Datalog Logic As a Query Language a Logical Rule Anatomy of a Rule Anatomy of a Rule Sub-Goals Are Atoms

Total Page:16

File Type:pdf, Size:1020Kb

Datalog Logic As a Query Language a Logical Rule Anatomy of a Rule Anatomy of a Rule Sub-Goals Are Atoms Logic As a Query Language If-then logical rules have been used in Datalog many systems. Most important today: EII (Enterprise Information Integration). Logical Rules Nonrecursive rules are equivalent to the core relational algebra. Recursion Recursive rules extend relational SQL-99 Recursion algebra --- have been used to add recursion to SQL-99. 1 2 A Logical Rule Anatomy of a Rule Our first example of a rule uses the Happy(d) <- Frequents(d,rest) AND relations: Likes(d,soda) AND Sells(rest,soda,p) Frequents(customer,rest), Likes(customer,soda), and Sells(rest,soda,price). The rule is a query asking for “happy” customers --- those that frequent a rest that serves a soda that they like. 3 4 Anatomy of a Rule sub-goals Are Atoms Happy(d) <- Frequents(d,rest) AND An atom is a predicate, or relation Likes(d,soda) AND Sells(rest,soda,p) name with variables or constants as arguments. Head = “consequent,” Body = “antecedent” = The head is an atom; the body is the a single sub-goal AND of sub-goals. AND of one or more atoms. Read this Convention: Predicates begin with a symbol “if” capital, variables begin with lower-case. 5 6 1 Example: Atom Example: Atom Sells(rest, soda, p) Sells(rest, soda, p) The predicate Arguments are = name of a variables relation 7 8 Interpreting Rules Interpreting Rules A variable appearing in the head is Rule meaning: called distinguished ; The head is true of the distinguished otherwise it is nondistinguished. variables if there exist values of the nondistinguished variables that make all sub-goals of the body true. 9 10 Example: Interpretation Example: Interpretation Happy(d) <- Frequents(d,rest) AND Happy(d) <- Frequents(d,rest) AND Likes(d,soda) AND Sells(rest,soda,p) Likes(d,soda) AND Sells(rest,soda,p) Distinguished Nondistinguished variable variables Interpretation: customer d is happy if there exist Interpretation: customer d is happy if there exist a rest, a soda, and a price p such that d frequents the a rest, a soda, and a price p such that d frequents the rest, likes the soda, and the rest sells the soda at price p. rest, likes the soda, and the rest sells the soda at price p. 11 12 2 Arithmetic sub-goals Example: Arithmetic In addition to relations as predicates, a A soda is “cheap” if there are at least predicate for a sub-goal of the body can two rests that sell it for under $1. be an arithmetic comparison. Figure out a rule that would determine We write such sub-goals in the usual way, whether a soda is cheap or not. e.g.: x < y. 13 14 Example: Arithmetic Negated sub-goals Cheap(soda) <- We may put “NOT” in front of a sub- Sells(rest1,soda,p1) AND goal, to negate its meaning. Sells(rest2,soda,p2) AND p1 < 1.00 AND p2 < 1.00 AND rest1 <> rest2 15 16 Negated sub-goals Algorithms for Applying Rules Example: Think of Arc(a,b) as arcs in a Two approaches: graph. 1. Variable-based : Consider all possible S(x,y) says the graph is not transitive from assignments to the variables of the body. x to y ; i.e., there is a path of length 2 If the assignment makes the body true, from x to y, but no arc from x to y. add that tuple for the head to the result. S(x,y) <- Arc(x,z) AND Arc(z,y) 2. Tuple-based : Consider all assignments of tuples from the non-negated, relational AND NOT Arc(x,y) sub-goals. If the body becomes true, add the head’s tuple to the result. 17 18 3 Example: Variable-Based --- 1 Example: Variable-Based; x=1, z=2 S(x,y) <- Arc(x,z) AND Arc(z,y) S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y) AND NOT Arc(x,y) 1 1 2 2 1 Arc(1,2) and Arc(2,3) are the only tuples in the Arc relation. Only assignments to make the first sub-goal Arc(x,z) true are: 1. x = 1; z = 2 2. x = 2; z = 3 19 20 Example: Variable-Based; x=1, z=2 Example: Variable-Based; x=2, z=3 S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y) S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y) 1 3 1 2 2 3 1 3 2 2 3 3 2 3 is the only value of y that makes all three sub-goals true. Makes S(1,3) a tuple of the answer 21 22 Example: Variable-Based; x=2, z=3 Tuple-Based Assignment S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y) Start with the non-negated, relational sub- 2 2 3 3 2 goals only. Consider all assignments of tuples to these No value of y sub-goals. Thus, no contribution makes Arc(3,y) Choose tuples only from the corresponding to the head tuples; true. relations. S = {(1,3)} If the assigned tuples give a consistent value to all variables and make the other sub-goals true, add the head tuple to the result. 