Crown Pastoral Tenure Review

Total Page:16

File Type:pdf, Size:1020Kb

Crown Pastoral Tenure Review Crown Pastoral Land Tenure Review Lease name : CAMBRIAN HILLS Lease number : PO 069 Conservation Resources Report - Part 1 As part of the process of Tenure Review, advice on significant inherent values within the pastoral lease is provided by Department of Conservation officials in the form of a Conservation Resources Report. This report is the result of outdoor survey and inspection. It is a key piece of information for the development of a preliminary consultation document. Note: Plans which form part of the Conservation Resources Report are published separately. These documents are all released under the Official information Act 1982. May 07 RELEASED UNDER THE OFFICIAL INFORMATION ACT DOC CONSERVATION RESOURCES REPORT ON TENURE REVIEW OF CAMBRIAN HILLS PASTORAL LEASE (P 69) UNDER PART 2 OF THE CROWN PASTORAL LAND ACT 1998 Final Cambrian Hills Pastoral Lease Conservation Resources Report. OTACO-42755 RELEASED UNDER THE OFFICIAL INFORMATION ACT TABLE OF CONTENTS PART 1 .................................................................................................................................................... 4 INTRODUCTION.................................................................................................................................................. 4 1.1 Background .............................................................................................................................................. 4 1.2 Ecological Setting .................................................................................................................................... 4 PART 2 .................................................................................................................................................... 5 INHERENT VALUES: DESCRIPTION OF CONSERVATION RESOURCES AND ASSESSMENT OF SIGNIFICANCE 5 2.1 Landscape................................................................................................................................................. 5 2.1.1 Introduction.................................................................................................................................... 5 2.1.2 Lower faces (LU1)......................................................................................................................... 6 2.1.3 Lower Shepherds Creek (LU2)...................................................................................................... 7 2.1.4 Upper Shepherds Creek (LU3) ....................................................................................................... 8 2.1.5 Upper Cluden Stream (LU 4).......................................................................................................... 9 2.1.6 Significance of the Landscape ...................................................................................................... 10 2.2 Landforms & Geology............................................................................................................................ 10 2.2.1 Background................................................................................................................................... 10 2.2.2 Geopreservation Sites ................................................................................................................... 10 2.2.3 Significance of Landform and Geology........................................................................................ 11 2.3 Climate ................................................................................................................................................... 11 2.4 Land Environments of New Zealand (LENZ)........................................................................................ 11 2.4.1 Introduction................................................................................................................................... 11 2.4.2 Significance of LENZ................................................................................................................... 12 2.5 Vegetation .............................................................................................................................................. 13 2.5.1 Introduction................................................................................................................................... 13 2.5.2 High elevation fellfield and cushionfield...................................................................................... 14 2.5.3 Shepherds Creek headbasin snow tussockland and wetland flushes............................................. 14 2.5.4 Faces mixed tussock, exotic grassland and shrubland .................................................................. 15 2.5.5 Shepherds Creek shrubland.......................................................................................................... 15 2.5.6 Cluden Stream basin and shrublands ............................................................................................ 15 2.5.7 Mine tailings ................................................................................................................................. 15 2.5.8 Manuka Gully shrublands............................................................................................................. 16 2.5.9 Dry Knob ...................................................................................................................................... 16 2.5.10 Terraces ........................................................................................................................................ 16 2.5.11 Welshmans Gully and Sailors Creek Shrublands.......................................................................... 16 2.5.12 Problem Plants.............................................................................................................................. 17 2.5.13 Threats to Significant Inherent Values.......................................................................................... 17 2.5.14 Significance of Vegetation............................................................................................................ 