Spam in Blogs and Social Media
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Click Trajectories: End-To-End Analysis of the Spam Value Chain
Click Trajectories: End-to-End Analysis of the Spam Value Chain ∗ ∗ ∗ ∗ z y Kirill Levchenko Andreas Pitsillidis Neha Chachra Brandon Enright Mark´ Felegyh´ azi´ Chris Grier ∗ ∗ † ∗ ∗ Tristan Halvorson Chris Kanich Christian Kreibich He Liu Damon McCoy † † ∗ ∗ Nicholas Weaver Vern Paxson Geoffrey M. Voelker Stefan Savage ∗ y Department of Computer Science and Engineering Computer Science Division University of California, San Diego University of California, Berkeley z International Computer Science Institute Laboratory of Cryptography and System Security (CrySyS) Berkeley, CA Budapest University of Technology and Economics Abstract—Spam-based advertising is a business. While it it is these very relationships that capture the structural has engendered both widespread antipathy and a multi-billion dependencies—and hence the potential weaknesses—within dollar anti-spam industry, it continues to exist because it fuels a the spam ecosystem’s business processes. Indeed, each profitable enterprise. We lack, however, a solid understanding of this enterprise’s full structure, and thus most anti-spam distinct path through this chain—registrar, name server, interventions focus on only one facet of the overall spam value hosting, affiliate program, payment processing, fulfillment— chain (e.g., spam filtering, URL blacklisting, site takedown). directly reflects an “entrepreneurial activity” by which the In this paper we present a holistic analysis that quantifies perpetrators muster capital investments and business rela- the full set of resources employed to monetize spam email— tionships to create value. Today we lack insight into even including naming, hosting, payment and fulfillment—using extensive measurements of three months of diverse spam data, the most basic characteristics of this activity. How many broad crawling of naming and hosting infrastructures, and organizations are complicit in the spam ecosystem? Which over 100 purchases from spam-advertised sites. -
The Internet and Drug Markets
INSIGHTS EN ISSN THE INTERNET AND DRUG MARKETS 2314-9264 The internet and drug markets 21 The internet and drug markets EMCDDA project group Jane Mounteney, Alessandra Bo and Alberto Oteo 21 Legal notice This publication of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) is protected by copyright. The EMCDDA accepts no responsibility or liability for any consequences arising from the use of the data contained in this document. The contents of this publication do not necessarily reflect the official opinions of the EMCDDA’s partners, any EU Member State or any agency or institution of the European Union. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2016 ISBN: 978-92-9168-841-8 doi:10.2810/324608 © European Monitoring Centre for Drugs and Drug Addiction, 2016 Reproduction is authorised provided the source is acknowledged. This publication should be referenced as: European Monitoring Centre for Drugs and Drug Addiction (2016), The internet and drug markets, EMCDDA Insights 21, Publications Office of the European Union, Luxembourg. References to chapters in this publication should include, where relevant, references to the authors of each chapter, together with a reference to the wider publication. For example: Mounteney, J., Oteo, A. and Griffiths, P. -
Fully Automatic Link Spam Detection∗ Work in Progress
SpamRank – Fully Automatic Link Spam Detection∗ Work in progress András A. Benczúr1,2 Károly Csalogány1,2 Tamás Sarlós1,2 Máté Uher1 1 Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI) 11 Lagymanyosi u., H–1111 Budapest, Hungary 2 Eötvös University, Budapest {benczur, cskaresz, stamas, umate}@ilab.sztaki.hu www.ilab.sztaki.hu/websearch Abstract Spammers intend to increase the PageRank of certain spam pages by creating a large number of links pointing to them. We propose a novel method based on the concept of personalized PageRank that detects pages with an undeserved high PageRank value without the need of any kind of white or blacklists or other means of human intervention. We assume that spammed pages have a biased distribution of pages that contribute to the undeserved high PageRank value. We define SpamRank by penalizing pages that originate a suspicious PageRank share and personalizing PageRank on the penalties. Our method is tested on a 31 M page crawl of the .de domain with a manually classified 1000-page stratified random sample with bias towards large PageRank values. 1 Introduction Identifying and preventing spam was cited as one of the top challenges in web search engines in a 2002 paper [24]. Amit Singhal, principal scientist of Google Inc. estimated that the search engine spam industry had a revenue potential of $4.5 billion in year 2004 if they had been able to completely fool all search engines on all commercially viable queries [36]. Due to the large and ever increasing financial gains resulting from high search engine ratings, it is no wonder that a significant amount of human and machine resources are devoted to artificially inflating the rankings of certain web pages. -