23 24 4 Example: Tuple-Based Example: Tuple-Based S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y) S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y) Only possible values Arc(1,2), Arc(2,3) Only possible values Arc(1,2), Arc(2,3) Four possible assignments to first two sub- Four possible assignments to first two sub- goals: goals: Arc(x,z) Arc(z,y) Arc(x,z) Arc(z,y) Only assignment (1,2) (1,2) (1,2) (1,2) with consistent z-value. Since it (1,2) (2,3) These two rows (1,2) (2,3) are invalid since also makes (2,3) (1,2) z can’t be (2,3) (1,2) NOT Arc(x,y) true, (2,3) (2,3) (3 and 1) or (2,3) (2,3) add S(1,3) to (3 and 2) result. simultaneously. 25 26 Datalog Programs Evaluating Datalog Programs A Datalog program is a collection of As long as there is no recursion, rules. we can pick an order to evaluate the IDB In a program, predicates can be either predicates, 1. EDB = Extensional Database so that all the predicates in the body of its = stored table. rules have already been evaluated. 2. IDB = Intensional Database If an IDB predicate has more than one = relation defined by rules. rule, Never both! No EDB in heads. each rule contributes tuples to its relation. 27 28 Example: Datalog Program Expressive Power of Datalog Using following EDB find all the Without recursion, manufacturers of sodas Joe doesn’t sell: Datalog can express all and only the Sells(rest, soda, price) and queries of core relational algebra. sodas(name, manf). The same as SQL select-from-where, JoeSells(b) <- Sells(’Joe’’s rest’, b, p) without aggregation and grouping. Answer(m) <- Sodas(b,m) AND NOT JoeSells(b) 29 30 5 Recursive Example: Expressive Power of Datalog Generalized Cousins But with recurson, EDB: Parent(c,p) = p is a parent of c. Datalog can express more than these languages. Generalized cousins: people with common Yet still not Turing-complete. ancestors one or more generations back. Note: We are all cousins according to this definition. 31 32 Recursive Example Definition of Recursion Sibling(x,y) <- Parent(x,p) Form a dependency graph whose AND Parent(y,p) nodes = IDB predicates. AND x<>y Arc X ->Y if and only if Cousin(x,y) <- Sibling(x,y) there is a rule with X in the head and Y in the body. Cousin(x,y) <- Parent(x,xParent) Cycle = recursion; AND Parent(y,yParent) AND Cousin(xParent,yParent) No cycle = no recursion. 33 34 Example: Dependency Graphs Evaluating Recursive Rules The following works when there is no Cousin Answer negation: 1. Start by assuming all IDB relations are empty. Sibling JoeSells 2. Repeatedly evaluate the rules using the EDB and the previous IDB, to get a new Recursive Non-recursive IDB. 3. End when no change to IDB. 35 36 6 The “Naïve” Evaluation Algorithm Example: Evaluation of Cousin Remember the rules: Start: Sibling(x,y) <- IDB = 0 Parent(x,p) AND Parent(y,p) AND x<>y Cousin(x,y) <- Sibling(x,y) Apply rules to IDB, EDB Cousin(x,y) <- Parent(x,xParent) AND Parent(y,yParent) no yes Change AND Cousin(xParent,yParent) done to IDB? 37 38 Semi-naive Evaluation Example: Evaluation of Cousin Since the EDB never changes, We’ll proceed in rounds to infer on each round we only get new IDB tuples Sibling facts (red) if we use at least one IDB tuple that was and Cousin facts (green). obtained on the previous round. Saves work; lets us avoid rediscovering most known facts. A fact could still be derived in a second way. 39 40 Parent Data: Parent Above Child Parent Data: Parent Above Child The parent data, and Exercise: edge goes downward from a parent to child. ad1. What do you ad Exercises: expect after first 1. List some of the round? parent-child relationships. bc e bc e 2. What is contained in the Sibling and Cousin data? fgh fgh jk i jk i 41 42 7 Sibling facts Sibling and remain Cousin are unchanged presumed empty. Round 1 because Sibling is Round 2 not recursive.
