II trial. Mitomycin C 8 mg m–2, doxorubicin 40 mg m–2 and cisplatin 60 mg m–2 were given on day 1 every 3 weeks as initial induction. After either four courses or remission was achieved, patients received weekly dose of 5-FU 450 mg m–2 and leucovorin 30 mg m–2 for maintenance until disease progression. With 105 courses of MAP given, 5% were accompanied by grade 3 and 0% were accompanied by grade 4 stomatitis. The dose-limiting toxicity of MAP was myelosuppression. Forty per cent of courses had grade 3 and 13% of courses had grade 4 leukopenia. -
The Limitations of DNA Interstrand Cross-Link Repair in Escherichia Coli
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 7-12-2018 The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli Jessica Michelle Cole Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Cole, Jessica Michelle, "The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli" (2018). Dissertations and Theses. Paper 4489. https://doi.org/10.15760/etd.6373 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli by Jessica Michelle Cole A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Justin Courcelle, Chair Jeffrey Singer Rahul Raghavan Portland State University 2018 i Abstract DNA interstrand cross-links are a form of genomic damage that cause a block to replication and transcription of DNA in cells and cause lethality if unrepaired. Chemical agents that induce cross-links are particularly effective at inactivating rapidly dividing cells and, because of this, have been used to treat hyperproliferative skin disorders such as psoriasis as well as a variety of cancers. However, evidence for the removal of cross- links from DNA as well as resistance to cross-link-based chemotherapy suggests the existence of a cellular repair mechanism. -
Ginsenosides Synergize with Mitomycin C in Combating Human Non-Small Cell Lung Cancer by Repressing Rad51-Mediated DNA Repair
Acta Pharmacologica Sinica (2018) 39: 449–458 © 2018 CPS and SIMM All rights reserved 1671-4083/18 www.nature.com/aps Article Ginsenosides synergize with mitomycin C in combating human non-small cell lung cancer by repressing Rad51-mediated DNA repair Min ZHAO, Dan-dan WANG, Yuan CHE, Meng-qiu WU, Qing-ran LI, Chang SHAO, Yun WANG, Li-juan CAO, Guang-ji WANG*, Hai-ping HAO* State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China The use of ginseng extract as an adjuvant for cancer treatment has been reported in both animal models and clinical applications, but its molecular mechanisms have not been fully elucidated. Mitomycin C (MMC), an anticancer antibiotic used as a first- or second- line regimen in the treatment for non-small cell lung carcinoma (NSCLC), causes serious adverse reactions when used alone. Here, by using both in vitro and in vivo experiments, we provide evidence for an optimal therapy for NSCLC with total ginsenosides extract (TGS), which significantly enhanced the MMC-induced cytotoxicity against NSCLC A549 and PC-9 cells in vitro when used in combination with relatively low concentrations of MMC. A NSCLC xenograft mouse model was used to confirm thein vivo synergistic effects of the combination of TGS with MMC. Further investigation revealed that TGS could significantly reverse MMC-induced S-phase cell cycle arrest and inhibit Rad51-mediated DNA damage repair, which was evidenced by the inhibitory effects of TGS on the levels of phospho- MEK1/2, phospho-ERK1/2 and Rad51 protein and the translocation of Rad51 from the cytoplasm to the nucleus in response to MMC. -
Sex-Specific Effects of Cytotoxic Chemotherapy Agents
www.impactaging.com AGING, April 2016, Vol 8 No 4 Research Paper Sex‐specific effects of cytotoxic chemotherapy agents cyclophospha‐ mide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection 1 2 2 2 Anna Kovalchuk , Rocio Rodriguez‐Juarez , Yaroslav Ilnytskyy , Boseon Byeon , Svitlana 3,4 4 3 1,5,6 2,5 Shpyleva , Stepan Melnyk , Igor Pogribny , Bryan Kolb, , and Olga Kovalchuk 1 Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada 2 Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada 3 Division of Biochemical Toxicology, Food and Drug Administration National Center for Toxicological Research, Jefferson, AR 72079, USA 4Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA 5 Alberta Epigenetics Network, Calgary, AB, T2L 2A6, Canada 6 Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada Key words: chemotherapy, chemo brain, epigenetics, DNA methylation, DNA hydroxymethylation, oxidative stress, transcriptome, aging Received: 01/08/16; Accepted: 01/30/1 6; Published: 03/30/16 Corresponden ce to: Bryan Kolb, PhD; Olga Kovalchuk, PhD; E‐mail: [email protected]; [email protected] Copyright: Kovalchuk et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. -
