Osmoregulatory Organs of Immature Culicoides Sonorensis (Diptera: Ceratopogonidae) in North America1

Total Page:16

File Type:pdf, Size:1020Kb

Osmoregulatory Organs of Immature Culicoides Sonorensis (Diptera: Ceratopogonidae) in North America1 Volume 119, Number 4, September and October 2008 371 OSMOREGULATORY ORGANS OF IMMATURE CULICOIDES SONORENSIS (DIPTERA: CERATOPOGONIDAE) IN NORTH AMERICA1 Will K. Reeves2 ABSTRACT: Aquatic insects must regulate the ion concentrations of their haemolymph, and freshwa- ter insects tend to loose ions to their aquatic environment. The osmoregulatory organs of larvae and pupae of C. sonorensis have not been previously reported. Silver nitrate was used to detect tissues in immature stages of C. sonorensis with active chloride exchange. Larvae of C. sonorensis actively ex- changed ions with their anal papillae, cutaneous chloride cells, and to a lesser extent the hindgut. Only the cutaneous chloride cells were stained in their pupae. KEY WORDS: Diptera, Ceratopogonidae, biting midge, Culicoides sonorensis, osmoregulation, larva, pupa, chloride cells Aquatic insects survive in habitats with fluctuating osmotic conditions and must regulate the ion concentrations of their haemolymph. Freshwater insects tend to loose ions to the environment. The water-saturated soils and wet feces in and around livestock feedlots support a variety of aquatic and semiaquatic Diptera, in- cluding Musca spp. and Culicoides spp. (Blanton and Wirth, 1979; Skoda et al., 1993). Larvae of Musca autumnalis and M. domestica can develop in semi-aquat- ic habitats containing wet dung, and probably use their anal organs to regulate the ion concentrations in their haemolymph (Stoffolano, 1970). The toxicity of chem- icals that inhibit the osmoregulation of larval flies has been previously studied (e.g. Broce et al., 1988) and might represent a potential category of pesticides. Larvae of Culicoides spp. presumably use their anal papillae for osmoregulation but some species lack these organs (Murphree and Mullen, 1991). Lawson (1951) described the larvae of C. nubeculosus and used silver nitrate to stain the anal papillae, which he suggested they used for osmoregulation. The osmoregulatory organs of larvae and pupae of C. sonorensis have not been previously reported, but these organs are probably similar to those of C. nubeculosus. Understanding the osmoregulatory organs of C. sonorensis is important because they could possibly be targeted with pesticides. Culicoides sonorensis is a member of the C. variipen- nis complex that was recently revised by Holbrook et al. (2000). The C. variipen- nis complex contains three species: C. variipennis, Culicoides sonorensis, and Culicoides occidentalis. Culicoides sonorensis is economically important in North America, where it vectors two major viral diseases, bluetongue and epizootic hem- orrhagic disease of deer, to domestic ruminants and wildlife (Mellor et al., 2000). METHODS The osmoregulatory organs of C. sonorensis were detected using the techniques described by Koch (1938). Briefly, 15 live 4th instar larvae, 4 dead larvae, and 7 ______________________________ 1 Received on January 22, 2008. Accepted on February 25, 2008. 2 Arthropod-Borne Animal Diseases Research Laboratory, USDA, 1000 E. University Avenue, Depart- ment 3354, Laramie, Wyoming 82071 U.S.A. E-mail: [email protected]. Mailed on November 12, 2008 372 ENTOMOLOGICAL NEWS pupae were removed from the VanRyan colony of C. sonorensis and allowed to soak in 150 ml of distilled water for 20 minutes. The colony has been maintained continuously at the USDA Arthropod-Borne Animal Diseases Research Labora- tory, as described Hunt (1994). Ten live larvae, 3 dead larvae, and 5 pupae were placed in a Petri dish with 50 ml of 1% aqueous silver nitrate and held in the dark for 30 min. The larvae and pupae were then uncovered and held in bright light on a dissecting microscope for 20 min. Larvae and pupae