Recommended publications
  • Dedalus: Datalog in Time and Space
    Dedalus: Datalog in Time and Space Peter Alvaro1, William R. Marczak1, Neil Conway1, Joseph M. Hellerstein1, David Maier2, and Russell Sears3 1 University of California, Berkeley {palvaro,wrm,nrc,hellerstein}@cs.berkeley.edu 2 Portland State University [email protected] 3 Yahoo! Research [email protected] Abstract. Recent research has explored using Datalog-based languages to ex- press a distributed system as a set of logical invariants. Two properties of dis- tributed systems proved difficult to model in Datalog. First, the state of any such system evolves with its execution. Second, deductions in these systems may be arbitrarily delayed, dropped, or reordered by the unreliable network links they must traverse. Previous efforts addressed the former by extending Datalog to in- clude updates, key constraints, persistence and events, and the latter by assuming ordered and reliable delivery while ignoring delay. These details have a semantics outside Datalog, which increases the complexity of the language and its interpre- tation, and forces programmers to think operationally. We argue that the missing component from these previous languages is a notion of time. In this paper we present Dedalus, a foundation language for programming and reasoning about distributed systems. Dedalus reduces to a subset of Datalog with negation, aggregate functions, successor and choice, and adds an explicit notion of logical time to the language. We show that Dedalus provides a declarative foundation for the two signature features of distributed systems: mutable state, and asynchronous processing and communication. Given these two features, we address two important properties of programs in a domain-specific manner: a no- tion of safety appropriate to non-terminating computations, and stratified mono- tonic reasoning with negation over time.
    [Show full text]
  • A Deductive Database with Datalog and SQL Query Languages
    A Deductive Database with Datalog and SQL Query Languages FernandoFernando SSááenzenz PPéérez,rez, RafaelRafael CaballeroCaballero andand YolandaYolanda GarcGarcííaa--RuizRuiz GrupoGrupo dede ProgramaciProgramacióónn DeclarativaDeclarativa (GPD)(GPD) UniversidadUniversidad ComplutenseComplutense dede MadridMadrid (Spain)(Spain) 12/5/2011 APLAS 2011 1 ~ ContentsContents 1.1. IntroductionIntroduction 2.2. QueryQuery LanguagesLanguages 3.3. IntegrityIntegrity ConstraintsConstraints 4.4. DuplicatesDuplicates 5.5. OuterOuter JoinsJoins 6.6. AggregatesAggregates 7.7. DebuggersDebuggers andand TracersTracers 8.8. SQLSQL TestTest CaseCase GeneratorGenerator 9.9. ConclusionsConclusions 12/5/2011 APLAS 2011 2 ~ 1.1. IntroductionIntroduction SomeSome concepts:concepts: DatabaseDatabase (DB)(DB) DatabaseDatabase ManagementManagement SystemSystem (DBMS)(DBMS) DataData modelmodel (Abstract) data structures Operations Constraints 12/5/2011 APLAS 2011 3 ~ IntroductionIntroduction DeDe--factofacto standardstandard technologiestechnologies inin databases:databases: “Relational” model SQL But,But, aa currentcurrent trendtrend towardstowards deductivedeductive databases:databases: Datalog 2.0 Conference The resurgence of Datalog inin academiaacademia andand industryindustry Ontologies Semantic Web Social networks Policy languages 12/5/2011 APLAS 2011 4 ~ Introduction.Introduction. SystemsSystems Classic academic deductive systems: LDL++ (UCLA) CORAL (Univ. of Wisconsin) NAIL! (Stanford University) Ongoing developments Recent commercial