Intravesical Administration of Therapeutic Medication for the Treatment of Bladder Cancer Jointly Developed with the Society of Urologic Nurses and Associates (SUNA)
Intravesical Administration of Therapeutic Medication for the Treatment of Bladder Cancer Jointly developed with the Society of Urologic Nurses and Associates (SUNA) Revised: June 2020 Workgroup Members: AUA: Roxy Baumgartner, RN, APN-BC; Sam Chang, MD; Susan Flick, CNP; Howard Goldman, MD, FACS; Jim Kovarik, MS, PA-C; Yair Lotan, MD; Elspeth McDougall, MD, FRCSC, MHPE; Arthur Sagalowsky, MD; Edouard Trabulsi, MD SUNA: Debbie Hensley, RN; Christy Krieg, MSN, CUNP; Leanne Schimke, MSN, CUNP I. Statement of Purpose: To define the performance guidance surrounding the instillation of intravesical cytotoxic, immunotherapeutic, and/or therapeutic drugs via sterile technique catheterization for patients with non-muscle invasive bladder cancer (NMIBC, urothelial carcinoma). II. Population: Adult Urology III. Definition: Intravesical therapy involves instillation of a therapeutic agent directly into the bladder via insertion of a urethral catheter. IV. Indications: For administration of medication directly into the bladder via catheterization utilizing sterile technique for NMIBC treatment. V. Guidelines and Principles: Health care personnel (MD, NP, PA, RN, LPN, or MA) performing intravesical therapy must be educated, demonstrate competency, and understand the implications of non-muscle invasive bladder cancer. (Scope of practice for health care personnel listed may vary based on state or institution). This should include associated health and safety issues regarding handling of cytotoxic, and immunotherapeutic agents; and documented competency of safe practical skills. At a minimum, each institution or office practice setting should implement an established, annual competency program to review safety work practices and guidelines regarding storage, receiving, handling/ transportation, administration, disposal, and handling a spill of hazardous drugs. (Mellinger, 2010) VI. -
The Role of Drug Transport in Resistance to Nitrogen Mustard and Other Alkylating Agents in L5178Y Lymphoblasts1
[CANCER RESEARCH 35.1687 1692, July 1975] The Role of Drug Transport in Resistance to Nitrogen Mustard and Other Alkylating Agents in L5178Y Lymphoblasts1 Gerald J. Goldenberg2 Department of Medicine. University of Manitoba, and the Manitoba Institute of Cell Biology. Winnipeg. Manitoba. R3E OV9, Canada SUMMARY (19, 20) in normal and leukemic human lymphoid cells (25) and in rat Walker 256 carcinosarcoma cells in vitro (18). An investigation was undertaken of the mechanism of Choline, a close structural analog of HN2, has been resistance to nitrogen mustard (HN2) and other alkylating identified as the native substrate for the HN2 transport agents, with particular emphasis on the interaction between system (19). Other alkylating agents, including chlorambu cross-resistance and drug transport mechanisms in LSI78Y cil, melphalan, and intact and enzyme-activated cyclophos lymphohlasts. Dose-survival curves demonstrated that the DOfor HN2-sensitive cells (L5178Y) treated with HN2 in phamide, did not inhibit HN2 transport, suggesting inde vitro was 9.79 ng/ml and the D0 for HN2-resistant cells pendent transport mechanisms for these agents (20). Unlike HN2 transport, a study of cyclophosphamide uptake by (L5178Y/HN2) was 181.11 ng/ml; thus, sensitive cells were 18.5-fold more responsive than were resistant cells and the LSI78Y lymphoblasts demonstrated biphasic kinetics and was mediated by a facilitated diffusion mechanism (15). In difference was highly significant (p < 0.001). A similar common with HN2 transport, uptake of cyclophosphamide evaluation of 5 additional alkylating agents, including chlorambucil, melphalan, l,3-bis(2-chloroethyl)-l-nitro- was not blocked by other alkylating agents such as HN2, sourea, Mitomycin C, and 2,3,5-tris(ethyleneimino)-l,4- chlorambucil, melphalan and isophosphamide, providing additional evidence that these drugs are transported by benzoquinone, revealed that L5178Y/HN2 cells were also cross-resistant, in part, to each of these compounds. -