17 2.6 Fauna ......................................................................................................................................................... 19 2.6.1 Invertebrate Fauna ........................................................................................................................ 19 2.6.2 Significance of Invertebrates ........................................................................................................ 22 2.6.3 Herpetofauna................................................................................................................................. 23 2.6.4 Significance of Herpetofauna ....................................................................................................... 26 2.6.5 Avifauna ....................................................................................................................................... 26 2.6.6 Significance of Avifauna .............................................................................................................. 27 2.6.7 Aquatic Fauna............................................................................................................................... 27 2.6.8 Significance of Aquatic Fauna...................................................................................................... 28 2.6.9 Problem Animals .......................................................................................................................... 28 2.7 Historic................................................................................................................................................... 28 2.7.1 Sites .............................................................................................................................................. 29 2.7.2 Significance of the Historic Sites.................................................................................................. 31 2.8 Public Recreation ................................................................................................................................... 32 2.8.1 Physical Characteristics ................................................................................................................ 32 2.8.2 Legal Access................................................................................................................................. 32 2.8.3 Activities....................................................................................................................................... 33 2.8.4 Significance of Recreation............................................................................................................ 33 PART 3 .................................................................................................................................................. 33 OTHER RELEVANT MATTERS & PLANS...................................................................................................... 33 3.1 Consultation ........................................................................................................................................... 33 3.2 Regional Policy Statements & Plans ...................................................................................................... 36 Final Cambrian Hills Pastoral Lease Conservation Resources Report. OTACO-42755 RELEASED UNDER
Recommended publications
  • Conservation Biology Project Reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand
    Conservation biology project reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand Edited by Nick Dickinson & Mike Bowie Lincoln University Wildlife Management Report No. 73 2020 ©Department of Pest-management & Conservation, Lincoln University ISSN: 1179-7738 ISBN: 978-0-86476-451-5 Lincoln University Wildlife Management Report No. 73 September 2020 Conservation biology project reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand Cleardale Station looking towards Rakaia River (Photo: Tanmayi Pagadala) Edited by Nick Dickinson and Mike Bowie Department of Pest-management & Conservation, Lincoln University, PO Box 85084, Lincoln 7647 Email:[email protected] i Contents List of Tables ............................................................................................................................v List of Figures .......................................................................................................................... vi Introduction ............................................................................................................................ 1 Cleardale and Taniwha Stations ............................................................................................... 2 : Habitat Preference of Birds ................................................................................... 3 Fraser Gurney Abstract ...............................................................................................................................................3
    [Show full text]
  • Beetles in a Suburban Environment: a New Zealand Case Study. The
    tl n brbn nvrnnt: lnd td tl n brbn nvrnnt: lnd td h Idntt nd tt f Clptr n th ntrl nd dfd hbtt f nfld Alnd (4-8 GKhl . : rh At SI lnt rttn Mnt Albrt rh Cntr rvt Alnd lnd • SI lnt rttn prt • EW EAA EAME O SCIEIIC A IUSIA ESEAC 199 O Ο Ν Ε W Ε Ν ttr Grnt rd Τ Ε Ρ Ο Ι Ο Τ ie wi e suo o a oey Sciece eseac Ga om e ew eaa oey Gas oa is suo is gaeuy ackowege Ρ EW EAA SI ' EAME O lnt SCIEIIC A rttn IUSIA Wāhn ESEAC Mn p Makig Sciece Wok o ew eaa KUSCE G eees i a suua eiome a ew eaa case suy e ieiy a saus o Coeoea i e aua a moiie aias o yie Aucka (197-199 / G Kusce — Aucka SI 199 (SI a oecio eo ISS 11-1 ; o3 IS -77-59- I ie II Seies UC 5957(93111 © Cow Coyig uise y SI a oecio M Ae eseac Cee iae ag Aucka ew eaa eceme 199 ie y Geea iig Seices eso ew eaa Etiam pristina in aua Asο i a aua seig summa securitas et futura sweet tranquility and nature ., OISIECE e oe-eeig emoyci eee ioycus uuus (ou o is aie ooca os kaikaea (acycaus acyioies om e yie eee suey aea Aucka ew eaa e wie gaues o e eee ae oe cuses a ass ees is eee as a eic saus o uike a o e uaaa (Seoo as ossi eiece sows a e weei gou was iig i uassic imes way ack i e ea o e iosaus a gymosems moe a 1 miio yeas ago OEWO As a small boy in the 1930s I used to collect butterflies on the South Downs in southern England.