    [Show full text]
  • DATALOG and Constraints
    7. DATALOG and Constraints Peter Z. Revesz 7.1 Introduction Recursion is an important feature to express many natural queries. The most studied recursive query language for databases is called DATALOG, an ab- breviation for "Database logic programs." In Section 2.8 we gave the basic definitions for DATALOG, and we also saw that the language is not closed for important constraint classes such as linear equalities. We have also seen some results on restricting the language, and the resulting expressive power, in Section 4.4.1. In this chapter, we study the evaluation of DATALOG with constraints in more detail , focusing on classes of constraints for which the language is closed. In Section 7.2, we present a general evaluation method for DATALOG with constraints. In Section 7.3, we consider termination of query evaluation and define safety and data complexity. In the subsequent sections, we discuss the evaluation of DATALOG queries with particular types of constraints, and their applications. 7.2 Evaluation of DATALOG with Constraints The original definitions of recursion in Section 2.8 discussed unrestricted relations. We now consider constraint relations, and first show how DATALOG queries with constraints can be evaluated. Assume that we have a rule of the form Ro(xl, · · · , Xk) :- R1 (xl,l, · · ·, Xl ,k 1 ), • • ·, Rn(Xn,l, .. ·, Xn ,kn), '¢ , as well as, for i = 1, ... , n , facts (in the database, or derived) of the form where 'if;; is a conjunction of constraints. A constraint rule application of the above rule with these facts as input produces the following derived fact: Ro(x1 , ..
    [Show full text]
  • Constraint-Based Synthesis of Datalog Programs
    Constraint-Based Synthesis of Datalog Programs B Aws Albarghouthi1( ), Paraschos Koutris1, Mayur Naik2, and Calvin Smith1 1 University of Wisconsin–Madison, Madison, USA [email protected] 2 Unviersity of Pennsylvania, Philadelphia, USA Abstract. We study the problem of synthesizing recursive Datalog pro- grams from examples. We propose a constraint-based synthesis approach that uses an smt solver to efficiently navigate the space of Datalog pro- grams and their corresponding derivation trees. We demonstrate our technique’s ability to synthesize a range of graph-manipulating recursive programs from a small number of examples. In addition, we demonstrate our technique’s potential for use in automatic construction of program analyses from example programs and desired analysis output. 1 Introduction The program synthesis problem—as studied in verification and AI—involves con- structing an executable program that satisfies a specification. Recently, there has been a surge of interest in programming by example (pbe), where the specification is a set of input–output examples that the program should satisfy [2,7,11,14,22]. The primary motivations behind pbe have been to (i) allow end users with no programming knowledge to automatically construct desired computations by supplying examples, and (ii) enable automatic construction and repair of pro- grams from tests, e.g., in test-driven development [23]. In this paper, we present a constraint-based approach to synthesizing Data- log programs from examples. A Datalog program is comprised of a set of Horn clauses encoding monotone, recursive constraints between relations. Our pri- mary motivation in targeting Datalog is to expand the range of synthesizable programs to the new domains addressed by Datalog.