in distilled water were com- pared to those in the silver nitrate and photographed (Figs. 1 and 2). Tissues that transport chloride ions were stained black when insoluble silver salts precipitated and blackened under bright light. The experimental larvae were immobilized because, 1% silver nitrate will paralyze and eventually kill immatures of Culicoides (Lawson, 1951). Unstained insects were immobilized with ice. Voucher specimens were deposited in the University of Wyoming Insect Collection. RESULTS Three different organs were stained by silver nitrate in live larvae of C. sonoren- sis, the anal papillae and cutaneous chloride cells (Fig. 1). The hindgut also turned light brown in some larvae, but there were no darkened tissues in the dead larvae. After staining with silver nitrate, cutaneous chloride cells were visible on the pupae (Fig. 2). DISCUSSION Tissues in dead larvae of C. sonorensis were not stained, which indicates that a physiological process caused the staining. Lawson (1951) noted that the anal papil- lae of C. nubeculosus were only lightly stained by silver nitrate, and he inferred that they actively reduced the silver nitrate. The anal papillae of C. sonorensis stained dark black (Fig. 1), which indicates that the reaction was a simple reduction of sil- ver chloride. Single chloride cells were scattered over the body of the larvae of C. sonorensis (Fig. 1). Chloride cells were more numerous on the dorsum and near the ends of each segment. They were distributed on all body segments except the head capsule and were bilaterally asymmetrical. Komnick (1977) reviewed the structures of these cells in aquatic insects and noted their presence on larvae of other Nematocera. In addition to these external organs, a portion of the hindgut was lightly stained in some larvae. This indicates that the hindgut actively reduced sil- ver nitrate but at a lower rate than the anal papillae or chloride cells. All of these organs are most likely involved with osmoregulation and the uptake of ions from the environment. Pupae of C. sonorensis float to the surface of their developmental habitat and are slightly hydrophobic. Chloride cells were visible on the pupae and were present on the all surfaces, but were most numerous on the ventral surface of the abdomen (Fig. 2). The chloride cells were generally smaller than those on the larvae; how- ever, these organs must continue to exchange chloride ions with the environment. Previous descriptions of pupae of Culicoides (e.g. Lawson, 1951) did not mention chloride cells. Volume 119, Number 4, September and October 2008 373 Figures 1-2. 1. Silver nitrate stained (top) and unstained (bottom) larvae of Culicoides sonorensis. The black stained anal papillae and chloride cells, indicating the osmoregula- tory organs, are marked with arrows. 2. Chloride cells on the abdomen of a pupa of Culicoides sonorensis are stained black with silver nitrate. 374 ENTOMOLOGICAL NEWS ACKNOWLEDGEMENTS I thank Dr. W. Grogan, Jr. for his helpful review of the manuscript, Dr. A. Broce for his sugges- tions and help with the silver staining procedure and to L. DeBrey and J. Kempert for maintaining the laboratory colonies of C. sonorensis. LITERATURE CITED Blanton, F. S. and W. W. Wirth. 1979. The sand flies (Culicoides) of Florida (Diptera: Ceratopo- gonidae). Arthropods of Florida and Neighboring Land Areas 10: 1-204. Broce, A. B., M. J. Gordowitz, and J. G. Riley. 1988. Effect of the ionophore lasalocid on face fly (Diptera: Muscidae) larval survival and physical and chemical parameters of cattle feces. Journal of the Kansas Entomological Society 61: 471-476. Holbrook, F. R., W. J. Tabachnick, E. T. Schmidtmann, C. N. McKinnon, R. J. Bobian, and W. L. Grogan. 