    [Show full text]
  • Island Restoration: Seabirds, Predators, and the Importance of History
    AvailableBellingham on-line et al.: at: Island http://www.newzealandecology.org/nzje/ restoration 115 special issue: Feathers to Fur The ecological transformation of Aotearoa/New Zealand New Zealand island restoration: seabirds, predators, and the importance of history Peter J. Bellingham1*, David R. Towns2, Ewen K. Cameron3, Joe J. Davis4, David A. Wardle1, 5, Janet M. Wilmshurst1 and Christa P.H. Mulder6 1Landcare Research, PO Box 40, Lincoln 7640, New Zealand 2Department of Conservation, Private Bag 68-908, Auckland, New Zealand 3Auckland Museum, Private Bag 92018, Auckland, New Zealand 4Ngāti Hei Trust, PO Box 250, Whitianga, New Zealand 5Department of Forest Vegetation Ecology, Swedish University of Agricultural Sciences, S 901 83 Umeå, Sweden 6Department of Biology and Wildlife & Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, USA *Author for correspondence (Email: [email protected]) Published online: 6 October 2009 Abstract: New Zealand’s offshore and outlying islands have long been a focus of conservation biology as sites of local endemism and as last refuges for many species. During the c. 730 years since New Zealand has been settled by people, mammalian predators have invaded many islands and caused local and global extinctions. New Zealand has led international efforts in island restoration. By the late 1980s, translocations of threatened birds to predator-free islands were well under way to safeguard against extinction. Non-native herbivores and predators, such as goats and cats, had been eradicated from some islands. A significant development in island restoration in the mid-1980s was the eradication of rats from small forested islands. This eradication technology has been refined and currently at least 65 islands, including large and remote Campbell (11 216 ha) and Raoul (2938 ha) Islands, have been successfully cleared of rats.
    [Show full text]
  • Restoration of the Principal Marotere Islands Restoration of the Principal Marotere Islands
    Restoration of the principal Marotere Islands Restoration of the principal Marotere Islands David Towns, Richard Parrish, Resource Management Unit, Ngatiwai Trust Board Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand © Copyright May 2003, New Zealand Department of Conservation ISSN 1173–2946 ISBN 0–478–22412–5 In the interest of forest conservation, DOC Science Publishing supports paperless electronic publishing. When printing, recycled paper is used wherever possible. This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 2. Vision 7 2.1 Mandate 7 2.2 Shared vision 8 3. Duration, principles, goals and outcomes 8 3.1 Duration of the plan 8 3.2 Definitions and principles 8 3.3 Management philosophy and outcomes 9 4. Restoration to date 11 4.1 Ecological protection through plant and animal pest control 11 4.2 Natural restoration 12 4.3 Ecological restoration 13 4.4 Remaining threats 14 5. Conceptual model for the restoration of Marotere Islands 14 6. Restoration of flora 17 6.1 Current situation 17 6.2 What was the Marotere Islands’ original vegetation cover? 18 6.3 Is active restoration of plants needed? 19 7. Restoration of invertebrates 19 7.1 Current situation 19 7.2 What was the Marotere Islands’ original invertebrate fauna? 20 7.3 Species reintroductions of invertebrates 21 8. Restoration of reptiles 22 8.1 Current situation 22 8.2 What was the Marotere Islands’ original reptile fauna? 23 8.3 Species reintroductions of reptiles 23 9.