Antibiotics for Cancer Treatment
Journal of Cancer 2020, Vol. 11 5135 Ivyspring International Publisher Journal of Cancer 2020; 11(17): 5135-5149. doi: 10.7150/jca.47470 Review Antibiotics for cancer treatment: A double-edged sword Yuan Gao1,2, Qingyao Shang1,2, Wenyu Li1,2, Wenxuan Guo1, Alexander Stojadinovic3, Ciaran Mannion3,4, Yan-gao Man3 and Tingtao Chen1 1. National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People’s Republic of China. 2. Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China. 3. Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA. 4. Department of Pathology, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA. Corresponding author: Dr. Tingtao Chen Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China; E-mail: [email protected]; Tel: +86-791-83827170, or Dr. Yan-gao Man, Man Department of Pathology, Hackensack Meridian Health-Hackensack University Medical Center, NJ, USA; e-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.04.27; Accepted: 2020.06.14; Published: 2020.06.28 Abstract Various antibiotics have been used in the treatment of cancers, via their anti-proliferative, pro-apoptotic and anti-epithelial-mesenchymal-transition (EMT) capabilities. However, increasingly studies have indicated that antibiotics may also induce cancer generation by disrupting intestinal microbiota, which further promotes chronic inflammation, alters normal tissue metabolism, leads to genotoxicity and weakens the immune response to bacterial malnutrition, thereby adversely impacting cancer treatment. -
EFFORTS TOWARD the TOTAL SYNTHESIS of MITOMYCINS By
EFFORTS TOWARD THE TOTAL SYNTHESIS OF MITOMYCINS by ANNE VIALETTES Ingénieur de l’École Supérieure de Chimie, Physique Électronique de Lyon, spécialité: Chimie - Chimie des Procédés, 2007 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Chemistry) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) May 2009 © Anne Vialettes, 2009 ABSTRACT This thesis describes our efforts toward the total synthesis of mitomycins. The centerpiece of our route to the target molecule is a homo-Brook mediated aziridine fragmentation, developed in our laboratory. The aziridine moiety of the target molecule was installed through an intramolecular iodoamidification of an olefin. The crystalline triazoline intermediate, available before the homo-Brook rearrangement, was obtained after Reetz allylation on an aldehyde followed by a intramolecular 1,3-diploar cycloaddition of an azido unit onto a terminal olefin. The aldehyde intermediate was synthesized in 9 steps involving a Mitsunobu reaction, a Claisen rearrangement and a Lemieux-Johnson oxidation from readily commercially available products. ii TABLE OF CONTENTS ABSTRACT ....................................................................................................................................ii TABLE OF CONTENTS ..................................................................................................................iii LIST OF FIGURES ......................................................................................................................... -
For Therapy of Patients with Metastasized, Breast Cancer Pretreated with Anthracycline
ANTICANCER RESEARCH 36: 419-426 (2016) Mitomycin C and Capecitabine (MiX Trial) for Therapy of Patients with Metastasized, Breast Cancer Pretreated with Anthracycline KATRIN ALMSTEDT1, PETER A. FASCHING1, ANTON SCHARL2, CLAUDIA RAUH1, BRIGITTE RACK3, ALEXANDER HEIN1, CAROLIN C. HACK1, CHRISTIAN M. BAYER1, SEBASTIAN M. JUD1, MICHAEL G. SCHRAUDER1, MATTHIAS W. BECKMANN1 and MICHAEL P. LUX1 1Department of Obstetrics and Gynaecology, University of Erlangen, Erlangen, Germany; 2Department of Gynecology and Obstetrics, St. Marien Hospital, Amberg, Germany; 3Department of Gynecology and Obstetrics, Ludwig Maximilian University, Munich, Germany Abstract. Background/Aim: The aim of this single-arm, (MBC) is still a challenge. The majority of patients with prospective, multicenter phase II trial (MiX) was to increase breast cancer receive an anthracycline-based regimen as first treatment options for women with metastatic breast cancer chemotherapy, in an adjuvant, neoadjuvant, or metastatic pretreated with anthracycline and