2000. Sympatry in the Culicoides variipennis complex: a taxonomic reassess- ment. Journal of Medical Entomology 37: 65-76. Hunt, G. J. 1994. A procedural manual for the large-scale rearing of the biting midge, Culicoides variipennis (Diptera: Ceratopogonidae). U.S. Department of Agriculture, Agricultural Research Service, ARS-121. National Technical Information Service. Springfield, Virginia, U.S.A. pp. 1-68. Koch, H. J. 1938. The osmo-regulatory function of anal papillae in Culicidae. Journal of Experi- mental Biology 15: 152-160. Komnick, H. 1977. Chloride cells and chloride epithelia of aquatic insects. International Review of Cytology 49: 285-329. Lawson, J. W. H. 1951. The anatomy and morphology of the early stages of Culicoides nubeculo- sus Meigen (Diptera: Ceratopogonidae = Heleidae). Transactions of the Royal Entomological Society of London 102: 511-574. Mellor P. S., J. Boorman, and M. Baylis. 2000. Culicoides biting midges: their role as arbovirus vectors. Annual Review of Entomology 45: 307-340. Murphree, C. S. and G. R. Mullen. 1991. Comparative larval morphology of the genus Culicoides Latreille (Diptera: Ceratopogonidae) in North America with a key to species. Bulletin of the Society of Vector Ecology 16: 269-399. Skoda, S. R., G. D. Thomas, and J. B. Campbell. 1993. Abundance of immature stages of the housefly (Diptera; Muscidae) from five areas in beef cattle feedlot pens. Journal of Economic Entomology 86: 455-461. Stoffolano, J. G., Jr. 1970. The anal organ of larvae of Musca autumnalis, M. domestica, and Orthellia caesarion (Diptera: Muscidae). Annals of the Entomological Society of America 63: 1647-1654..
Recommended publications
  • Molecular Detection of Culicoides Spp. and Culicoides Imicola, The
    Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe Catherine Cêtre-Sossah, Thierry Baldet, Jean-Claude Delécolle, Bruno Mathieu, Aurélie Perrin, Colette Grillet, Emmanuel Albina To cite this version: Catherine Cêtre-Sossah, Thierry Baldet, Jean-Claude Delécolle, Bruno Mathieu, Aurélie Perrin, et al.. Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe. Veterinary Research, BioMed Central, 2004, 35 (3), pp.325-337. 10.1051/vetres:2004015. hal-00902785 HAL Id: hal-00902785 https://hal.archives-ouvertes.fr/hal-00902785 Submitted on 1 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. 35 (2004) 325–337 325 © INRA, EDP Sciences, 2004 DOI: 10.1051/vetres:2004015 Original article Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe
    [Show full text]
  • African Horse Sickness Standard Operating Procedures: 1
    AFRICAN HORSE SICKNESS STANDARD OPERATING PROCEDURES: 1. OVERVIEW OF ETIOLOGY AND ECOLOGY DRAFT AUGUST 2013 File name: FAD_Prep_SOP_1_EE_AHS_Aug2013 SOP number: 1.0 Lead section: Preparedness and Incident Coordination Version number: 1.0 Effective date: August 2013 Review date: August 2015 The Foreign Animal Disease Preparedness and Response Plan (FAD PReP) Standard Operating Procedures (SOPs) provide operational guidance for responding to an animal health emergency in the United States. These draft SOPs are under ongoing review. This document was last updated in August 2013. Please send questions or comments to: Preparedness and Incident Coordination Veterinary Services Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 41 Riverdale, Maryland 20737-1231 Telephone: (301) 851-3595 Fax: (301) 734-7817 E-mail: [email protected] While best efforts have been used in developing and preparing the FAD PReP SOPs, the U.S. Government, U.S. Department of Agriculture (USDA), and the Animal and Plant Health Inspection Service and other parties, such as employees and contractors contributing to this document, neither warrant nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or procedure disclosed. The primary purpose of these FAD PReP SOPs is to provide operational guidance to those government officials responding to a foreign animal disease outbreak. It is only posted for public access as a reference. The FAD PReP SOPs may refer to links to various other Federal and State agencies and private organizations. These links are maintained solely for the user's information and convenience.