Clique-Attacks Detection in Web Search Engine for Spamdexing Using K-Clique Percolation Technique
International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012 Clique-Attacks Detection in Web Search Engine for Spamdexing using K-Clique Percolation Technique S. K. Jayanthi and S. Sasikala, Member, IACSIT Clique cluster groups the set of nodes that are completely Abstract—Search engines make the information retrieval connected to each other. Specifically if connections are added task easier for the users. Highly ranking position in the search between objects in the order of their distance from one engine query results brings great benefits for websites. Some another a cluster if formed when the objects forms a clique. If website owners interpret the link architecture to improve ranks. a web site is considered as a clique, then incoming and To handle the search engine spam problems, especially link farm spam, clique identification in the network structure would outgoing links analysis reveals the cliques existence in web. help a lot. This paper proposes a novel strategy to detect the It means strong interconnection between few websites with spam based on K-Clique Percolation method. Data collected mutual link interchange. It improves all websites rank, which from website and classified with NaiveBayes Classification participates in the clique cluster. In Fig. 2 one particular case algorithm. The suspicious spam sites are analyzed for of link spam, link farm spam is portrayed. That figure points clique-attacks. Observations and findings were given regarding one particular node (website) is pointed by so many nodes the spam. Performance of the system seems to be good in terms of accuracy. (websites), this structure gives higher rank for that website as per the PageRank algorithm. -
Copyright 2009 Cengage Learning. All Rights Reserved. May Not Be Copied, Scanned, Or Duplicated, in Whole Or in Part
Index Note: Page numbers referencing fi gures are italicized and followed by an “f ”. Page numbers referencing tables are italicized and followed by a “t”. A Ajax, 353 bankruptcy, 4, 9f About.com, 350 Alexa.com, 42, 78 banner advertising, 7f, 316, 368 AboutUs.org, 186, 190–192 Alta Vista, 7 Barack Obama’s online store, 328f Access application, 349 Amazon.com, 7f, 14f, 48, 247, BaseballNooz.com, 98–100 account managers, 37–38 248f–249f, 319–320, 322 BBC News, 3 ActionScript, 353–356 anonymity, 16 Bebo, 89t Adobe Flash AOL, 8f, 14f, 77, 79f, 416 behavioral changes, 16 application, 340–341 Apple iTunes, 13f–14f benign disinhibition, 16 fi le format. See .fl v fi le format Apple site, 11f, 284f Best Dates Now blog, 123–125 player, 150, 153, 156 applets, Java, 352, 356 billboard advertising, 369 Adobe GoLive, 343 applications, see names of specifi c bitmaps, 290, 292, 340, 357 Adobe Photoshop, 339–340 applications BJ’s site, 318 Advanced Research Projects ARPA (Advanced Research Black Friday, 48 Agency (ARPA), 2 Projects Agency), 2 blog communities, 8f advertising artistic fonts, 237 blog editors, 120, 142 dating sites, 106 ASCO Power University, 168–170 blog search engines, 126 defi ned, 397 .asf fi le format, 154t–155t Blogger, 344–347 e-commerce, 316 AskPatty.com, 206–209 blogging, 7f, 77–78, 86, 122–129, Facebook, 94–96 AuctionWeb, 7f 133–141, 190, 415 family and lifestyle sites, 109 audience, capturing and retaining, blogosphere, 122, 142 media, 373–376 61–62, 166, 263, 405–407, blogrolls, 121, 142 message, 371–372 410–422, 432 Blue Nile site, -
Download PDF Document, 456 KB
ENISA Position Paper No. 2 Reputation-based Systems: a security analysis Editors: Elisabetta Carrara and Giles Hogben, ENISA October 2007 Reputation-based Systems ENISA Position Papers represent expert opinion on topics ENISA considers to be important emerging risks or key security components. They are produced as the result of discussion among a group of experts who were selected for their knowledge in the area. The content was collected via wiki, mailing list and telephone conferences and edited by ENISA. This paper aims to provide a useful introduction to security issues affecting Reputation-based Systems by identifying a number of possible threats and attacks, highlighting the security requirements that should be fulfilled by these systems and providing recommendations for action and best practices to reduce the security risks to users. Examples are given from a number of providers throughout the paper. These should be taken as examples only and there is no intention to single out a specific provider for criticism or praise. The examples provided are not necessarily those most representative or important, nor is the aim of this paper to conduct any kind of market survey, as there might be other providers which are not mentioned here and nonetheless are equally or more representative of the market. Audience This paper is aimed at providers, designers, research and standardisation communities, government policy-makers and businesses. ENISA Position Paper No.2 Reputation-based Systems: a security analysis 1 Reputation-based Systems EXECUTIVE -
