Ancient Egyptian Cubits – Origin and Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Ancient Egyptian Cubits – Origin and Evolution by Antoine Pierre Hirsch A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Near and Middle Eastern Civilizations University of Toronto © Copyright by Antoine Pierre Hirsch 2013 i Ancient Egyptian Cubits – Origin and Evolution Antoine Pierre Hirsch Doctor of Philosophy Near and Middle Eastern Civilizations University of Toronto 2013 Abstract This thesis suggests that prior to Ptolemaic and Roman times, ancient Egypt had two distinct and parallel linear systems: the royal system limited to official architectural projects and land measurements, and a great (aA) system used for everyday measurements. A key 1/3 ratio explains ancient Egyptian linear measurements and their agricultural origin. Emmer is 1/3 lighter than barley, consequently, for an equal weight, a container filled with emmer will be 1/3 greater than a container filled with barley. The lengths derived from both containers share the same 1/3 ratio. The second chapter, Previous Studies, lists the work of scholars involved directly or indirectly with ancient Egyptian metrology. The third chapter, The Royal Cubit as a Converter and the Scribe’s Palette as a Measuring Device, capitalizes on the colour scheme (black and white on the reproduction of Appendix A) appearing on the Amenemope cubit artifact to show the presence of two cubits and two systems: the black (royal system) and the white (great [aA] system) materialized by the scribe's palette of 30, 40, and 50 cm. The royal cubit artifacts provide a conversion bridge between the royal and the great systems. The information derived from the visual clues on the Amenemope cubit artifact are tested against a database of artifacts scattered in museums around the world. The fourth chapter, The Origin and Evolution of Ancient Egyptian Cubits, historically relates the ancient Egyptian linear systems to the closed metrological systems ii they belong to. A closed metrological system is a system in which units of length, volume, and weight are related to each other. The conclusion is that the ancient Egyptian metrological system is backward compatible as it is possible - using a hin as a closing volumetric unit and emmer, barley, wheat (triticum durum) and water as commodities - to re-construct the linear metrological systems of all ancient Egyptian periods. iii Table of Contents List of Tables ...................................................................................................................................................... x List of Figures ................................................................................................................................................... xii List of Appendices ............................................................................................................................................. xv Chapter 1 ‐ Introduction ..................................................................................................................................... 1 Chapter 2 ‐ Previous Studies ............................................................................................................................... 9 1 Ancient Egyptian Cubits ............................................................................................................................. 9 1.1 Cubits ............................................................................................................................................................... 9 1.1.1 Herodotus .............................................................................................................................................. 9 1.1.2 E. F. Jomard .......................................................................................................................................... 11 1.1.3 J. J. Champollion‐Figeac ....................................................................................................................... 11 1.1.4 P. S. Girard ........................................................................................................................................... 11 1.1.5 R. W. Howard‐Vyse and J. S. Perring .................................................................................................... 12 1.1.6 Ch. P. Smyth ......................................................................................................................................... 12 1.1.7 R. Lepsius ............................................................................................................................................. 12 1.1.8 W. F. Petrie .......................................................................................................................................... 13 1.1.9 F. L. Griffith .......................................................................................................................................... 14 1.1.10 L. Borchardt ..................................................................................................................................... 14 1.1.11 W. F. Reineke .................................................................................................................................. 15 1.1.12 A. Schlott ......................................................................................................................................... 15 1.1.13 E. Iversen ......................................................................................................................................... 15 1.1.14 G. Robins ......................................................................................................................................... 19 1.1.15 J.F. Carlotti ...................................................................................................................................... 19 1.1.16 T. Pommerening .............................................................................................................................. 20 1.1.17 G. Schmitt ....................................................................................................................................... 22 1.1.18 J. Wegner ........................................................................................................................................ 22 1.1.19 P. Zignani ......................................................................................................................................... 22 1.2 Nbj ................................................................................................................................................................. 23 1.2.1 W. C. Hayes .......................................................................................................................................... 23 iv 1.2.2 N. Victor ............................................................................................................................................... 23 1.2.3 E. Roik .................................................................................................................................................. 23 1.2.4 J. Legon ................................................................................................................................................ 24 1.2.5 C. Simon‐Boidot ................................................................................................................................... 25 2 Comparative Studies ............................................................................................................................... 25 2.1 Cubits ............................................................................................................................................................. 25 2.1.1 I. Newton ............................................................................................................................................. 25 2.1.2 Authors Quoted By Lepsius In Die Alt‐Aegytische Elle Und Ihre Eintheilung (1865) ........................... 25 2.1.3 R. Lepsius ............................................................................................................................................. 26 2.1.4 A. Segrè ................................................................................................................................................ 26 2.1.5 J. A. Decourdemanche ......................................................................................................................... 26 2.1.6 E. Lorenzen .......................................................................................................................................... 27 2.1.7 W. Hinz ................................................................................................................................................. 28 2.2 Nbj ................................................................................................................................................................. 28 2.2.1 A. Segrè ................................................................................................................................................ 28 Chapter 3 ‐ The Royal Cubit as a Converter and The Scribe’s Palette as a Measuring Device ............................... 30 3 The Amenemope Royal Cubit Artifact as A Converter ............................................................................... 34 3.1 Division Markers ...........................................................................................................................................