    [Show full text]
  • Blood-Meal Analysis of Culicoides (Diptera: Ceratopogonidae) Reveals
    Tomazatos et al. Parasites Vectors (2020) 13:79 https://doi.org/10.1186/s13071-020-3938-1 Parasites & Vectors RESEARCH Open Access Blood-meal analysis of Culicoides (Diptera: Ceratopogonidae) reveals a broad host range and new species records for Romania Alexandru Tomazatos1, Hanna Jöst1, Jonny Schulze1, Marina Spînu2, Jonas Schmidt‑Chanasit1,3, Daniel Cadar1 and Renke Lühken1,3* Abstract Background: Culicoides biting midges are potential vectors of diferent pathogens. However, especially for eastern Europe, there is a lack of knowledge on the host‑feeding patterns of this vector group. Therefore, this study aimed to identify Culicoides spp. and their vertebrate hosts collected in a wetland ecosystem. Methods: Culicoides spp. were collected weekly from May to August 2017, using Biogents traps with UV light at four sites in the Danube Delta Biosphere Reserve, Romania. Vectors and hosts were identifed with a DNA barcoding approach. The mitochondrial cytochrome c oxidase subunit 1 was used to identify Culicoides spp., while vertebrate hosts were determined targeting cytochrome b or 16S rRNA gene fragments. A maximum likelihood phylogenetic tree was constructed to verify the biting midge identity against other conspecifc Palaearctic Culicoides species. A set of unfed midges was used for morphological confrmation of species identifcation using slide‑mounted wings. Results: Barcoding allowed the species identifcation and detection of corresponding hosts for 1040 (82.3%) of the 1264 analysed specimens. Eight Culicoides spp. were identifed with Culicoides griseidorsum, Culicoides puncticollis and Culicoides submaritimus as new species records for Romania. For 39 specimens no similar sequences were found in GenBank. This group of unknown Culicoides showed a divergence of 15.6–16.3% from the closest identifed species and clustered in a monophyletic clade, i.e.
    [Show full text]
  • Culicoides Obsoletus Allergens for Diagnosis of Insect Bite Hypersensitivity in Horses
    Culicoides obsoletus allergens for diagnosis of insect bite hypersensitivity in horses Nathalie M.A. van der Meide Thesis committee Promotor Prof. dr. ir. H. F. J. Savelkoul Professor of Cell Biology and Immunology Wageningen University Co-promotor Dr. E. Tijhaar Assistent professor, Cell Biology and Immunology Group Wageningen University Other members Prof. dr. ir. B. Kemp, Wageningen University, The Netherlands Dr. B. Wagner, Cornell University, Itaca, USA Prof. dr. V.P.M.G. Rutten, Utrecht University, The Netherlands Prof. dr. R. Gerth van Wijk, Erasmus MC Rotterdam, The Netherlands This research was conducted under the auspices of the Graduate School of the Wageningen Institute of Animal Sciences Culicoides obsoletus allergens for diagnosis of insect bite hypersensitivity in horses Nathalie M.A. van der Meide Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M. J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 13 September 2013 at 1.30 p.m. in the Aula Nathalie M.A. van der Meide Culicoides obsoletus allergens for diagnosis of insect bite hypersensitivity in horses PhD Thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in Dutch and English ISBN: 978-94-6173-669-7 Contents Chapter 1 General introduction 7 Chapter 2 Culicoides obsoletus extract relevant for diagnostics of insect bite hypersensitivity in horses 45 Chapter 3 Seasonal
    [Show full text]
  • Culicoides Variipennis and Bluetongue-Virus Epidemiology in the United States1
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 1996 CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES1 Walter J. Tabachnick Arthropod-Borne Animal Diseases Research Laboratory, USDA, ARS Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Tabachnick, Walter J., "CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES1" (1996). Publications from USDA-ARS / UNL Faculty. 2218. https://digitalcommons.unl.edu/usdaarsfacpub/2218 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN~URev. Entomol. 19%. 41:2343 CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES' Walter J. Tabachnick Arthropod-Borne Animal Diseases Research Laboratory, USDA, ARS, University Station, Laramie, Wyoming 8207 1 KEY WORDS: arbovirus, livestock, vector capacity, vector competence, population genetics ABSTRACT The bluetongue viruses are transmitted to ruminants in North America by Culi- coides vuriipennis. US annual losses of approximately $125 million are due to restrictions on the movement of livestock and germplasm to bluetongue-free countries. Bluetongue is the most economically important arthropod-borne ani- mal disease in the United States. Bluetongue is absent in the northeastern United States because of the inefficient vector ability there of C. variipennis for blue- tongue. The vector of bluetongue virus elsewhere in the United States is C.