Liferay Portal 6 Enterprise Intranets
Liferay Portal 6 Enterprise Intranets Build and maintain impressive corporate intranets with Liferay Jonas X. Yuan BIRMINGHAM - MUMBAI Liferay Portal 6 Enterprise Intranets Copyright © 2010 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: April 2010 Production Reference: 1230410 Published by Packt Publishing Ltd. 32 Lincoln Road Olton Birmingham, B27 6PA, UK. ISBN 978-1-849510-38-7 www.packtpub.com Cover Image by Karl Swedberg ([email protected]) Credits Author Editorial Team Leader Jonas X. Yuan Aanchal Kumar Reviewer Project Team Leader Amine Bousta Lata Basantani Acquisition Editor Project Coordinator Dilip Venkatesh Shubhanjan Chatterjee Development Editor Proofreaders Mehul Shetty Aaron Nash Lesley Harrison Technical Editors Aditya Belpathak Graphics Alfred John Geetanjali Sawant Charumathi Sankaran Nilesh Mohite Copy Editors Production Coordinators Leonard D'Silva Avinish Kumar Sanchari Mukherjee Aparna Bhagat Nilesh Mohite Indexers Hemangini Bari Cover Work Rekha Nair Aparna Bhagat About the Author Dr. -
Address Munging: the Practice of Disguising, Or Munging, an E-Mail Address to Prevent It Being Automatically Collected and Used
Address Munging: the practice of disguising, or munging, an e-mail address to prevent it being automatically collected and used as a target for people and organizations that send unsolicited bulk e-mail address. Adware: or advertising-supported software is any software package which automatically plays, displays, or downloads advertising material to a computer after the software is installed on it or while the application is being used. Some types of adware are also spyware and can be classified as privacy-invasive software. Adware is software designed to force pre-chosen ads to display on your system. Some adware is designed to be malicious and will pop up ads with such speed and frequency that they seem to be taking over everything, slowing down your system and tying up all of your system resources. When adware is coupled with spyware, it can be a frustrating ride, to say the least. Backdoor: in a computer system (or cryptosystem or algorithm) is a method of bypassing normal authentication, securing remote access to a computer, obtaining access to plaintext, and so on, while attempting to remain undetected. The backdoor may take the form of an installed program (e.g., Back Orifice), or could be a modification to an existing program or hardware device. A back door is a point of entry that circumvents normal security and can be used by a cracker to access a network or computer system. Usually back doors are created by system developers as shortcuts to speed access through security during the development stage and then are overlooked and never properly removed during final implementation. -
Adversarial Web Search by Carlos Castillo and Brian D
Foundations and TrendsR in Information Retrieval Vol. 4, No. 5 (2010) 377–486 c 2011 C. Castillo and B. D. Davison DOI: 10.1561/1500000021 Adversarial Web Search By Carlos Castillo and Brian D. Davison Contents 1 Introduction 379 1.1 Search Engine Spam 380 1.2 Activists, Marketers, Optimizers, and Spammers 381 1.3 The Battleground for Search Engine Rankings 383 1.4 Previous Surveys and Taxonomies 384 1.5 This Survey 385 2 Overview of Search Engine Spam Detection 387 2.1 Editorial Assessment of Spam 387 2.2 Feature Extraction 390 2.3 Learning Schemes 394 2.4 Evaluation 397 2.5 Conclusions 400 3 Dealing with Content Spam and Plagiarized Content 401 3.1 Background 402 3.2 Types of Content Spamming 405 3.3 Content Spam Detection Methods 405 3.4 Malicious Mirroring and Near-Duplicates 408 3.5 Cloaking and Redirection 409 3.6 E-mail Spam Detection 413 3.7 Conclusions 413 4 Curbing Nepotistic Linking 415 4.1 Link-Based Ranking 416 4.2 Link Bombs 418 4.3 Link Farms 419 4.4 Link Farm Detection 421 4.5 Beyond Detection 424 4.6 Combining Links and Text 426 4.7 Conclusions 429 5 Propagating Trust and Distrust 430 5.1 Trust as a Directed Graph 430 5.2 Positive and Negative Trust 432 5.3 Propagating Trust: TrustRank and Variants 433 5.4 Propagating Distrust: BadRank and Variants 434 5.5 Considering In-Links as well as Out-Links 436 5.6 Considering Authorship as well as Contents 436 5.7 Propagating Trust in Other Settings 437 5.8 Utilizing Trust 438 5.9 Conclusions 438 6 Detecting Spam in Usage Data 439 6.1 Usage Analysis for Ranking 440 6.2 Spamming Usage Signals 441 6.3 Usage Analysis to Detect Spam 444 6.4 Conclusions 446 7 Fighting Spam in User-Generated Content 447 7.1 User-Generated Content Platforms 448 7.2 Splogs 449 7.3 Publicly-Writable Pages 451 7.4 Social Networks and Social Media Sites 455 7.5 Conclusions 459 8 Discussion 460 8.1 The (Ongoing) Struggle Between Search Engines and Spammers 460 8.2 Outlook 463 8.3 Research Resources 464 8.4 Conclusions 467 Acknowledgments 468 References 469 Foundations and TrendsR in Information Retrieval Vol. -
Uncovering Social Network Sybils in the Wild