    [Show full text]
  • Logical Query Languages
    Logical Query Languages Motivatio n: 1. Logical rules extend more naturally to recursive queries than do es relational algebra. ✦ Used in SQL recursion. 2. Logical rules form the basis for many information-integration systems and applications. 1 Datalog Example , beer Likesdrinker Sellsbar , beer , price Frequentsdrinker , bar Happyd <- Frequentsd,bar AND Likesd,beer AND Sellsbar,beer,p Ab oveisarule. Left side = head. Right side = body = AND of subgoals. Head and subgoals are atoms. ✦ Atom = predicate and arguments. ✦ Predicate = relation name or arithmetic predicate, e.g. <. ✦ Arguments are variables or constants. Subgoals not head may optionally b e negated by NOT. 2 Meaning of Rules Head is true of its arguments if there exist values for local variables those in b o dy, not in head that make all of the subgoals true. If no negation or arithmetic comparisons, just natural join the subgoals and pro ject onto the head variables. Example Ab ove rule equivalenttoHappyd = Frequents ./ Likes ./ Sells dr ink er 3 Evaluation of Rules Two, dual, approaches: 1. Variable-based : Consider all p ossible assignments of values to variables. If all subgoals are true, add the head to the result relation. 2. Tuple-based : Consider all assignments of tuples to subgoals that make each subgoal true. If the variables are assigned consistent values, add the head to the result. Example: Variable-Based Assignment Sx,y <- Rx,z AND Rz,y AND NOT Rx,y R = B A 1 2 2 3 4 Only assignments that make rst subgoal true: 1. x ! 1, z ! 2. 2. x ! 2, z ! 3. In case 1, y ! 3 makes second subgoal true.
    [Show full text]
  • Datalog on Infinite Structures
    Datalog on Infinite Structures DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Informatik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät II Humboldt-Universität zu Berlin von Herr Dipl.-Math. Goetz Schwandtner geboren am 10.09.1976 in Mainz Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II: Prof. Dr. Wolfgang Coy Gutachter: 1. Prof. Dr. Martin Grohe 2. Prof. Dr. Nicole Schweikardt 3. Prof. Dr. Thomas Schwentick Tag der mündlichen Prüfung: 24. Oktober 2008 Abstract Datalog is the relational variant of logic programming and has become a standard query language in database theory. The (program) complexity of datalog in its main context so far, on finite databases, is well known to be in EXPTIME. We research the complexity of datalog on infinite databases, motivated by possible applications of datalog to infinite structures (e.g. linear orders) in temporal and spatial reasoning on one hand and the upcoming interest in infinite structures in problems related to datalog, like constraint satisfaction problems: Unlike datalog on finite databases, on infinite structures the computations may take infinitely long, leading to the undecidability of datalog on some infinite struc- tures. But even in the decidable cases datalog on infinite structures may have ar- bitrarily high complexity, and because of this result, we research some structures with the lowest complexity of datalog on infinite structures: Datalog on linear orders (also dense or discrete, with and without constants, even colored) and tree orders has EXPTIME-complete complexity. To achieve the upper bound on these structures, we introduce a tool set specialized for datalog on orders: Order types, distance types and type disjoint programs.
    [Show full text]
  • Mapping OCL As a Query and Constraint Language Traduciendo OCL Como Lenguaje De Consultas Y Restricciones
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMÁTICA Departamento de Sistemas Informáticos y Computación TESIS DOCTORAL Mapping OCL as a Query and Constraint Language Traduciendo OCL como lenguaje de consultas y restricciones MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Carolina Inés Dania Flores Directores Manuel García Clavel Marina Egea González Madrid, 2018 © Carolina Inés Dania Flores, 2017 Tesis Doctoral Mapping OCL as a Query and Constraint Language Traduciendo OCL como Lenguaje de Consultas y Restricciones Carolina Inés Dania Flores Supervisors: Manuel García Clavel Marina Egea González Facultad de Informática Universidad Complutense de Madrid © Joaquín S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España. Mapping OCL as a Query and Constraint Language Traduciendo OCL como Lenguaje de Consultas y Restricciones PhD Thesis Carolina In´es Dania Flores Advisors Manuel Garc´ıa Clavel Marina Egea Gonz´alez Departamento de Sistemas Inform´aticos y Computaci´on Facultad de Inform´atica Universidad Complutense de Madrid 2017 Amifamiliadeall´a. Mi mam´aEstela, mi pap´aH´ector y mis hermanos Flor, Marcos y Leila. A mi familia de ac´a. Mi esposo Israel, mi perro Yiyo y mis suegros Marinieves y Jacinto. A mi gran amigo de all´a, mi querido Julio. A mi gran amigo de ac´a, mi querido Juli. Acknowledgments Undertaking this PhD has been a truly life-changing experience for me, and it would not have been possible without the support and guidance that I received from many people. I would like to express my sincere gratitude to my supervisors, Manuel Garc´ıa Clavel and Marina Egea, for their support during these years.