    [Show full text]
  • The Ecology and Control of Blood-Sucking Ceratopogonids
    The ecology and control of blood-sucking ceratopogonids Autor(en): Kettle, D.S. Objekttyp: Article Zeitschrift: Acta Tropica Band (Jahr): 26 (1969) Heft 3 PDF erstellt am: 06.10.2021 Persistenter Link: http://doi.org/10.5169/seals-311619 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Zoology Department, University College Nairobi The Ecology and Control of Blood-sucking Ceratopogonids * D. S. Kettle This account of recent developments in the ecology and control of bloodsucking ceratopogonids takes as its starting point an earlier review which appeared in 1962 (47). Since then the main advances have been the first detailed biological study on a species of Lasiohelea (31), increasing fieldwork on the genus Leptoconops and the colonisation of Culicoides in the laboratory.
    [Show full text]
  • African Horse Sickness
    African Horse Sickness Adam W. Stern, DVM, CMI-IV, CFC Abstract: African horse sickness (AHS) is a reportable, noncontagious, arthropod-borne viral disease that results in severe cardiovascular and pulmonary illness in horses. AHS is caused by the orbivirus African horse sickness virus (AHSV), which is transmitted primarily by Culicoides imicola in Africa; potential vectors outside of Africa include Culicoides variipennis and biting flies in the genera Stomoxys and Tabanus. Infection with AHSV has a high mortality rate. Quick and accurate diagnosis can help prevent the spread of AHS. AHS has not been reported in the Western Hemisphere but could have devastating consequences if introduced into the United States. This article reviews the clinical signs, pathologic changes, diagnostic challenges, and treatment options associated with AHS. frican horse sickness (AHS)—also known as perdesiekte, pestis they can develop a viremia sufficient enough to infectCulicoides sp. equorum, and la peste equina—is a highly fatal, arthropod- The virus is transmitted via biting arthropods. Vectors of AHSV borne viral disease of solipeds and, occasionally, dogs and include Culicoides imicola and Culicoides bolitinos.6,11,12 Other A 1 camels. AHS is noncontagious: direct contact between horses biting insects, such as mosquitoes, are thought to have a minor does not transmit the disease. AHS is caused by African horse role in disease transmission. C. imicola is the most important sickness virus (AHSV). Although AHS has not been reported in vector of AHSV in the field and is commonly found throughout the Western Hemisphere, all equine practitioners should become Africa, Southeast Asia, and southern Europe (i.e., Italy, Spain, familiar with the disease because the risk of its introduction is Portugal).6,13 The presence ofC.
    [Show full text]
  • Geo-Statistical Analysis of Culicoides Spp. Distribution and Abundance in Sicily, Italy
    Blanda et al. Parasites & Vectors (2018) 11:78 DOI 10.1186/s13071-018-2658-2 RESEARCH Open Access Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy Valeria Blanda†, Marcellocalogero Blanda†, Francesco La Russa, Rossella Scimeca, Salvatore Scimeca, Rosalia D’Agostino, Michelangelo Auteri and Alessandra Torina* Abstract Background: Biting midges belonging to Culicoides imicola, Culicoides obsoletus complex and Culicoides pulicaris complex (Diptera: Ceratopogonidae) are increasingly implicated as vectors of bluetongue virus in Palaearctic regions. Culicoides obsoletus complex includes C. obsoletus (sensu stricto), C. scoticus, C. dewulfi and C. chiopterus. Culicoides pulicaris and C. lupicaris belong to the Culicoides pulicaris complex. The aim of this study was a geo- statistical analysis of the abundance and spatial distribution of Culicoides spp. involved in bluetongue virus transmission. As part of the national bluetongue surveillance plan 7081 catches were collected in 897 Sicilian farms from 2000 to 2013. Methods: Onderstepoort-type blacklight traps were used for sample collection and each catch was analysed for thepresenceofCulicoides spp. and for the presence and abundance of Culicoides vector species (C. imicola, C. pulicaris / C. obsoletus complexes). A geo-statistical analysis was carried out monthly via the interpolation of measured values based on the Inverse Distance Weighted method, using a GIS tool. Raster maps were reclassified into seven classes according to the presence and abundance of Culicoides, in order to obtain suitable maps for Map Algebra operations. Results: Sicilian provinces showing a very high abundance of Culicoides vector species were Messina (80% of the whole area), Palermo (20%) and Catania (12%). A total of 5654 farms fell within the very high risk area for bluetongue (21% of the 26,676 farms active in Sicily); of these, 3483 farms were in Messina, 1567 in Palermo and 604 in Catania.