Uncovering Social Network Sybils in the Wild ZHI YANG, Peking University 2 CHRISTO WILSON, University of California, Santa Barbara XIAO WANG, Peking University TINGTING GAO,RenrenInc. BEN Y. ZHAO, University of California, Santa Barbara YAFEI DAI, Peking University Sybil accounts are fake identities created to unfairly increase the power or resources of a single malicious user. Researchers have long known about the existence of Sybil accounts in online communities such as file-sharing systems, but they have not been able to perform large-scale measurements to detect them or measure their activities. In this article, we describe our efforts to detect, characterize, and understand Sybil account activity in the Renren Online Social Network (OSN). We use ground truth provided by Renren Inc. to build measurement-based Sybil detectors and deploy them on Renren to detect more than 100,000 Sybil accounts. Using our full dataset of 650,000 Sybils, we examine several aspects of Sybil behavior. First, we study their link creation behavior and find that contrary to prior conjecture, Sybils in OSNs do not form tight-knit communities. Next, we examine the fine-grained behaviors of Sybils on Renren using clickstream data. Third, we investigate behind-the-scenes collusion between large groups of Sybils. Our results reveal that Sybils with no explicit social ties still act in concert to launch attacks. Finally, we investigate enhanced techniques to identify stealthy Sybils. In summary, our study advances the understanding of Sybil behavior on OSNs and shows that Sybils can effectively avoid existing community-based Sybil detectors. We hope that our results will foster new research on Sybil detection that is based on novel types of Sybil features. -
Svms for the Blogosphere: Blog Identification and Splog Detection
SVMs for the Blogosphere: Blog Identification and Splog Detection Pranam Kolari∗, Tim Finin and Anupam Joshi University of Maryland, Baltimore County Baltimore MD {kolari1, finin, joshi}@umbc.edu Abstract Most blog search engines identify blogs and index con- tent based on update pings received from ping servers1 or Weblogs, or blogs have become an important new way directly from blogs, or through crawling blog directories to publish information, engage in discussions and form communities. The increasing popularity of blogs has and blog hosting services. To increase their coverage, blog given rise to search and analysis engines focusing on the search engines continue to crawl the Web to discover, iden- “blogosphere”. A key requirement of such systems is to tify and index blogs. This enables staying ahead of compe- identify blogs as they crawl the Web. While this ensures tition in a domain where “size does matter”. Even if a web that only blogs are indexed, blog search engines are also crawl is inessential for blog search engines, it is still pos- often overwhelmed by spam blogs (splogs). Splogs not sible that processed update pings are from non-blogs. This only incur computational overheads but also reduce user requires that the source of the pings need to be verified as a satisfaction. In this paper we first describe experimental blog prior to indexing content.2 results of blog identification using Support Vector Ma- In the first part of this paper we address blog identifica- chines (SVM). We compare results of using different feature sets and introduce new features for blog iden- tion by experimenting with different feature sets. -
By Nilesh Bansal a Thesis Submitted in Conformity with the Requirements
ONLINE ANALYSIS OF HIGH-VOLUME SOCIAL TEXT STEAMS by Nilesh Bansal A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University of Toronto ⃝c Copyright 2013 by Nilesh Bansal Abstract Online Analysis of High-Volume Social Text Steams Nilesh Bansal Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2013 Social media is one of the most disruptive developments of the past decade. The impact of this information revolution has been fundamental on our society. Information dissemination has never been cheaper and users are increasingly connected with each other. The line between content producers and consumers is blurred, leaving us with abundance of data produced in real-time by users around the world on multitude of topics. In this thesis we study techniques to aid an analyst in uncovering insights from this new media form which is modeled as a high volume social text stream. The aim is to develop practical algorithms with focus on the ability to scale, amenability to reliable operation, usability, and ease of implementation. Our work lies at the intersection of building large scale real world systems and developing theoretical foundation to support the same. We identify three key predicates to enable online methods for analysis of social data, namely : • Persistent Chatter Discovery to explore topics discussed over a period of time, • Cross-referencing Media Sources to initiate analysis using a document as the query, and • Contributor Understanding to create aggregate expertise and topic summaries of authors contributing online. The thesis defines each of the predicates in detail and covers proposed techniques, their practical applicability, and detailed experimental results to establish accuracy and scalability for each of the three predicates.