    [Show full text]
  • The Conservation Requirements of New Zealands Nationally
    The Conservation Requirements of New Zealand’s Nationally Threatened Invertebrates THREATENED SPECIES OCCASIONAL PUBLICATION NO. 20 Carl A. McGuinness Published by Biodiversity Recovery Unit Department of Conservation P.O. Box 10-420 Wellington New Zealand Cover Illustration: Northern pimelea cutworm moth Meterana pictula, Mangarakau area, north-west Nelson coast, 1998. Photo: Brian Patrick. ©May 2001, Department of Conservation ISSN 1170-3709 ISBN 0-478 22048-0 Cataloguing in Publication McGuinness, Carl A. The conservation requirements of New Zealand’s nationally threatened invertebrates/ Carl A McGiunness. Wellington, N.Z. : Dept. of Conservation, Biodiversity Recovery Unit, 2001. 1.v.; 30 cm (Threatened species occasional publication, 1170-3709; 20.) Includes bibliographical references. ISBN 0478220480 1. Invertebrates - New Zealand 2. Endangered species - New Zealand. I. Title. Series: Threatened species occasional publication 20. 2 Acknowledgements Many people have generously shared their knowledge, expertise, and time to enable completion of this document. Thanks to the following for either discussions, initial information, comments on draft manuscripts, or all of the above: Hilary Aikman, Mike Aviss, Gary Barker, Barbara Barratt, Paul Barrett, Jo Berry, Andrea Booth, Phil Bradfield, Pete Brady, Fred Brook, Barbara Brown, Fin Buchanan, John Buckeridge, Lindsay Chadderton, Ann Chapman, Rob Chappell, Frank Climo, Kevin Collier, Robin Craw, Trevor Crosby, Barry Donovan, John Dugdale, Kelly Duncan, John Early, Dave Eastwood, Greg Edgecombe,
    [Show full text]
  • Macroinvertebrate Community Responses to Mammal Control
    MACROINVERTEBRATE COMMUNITY RESPONSES TO MAMMAL CONTROL – EVIDENCE FOR TOP-DOWN TROPHIC EFFECTS BY OLIVIA EDITH VERGARA PARRA A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Conservation Biology Victoria University of Wellington 2018 Para mi sobrina Violeta Orellana Vergara y su sonrisa hermosa. Tu llegada remeció mi corazón de amor de una manera inimaginable. ¡Sueña en grande! ii Nothing in nature stands alone... (John Hunter 1786) iii iv ABSTRACT New Zealand’s invertebrates are characterised by extraordinary levels of endemism and a tendency toward gigantism, flightlessness and longevity. These characteristics have resulted in a high vulnerability to introduced mammals (i.e. possums, rats, mice, and stoats) which are not only a serious threat to these invertebrates, but have also altered food web interactions over the past two-hundred years. The establishment of fenced reserves and the aerial application of 1080 toxin are two methods of mammal control used in New Zealand to exclude and reduce introduced mammals, respectively. Responses of ground-dwelling invertebrates to mammal control, including a consideration of trophic cascades and their interactions, remain unclear. However, in this thesis, I aimed to investigate how changes in mammal communities inside and outside a fenced reserve (ZEALANDIA, Wellington) and before-and-after the application of 1080 in Aorangi Forest, influence the taxonomic and trophic abundance, body size and other traits of ground-dwelling invertebrates on the mainland of New Zealand. I also tested for effects of habitat variables (i.e. vegetation and elevation), fluctuations in predator populations (i.e.