    [Show full text]
  • Response of Culicoides Sonorens/S(Diptera: Ceratopogonidae) to I-Octen-3-Ol and Three Plant- Derived Repellent Formulations in the Field
    Journal of the American Mosquito Control Association, 16(2):158-163, 2000 Copyright @ 2000 by the American Mosquito Control Association, Inc. RESPONSE OF CULICOIDES SONORENS/S(DIPTERA: CERATOPOGONIDAE) TO I-OCTEN-3-OL AND THREE PLANT- DERIVED REPELLENT FORMULATIONS IN THE FIELD YEHUDA BRAVERMAN,T MARY C. WEGIS' rxo BRADLEY A. MULLENS3 ABSTRACT The potential attractant l-octen-3-ol and 3 potential repellents were assayed for activity for Culicoides sonorensis, the primary vector of bluetongue virus in North America. Collections using octenol were low, but numbers in suction traps were greater in the high-octenol treatment (11.5 mg/h) than in the low-octenol treatment (1.2 mg/h) or unbaited control for both sexes. Collections using high octenol, CO, (-1,000 ml/min), or both showed octenol alone to be significantly less attractive than either of the CO, treatments and that octenol did not act synergistically with this level of COr. A plant-derived (Meliaceae) extract with 4.5Vo of active ingredient (AI) (AglOOO), heptanone solvent, Lice free@ (24o Al from plant extracts in water), Mosi-guard with 5OVo Eucalyptus maculata v^r. citriodora Hook extract, and N,N-diethyl-m-toluamide (deet) were applied to polyester--cotton coarse mesh nets and deployed in conjunction with suction light traps plus COr. Collections in the trap with deet were 667o lower (P < 0.05) than the heptanone and 56Vo (P > 0.05) less than the untreated (negative) control. Relative to deet, collections in the traps with the lice repellent, Ag1000, and Mosi-guard were reduced by 15,34, and 39Vo, respectively (P > 0.05).
    [Show full text]
  • Leptoconops Nosopheris Sp. N. (Diptera: Ceratopogonidae) and Paleotrypanosoma Burmanicus Gen
    468 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 103(5): 468-471, August 2008 Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) and Paleotrypanosoma burmanicus gen. n., sp. n. (Kinetoplastida: Trypanosomatidae), a biting midge - trypanosome vector association from the Early Cretaceous George Poinar Jr. Department of Zoology, Oregon State University, Corvallis, OR 97331, USA Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) is described from a blood-filled female biting midge in Early Cretaceous Burmese amber. The new species is characterized by a very elongate terminal flagellomere, elongate cerci, and an indistinct spur on the metatibia. This biting midge contained digenetic trypanosomes (Kinetoplastida: Trypanosomatidae) in its alimentary tract and salivary glands. These trypanosomes are described as Paleotrypanosoma burmanicus gen. n., sp. n., which represents the first fossil record of a Trypanosoma generic lineage. Key words: Cretaceous - biting midge - trypanosomatids - fossil The fossil record of trypanosomatids is limited to SMZ-10 R stereoscopic microscope. The final piece is Paleoleishmania proterus Poinar and Poinar (2004) vec- roughly rectangular in outline, measuring 12 mm long tored by an Early Cretaceous sand fly in Burmese amber by 7 mm wide and 1 mm in depth. The flagellates were and Trypanosoma antiquus Poinar vectored by a triato- observed and photographed with a Nikon Optiphot com- mid bug in Tertiary Dominican amber (Poinar 2005). pound microscope with magnifications up to 1,050X. The present study reports a novel association between a The insect’s tissues had partially cleared (Fig.1), thus new species of biting midge belonging to the genus Lep- allowing an unobstructed view of the alimentary tract, toconops (Diptera: Ceratopogonidae) and a new species body cavity and salivary glands.