    [Show full text]
  • PGQL: a Property Graph Query Language
    PGQL: a Property Graph Query Language Oskar van Rest Sungpack Hong Jinha Kim Oracle Labs Oracle Labs Oracle Labs [email protected] [email protected] [email protected] Xuming Meng Hassan Chafi Oracle Labs Oracle Labs [email protected] hassan.chafi@oracle.com ABSTRACT need has arisen for a well-designed query language for graphs that Graph-based approaches to data analysis have become more supports not only typical SQL-like queries over structured data, but widespread, which has given need for a query language for also graph-style queries for reachability analysis, path finding, and graphs. Such a graph query language needs not only SQL-like graph construction. It is important that such a query language is functionality for querying structured data, but also intrinsic general enough, but also has a right level between expressive power support for typical graph-style applications: reachability anal- and ability to process queries efficiently on large-scale data. ysis, path finding and graph construction. Various graph query languages have been proposed in the past. We propose a new query language for the popular Property Most notably, there is SPARQL, which is the standard query lan- Graph (PG) data model: the Property Graph Query Language guage for the RDF (Resource Description Framework) graph data (PGQL). PGQL is based on the paradigm of graph pattern model, and which has been adopted by several graph databases [1, matching, closely follows syntactic structures of SQL, and pro- 7, 12]. However, the RDF data model regularizes the graph repre- vides regular path queries with conditions on labels and prop- sentation as set of triples (or edges), which means that even con- erties to allow for reachability and path finding queries.
    [Show full text]
  • Problem 1 (15 Pts) Problem 2 (15 Pts)
    CSE 636: Test #1 (due 10/18/11) Submit all the answers using submit cse636 as a single pdf file. This is individual work. Duplicate solutions will be considered violations of academic integrity. Please write your name and the text \The submitted solutions are my individual work." at the beginning of the submitted file. Problem 1 (15 pts) Assume an undirected graph is represented as a set of facts of the form node(x) for a node x, and edge(x,y) and edge(y,x) for an edge fx; yg. A graph is connected if for every two different nodes in the graph there is a path between them. A node x is an articulation point of a graph if: (1) the graph is connected, and (2) the graph with x and its incident edges removed is no longer connected. 1. Write a Datalog: program P1 that checks whether a given graph is connected. 2. Write a Datalog: program P2 that returns the set of articulation points of a given graph. 3. Explain why the program P2 is stratified. 4. Can the program P2 be written without using negation? Problem 2 (15 pts) Assume XML documents are represented using the following Datalog predicates: • root(Id); • node(Id,TagName); • parent(ParentId,Num,ChildId) where Id, ParentId, ChildId are unique element node identifiers, TagName is the element name, and Num is the child's sequential number (1; 2; 3;:::). Other information present in those documents is ignored. Consider the subset of XPath defined by the following grammar: habspathi ::= haxisi hrelpathi hrelpathi ::= hstepi hrelpathi ::= hstepi haxisi hrelpathi haxisi ::= \/" j \//" hstepi ::= hnamei j \*" Explain how you would generate from an XPath expression satisfying the above restrictions a Datalog program that always returns in the query(X) predicate the set of nodes satisfying the XPath expression.