taxane by evaluation of the setting. The development of drug resistance and impairment efficacy and toxicity of the combination of mitomycin C and of organ functions limits the choice of further cytotoxic capecitabine. Patients and Methods: From 03/2004 to drugs in the metastatic situation. Although many patients are 06/2007, a total of 39 patients were recruited and received willing to receive further anticancer therapy to counteract mitomycin C in combination with capecitabine. The primary tumor growth, they often request a less toxic but still end-point was to determinate the tumor response according effective therapy. At present taxanes (e.g. paclitaxel, to Response Evaluation Criteria in Solid Tumors and the rate docetaxel, nab-paclitaxel), eribulin, vinorelbine, 5- of toxicities (safety). -
Recent Advances in the Management of Hormone Refractory Prostate Cancer
Korean J Uro-Oncol 2004;2(3):147-153 Recent Advances in the Management of Hormone Refractory Prostate Cancer Mari Nakabayashi, William K. Oh Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA A typical treatment strategy after AAWD is to use secondary INTRODUCTION hormonal manipulations, although studies have not yet demonstrated a survival benefit with this class of treatment. Prostate cancer is the most common cancer in men in the Options in this category include (1) the secondary use of anti- United States and accounted for 29,900 deaths in 2003.1 androgens (e.g., high-dose bicalutamide, nilutamide), (2) thera- Although most men with advanced prostate cancer respond pies targeted against adrenal steroid synthesis (e.g., ketocona- initially to androgen deprivation therapies (ADT) by either zole, corticosteroids), and (3) estrogenic therapies (e.g. diethy- bilateral orchiectomy or leuteinizing hormone releasing hor- lstilbestrol). Symptomatic improvement and PSA responses mone (LHRH) analogues, patients eventually progress to an (defined as PSA decline >50% after treatment) have been androgen-independent state in which the initial ADT no longer reported in approximately 20% to 80% of patients with is adequate to control disease.2 Progression of the disease hormone-refractory prostate cancer (HRPC) with a typical manifests as an increase in serum prostate-specific antigen duration of response of 2 to 6 months. Toxicity is generally (PSA) or may be accompanied by radiographic evidence of mild for these oral therapies, although serious side effects, tumor growth. Here we report a brief summary of recent including adrenal insufficiency, liver toxicity, and thrombosis, advances in the management of hormone refractory prostate may occur (Table 1). -
Possible Intermediates in the Action of Adriamycin a Pulse Radiolysis Study E.J
Br. J. Cancer (1985), 51, 515-523 Possible intermediates in the action of adriamycin A pulse radiolysis study E.J. Land', T. Mukherjeel*, A.J. Swallow' & J.M. Bruce2 'Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester, M20 9BX and the 2Department of Chemistry, The University, Manchester M13 9PL, UK. Summary Over a wide range of pH, the semiquinone free radicals formed by reduction of adriamycin exist as a form which is strongly stabilised by internal hydrogen bonding and resonance. They protonate with pKa = 2.9. Below this pH they exhibit absorption maxima at 430nm (smax = 13,200dm3mol-'cm-1) and -720nm (Cmax =4,200dm3mol3-1 cm -). Above pH 2.9 they have maxima at 480 nm (smax= 14,600 dM3mol-1 cm-') and - 700 nm (Smax = 3,400 dm mol -cm -'). In acid and alkaline solution the radicals rapidly disappear by disproportionation, but within the approximate pH range 6 to 11 they appear to be relatively stable for at least 10-20ms, existing in transient equilibrium with parent adriamycin and the full reduced form. Some rate constants for the formation and reactions of the semiquinone are given, including the reaction with oxygen to give 0i-. Fully reduced adriamycin has absorption maxima at 410 nm (smax = 11,000dm3 mol-lcm-') at pH 5 and 430 nm (Vmax=19,000dm3mol- cm -) at pH 11. It undergoes decomposition within a few hundred ms. The intermediates from daunomycin would be expected to have properties similar to those from adriamycin. Anthracycline antibiotics constitute a major class of or hydroxyl (OH'), which could react with the chemotherapeutic agents for the treatment of proximal DNA, producing the strand-scission different kinds of cancer.