    [Show full text]
  • Protection of Horses Against Culicoides Biting Midges in Different
    Veterinary Parasitology 210 (2015) 206–214 Contents lists available at ScienceDirect Veterinary Parasitology jou rnal homepage: www.elsevier.com/locate/vetpar Protection of horses against Culicoides biting midges in different housing systems in Switzerland a b a c d V.J. Lincoln , P.C. Page , C. Kopp , A. Mathis , R. von Niederhäusern , e a,∗ D. Burger , C. Herholz a Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Laenggasse 85, CH-3052 Zollikofen, Switzerland b Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa c University of Zurich, Institute of Parasitology, National Centre for Vector Entomology, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland d Swiss National Stud, Agroscope, Les Longs Prés, CH-1580 Avenches, Switzerland e Swiss Institute of Equine Medicine ISME, Agroscope and University of Berne, Les Longs Prés, CH-1580 Avenches, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Species belonging to the Culicoides complexes (Diptera, Ceratopogonidae), obsoletus and Received 21 November 2014 pulicaris, in Switzerland, are potential vectors of both bluetongue virus (BTV) and African Received in revised form 8 April 2015 horse sickness virus (AHSV). The epidemic of BTV in 2006 and 2007 in Europe has Accepted 10 April 2015 highlighted the risk of introduction and spread of vector-borne diseases in previously non- endemic areas. As a measure of prevention, as part of an integrated control programme Keywords: in the event of an outbreak of African horse sickness (AHS), it is of utmost importance to Vector protection prevent, or substantially reduce, contact between horses and Culicoides.
    [Show full text]
  • Habitat Associations of Culicoides Species (Diptera: Ceratopogonidae) Abundant on a Commercial Cervid Farm in Florida, USA Dinesh Erram1*, Erik M
    Erram et al. Parasites Vectors (2019) 12:367 https://doi.org/10.1186/s13071-019-3626-1 Parasites & Vectors RESEARCH Open Access Habitat associations of Culicoides species (Diptera: Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA Dinesh Erram1*, Erik M. Blosser1,2 and Nathan Burkett‑Cadena1 Abstract Background: Biting midges in the genus Culicoides (Diptera: Ceratopogonidae) transmit bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) to ruminants, thus exerting a signifcant economic impact on animal agriculture worldwide. However, very little is known about the larval habitat characteristics of Culicoides species asso‑ ciated with BTV/EHDV transmission, particularly in southeastern USA, limiting the establishment of efective midge control strategies. In this study, we examined the habitat associations of Culicoides species abundant on a commercial cervid farm in Florida, USA and quantifed several environmental variables of their habitat to identify the key variables associated with midge abundance. Methods: Mud/substrate samples from three potential larval habitats on the farm (edges of streams, puddles and seepages) were brought to the laboratory and incubated for adult emergence, and the percentage organic matter, macronutrients, micronutrients, pH, electrical conductivity, moisture and microbial concentrations of the substrate were quantifed. Results: Strong habitat associations were observed for Culicoides haematopotus (Malloch) (stream edge), Culicoides stellifer (Coquillett) (puddles) and Culicoides loisae (Jamnback) (stream edge), the most commonly emerging midge species from the samples. Suspected vector species of BTV/EHDV on the property, C. stellifer and Culicoides venustus (Hofman), emerged mainly from habitats with moderate‑high levels of pollution (edges of puddles and seepages) as indicated by the relatively higher concentrations/levels of organic matter, nutrients and other environmental variables in these samples.
    [Show full text]