    [Show full text]
  • The Effects of Rodents on Ground Dwelling Arthropods in the Waitakere Ranges
    The Effects of Rodents on Ground Dwelling Arthropods in the Waitakere Ranges A thesis submitted to the Auckland University of Technology in fulfilment of the Degree Master of Philosophy Peter A. King January 2007 TABLE OF CONTENTS ATTESTATION …………………………….…………….…….………………….…....8 ACKNOWLEDGEMENTS………………………………………………………….……9 ABSTRACT ……………………...……………………….……….………….……....…11 1 INTRODUCTION.............................................................................................................. 13 1.1 GONDWANALAND ORIGINS OF NEW ZEALAND’S ARTHROPODS.............. 14 1.2 IMPACTS OF HUMAN COLONISATION............................................................... 17 1.3 ARTHROPODS IN THE DIETS OF INTRODUCED PREDATORS....................... 19 1.4 IMPACT OF INTRODUCED PREDATORS ON NATIVE VERTEBRATES ......... 22 1.5 EFFECTS OF PREDATORS ON NATIVE ARTHROPODS.................................... 24 1.5.1 Research on Offshore Islands .......................................................................24 1.5.2 Research on the Mainland ............................................................................29 1.6 IMPACT OF HABITAT STRUCTURE ON ARTHROPOD POPULATIONS......... 32 1.7 ARTHROPODS AS INDICATORS OF ENVIRONMENTAL CHANGE................ 33 1.8 SUMMARY ................................................................................................................ 35 1.9 AIMS OF THIS RESEARCH ..................................................................................... 36 2 METHODS .........................................................................................................................38
    [Show full text]
  • New Zealand Threat Classification System Lists
    New Zealand Threat Classification System lists 2005 Rod Hitchmough, Leigh Bull and Pam Cromarty (compilers) Published by Science & Technical Publishing Department of Conservation PO Box 10420 The Terrace Wellington 6143, New Zealand Cover: Archey’s frog on fern, Whareorino, 2003. Photo: Paul Schilov. © Copyright January 2007, New Zealand Department of Conservation ISBN 0–478–14128–9 This report was prepared for publication by Science & Technical Publishing; editing and layout by Amanda Todd. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. Foreword New Zealand has some of the most ancient and fascinating species in the world (e.g. the tuatara). Many of our plants and animals are found nowhere else. However, since the arrival of humans about 1000 years ago, we have also been world leaders in rates of extinctions (particularly of land and freshwater birds, where nearly one third have been lost), and in our levels of threatened species—a legacy of a history of unsustainable harvest, habitat destruction and alien species introductions. Preventing the extinction of New Zealand’s unique plant and animal species is a critical element in the Government’s New Zealand Biodiversity Strategy; it is a responsibility we owe to the rest of the world, but this is not a small task.
    [Show full text]
  • (CERRA) World Heritage Area, and Adjacent Regions
    ISSN 1031-8062 ISBN 0-7347-2307-5 A Taxonomic and Biogeographic Review of the Invertebrates of the Central Eastern Rainforest Reserves of Australia (CERRA) World Heritage Area, and Adjacent Regions Geoff Williams Technical Reports of the Australian Museum Number 16 TECHNICAL REPORTS OF THE AUSTRALIAN MUSEUM Director: M. Archer The Australian Museum’s mission is to increase understanding of, and influence public debate on, the natural environment, human societies and human Editor: S.F. McEvey interaction with the environment. The Museum has maintained the highest standards of scholarship in these Editorial Committee: fields for more than 100 years, and is one of Australia’s foremost publishers of original research in anthropology, S.T. Ahyong (INVERTEBRATE ZOOLOGY) geology and zoology. V.J. Attenbrow (ANTHROPOLOGY) The Records of the Australian Museum (ISSN 0067- 1975) publishes the results of research that has used D.J. Bickel (INVERTEBRATE ZOOLOGY) Australian Museum collections and studies that relate in G.D. Edgecombe (PALAEONTOLOGY) other ways to the Museum’s mission. There is an emphasis A.E. Greer (VERTEBRATE ZOOLOGY) on research in the Australasian, southwest Pacific or Indian Chair: J.M. Leis (VERTEBRATE ZOOLOGY) Ocean regions. The Records is released annually as three S.F. McEvey (INVERTEBRATE ZOOLOGY) issues of one volume, volume 53 was published in 2001. Monographs are published about once a year as Records F.L. Sutherland (GEOLOGY) of the Australian Museum, Supplements. Supplement 27 G.D.F. Wilson (INVERTEBRATE ZOOLOGY) (ISBN 0-7347-2305-9) was published in November 2001. Catalogues, lists and databases have been published since 1988 as numbered Technical Reports of the Australian Museum (ISSN 1031-8062).