    [Show full text]
  • Regular Queries on Graph Databases
    Noname manuscript No. (will be inserted by the editor) Regular Queries on Graph Databases Juan L. Reutter · Miguel Romero · Moshe Y. Vardi the date of receipt and acceptance should be inserted later Abstract Graph databases are currently one of the most popular paradigms for storing data. One of the key conceptual differences between graph and relational databases is the focus on navigational queries that ask whether some nodes are connected by paths satisfying certain restrictions. This focus has driven the definition of several different query languages and the subsequent study of their fundamental properties. We define the graph query language of Regular Queries, which is a natural extension of unions of conjunctive 2-way regular path queries (UC2RPQs) and unions of conjunctive nested 2-way regular path queries (UCN2RPQs). Regular queries allow expressing complex regular patterns between nodes. We formalize regular queries as nonrecursive Datalog programs extended with the transitive closure of binary predicates. This language has been previously considered, but its algorithmic properties are not well understood. Our main contribution is to show elementary tight bounds for the contain- ment problem for regular queries. Specifically, we show that this problem is 2Expspace-complete. For all extensions of regular queries known to date, the containment problem turns out to be non-elementary. Together with the fact that evaluating regular queries is not harder than evaluating UCN2RPQs, our results show that regular queries achieve a good balance between expressive- ness and complexity, and constitute a well-behaved class that deserves further investigation. J. Reutter Pontificia Universidad Cat´olica de Chile E-mail: [email protected] M.
    [Show full text]
  • Declarative and Logic Programming
    Declarative and Logic Programming Mooly Sagiv Adapted from Peter Hawkins Jeff Ullman (Stanford) Why declarative programming • Turing complete languages (C, C++, Java, Javascript, Haskel, …) are powerful – But require a lot of efforts to do simple things – Especially for non-expert programmers – Error-prone – Hard to be optimize • Declarative programming provides an alternative – Restrict expressive power – High level abstractions to perform common tasks – Interpreter/Compiler guarantees efficiency – Useful to demonstrate some of the concepts in the course Flight database den sfo chi dal flight source dest sfo den sfo dal den chi den dal dal chi Where can we fly from Denver? SQL: SELECT dest FROM flight WHERE source="den"; Flight database SQL vs. Datalog den sfo chi flight(sfo, den). dal flight(sfo,dal). flight(den, chi). flight(den, dal). Where can we fly from Denver? flight(dal, chi). SQL: SELECT dest FROM flight WHERE source="den“; Datalog: flight(den, X). X= chi; X= dal; no X is a logical variable Instantiated with the satisfying assignments Flight database conjunctions den flight(sfo, den). sfo chi flight(sfo,dal). flight(den, chi). flight(den, dal). dal flight(dal, chi). Logical conjunction: “,” let us combine multiple conditions into one query Which intermediate airport can I go between San Francisco and Chicago? Datalog: flight(sfo, X), flight(X, chi). X = den; X = dal; no Recursive queries Datalog den flight(sfo, den). sfo chi flight(sfo,dal). flight(den, chi). flight(den, dal). dal flight(dal, chi). reachable(X, Y) :- flight(X, Y). reachable(X, Y) :- reachable(X, Z), flight(Z, Y). Where can we reach from San Francisco? reachable(sfo, X).
    [Show full text]
  • Certified Graph View Maintenance with Regular Datalog Angela Bonifati, Stefania Dumbrava, Emilio Jesús Gallego Arias
    Certified Graph View Maintenance with Regular Datalog Angela Bonifati, Stefania Dumbrava, Emilio Jesús Gallego Arias To cite this version: Angela Bonifati, Stefania Dumbrava, Emilio Jesús Gallego Arias. Certified Graph View Mainte- nance with Regular Datalog. Theory and Practice of Logic Programming, Cambridge University Press (CUP), 2018, 34th International Conference on Logic Programming, 18 (3-4), pp.372-389. 10.1017/S1471068418000224. hal-01932818 HAL Id: hal-01932818 https://hal.archives-ouvertes.fr/hal-01932818 Submitted on 23 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Under consideration for publication in Theory and Practice of Logic Programming 1 Certified Graph View Maintenance with Regular Datalog Angela Bonifati, Stefania Dumbrava LIRIS, Université Lyon 1, France Emilio Jesús Gallego Arias MINES ParisTech, PSL Research University, France submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003 Abstract We employ the Coq proof assistant to develop a mechanically-certified framework for evaluating graph queries and incrementally maintaining materialized graph instances, also called views. The language we use for defining queries and views is Regular Datalog (RD) – a notable fragment of non-recursive Datalog that can express complex navigational queries, with transitive closure as native operator.
    [Show full text]