    [Show full text]
  • Coleoptera Genera of New Zealand Richard A
    New Zealand Entomologist 26: 15-28 (December 2003) Coleoptera genera of New Zealand Richard A. B. Leschen1, John F. Lawrence2, Guillermo Kuschel3, Stephen Thorpe4, Qiao Wang5, 1 New Zealand Arthropod Collection, Landcare Research, Private Bag 92170, Auckland, New Zealand, email: [email protected] 2 CSIRO Entomology, G.P.O. Box 1700, Canberra, A.C.T., Australia 3 7 Tropicana Drive, Mt Roskill, Auckland, New Zealand 4 Entomology Department, Auckland War Memorial Museum, Private Bag 92018, Auckland 5 Institute of Natural Resources, Massey University, Private Bag 11222, Palmerston North, New Zealand Abstract *labium lacking a silk gland, *abdominal prolegs A checklist for the New Zealand genera of usually absent; pupa adecticous (lacking functional Coleoptera is provided and introductory mouthparts) and usually exarate (legs and wings information on the systematics, species number free from body). and biology is included. A total of 1091 genera are The order is considered monophyletic, though placed into 82 families and 180 subfamilies. there are different opinions regarding the Key words: Beetles, diversity, biogeography, relationships of the Strepsiptera as sister taxon to check list Coleoptera (e.g., compare Kukalova-Peck and Lawrence 1993 with Whiting et al. 1997) based on Introduction morphology and/or combined morphological and The order Coleoptera (beetles) makes up roughly molecular data. There are four suborders one-fifth to one-quarter of the total insect fauna of recognised, Archostemata, Adephaga, Myxophaga the world and is one of the oft-cited cases of and Polyphaga, with the latter comprising the adaptive radiation of organisms. It is the largest largest and most diverse, and the Archostemata as group in New Zealand and remains one of the most the most primitive group (no Archostemata or poorly known groups of insects.
    [Show full text]
  • Web Site Characteristics, Dispersal and Species Status of New Zealand's Katipo Spiders, Latrodectus Katipo and L
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Web site characteristics, dispersal and species status of New Zealand's katipo spiders, Latrodectus katipo and L. atritus A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by James W. Griffiths Lincoln University 2001 I Abstract of a thesis submitted in fulfilment of the requirements for the degree of Ph. D. Web site characterictics, dispersal and species status of New Zealand's katipo spiders, Latrodectus katipo and L. atritus James Griffiths Over the last 30 years, Latrodectus katipo Powell 1870 and L. atritus Urquhart 1890 numbers have declined and these species are now absent from many dune systems where they were once common. The cause of the decline in L. katipo and L. atritus numbers is not certain and little is known about their ecology. This thesis examined L. katipo and L. atritus web site characteristics, dispersal, species status and the probable implications of habitat modification on their ecology. The thesis focused on these aspects of L.
    [Show full text]
  • 4 Beetles (Coleoptera) of Auckland.Pdf
    TANE 29, 1983 BEETLES (COLEOPTERA) OF AUCKLAND by J. Charles Watt Entomology Division, DSIR, Private Bag, Auckland SUMMARY Beetles are defined briefly on adult and larval characters. The adaptive importance of elytra is stated. About 1 500 species of beetles are thought to occur in the Auckland area. The results of intensive surveys on the Noises Islands and the Lynfield district of suburban Auckland are summarised. Most indigenous beetles are confined strictly to native forest. The biogeography of Auckland beetles is discussed briefly. Geographical variation of coastal species, especially Mimopeus elongatus, is discussed in relation to present ecology and past geological events. The biology of representative beetles in the following ecosystems and habitats is described briefly: sea shore, pastures, crops, gardens, exotic forests, indigenous forests, fresh water, nests and stored products. Suggestions for life history and ecological studies are made. The paper is illustrated with 36 habitus drawings of representatives of most major and several minor families. All families occurring in Auckland and genera mentioned in the text are listed in Appendix I. INTRODUCTION Beetles (including weevils) comprise the insect order Coleoptera. The adults may be recognised by the elytra, hardened forewings which protect the membranous hind-wings, and when closed, cover a cavity over the posterior thorax and abdomen. The spiracles open into this cavity, an adaptation which reduces water loss during respiration, and protects the abdomen from insolation and desiccation. Elytra differ from hardened fore-wings of some other insects (cockroaches, bugs etc. ) in being usually convex, embracing the abdomen laterally, and meeting dorsally in a straight longitudinal line (suture) when closed.
    [Show full text]