Exploring Agreeability in Tree Societies Sarah Fletcher Harvey Mudd College
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hyperconvexity and Metric Embedding
Hyperconvexity and Metric Embedding David Eppstein Univ. of California, Irvine Computer Science Department Metric embedding problems Input: complicated metric space Output: simple metric space Quadratic # degrees of freedom As close as possible to e.g. distance matrix the input metric space shortest paths in weighted graph n-dimensional L-infinity space Linear # degrees of freedom Hyperconvexity and metric embedding D. Eppstein, 2009 Hyperconvex metric spaces Defined by Helly property on metric balls Include trees, L∞ metrics, other interesting spaces Tight span Embed any metric space into a hyperconvex space “Convex hull” for metric spaces Algorithms Diameter in hyperconvex spaces Planar tight spans and Manhattan embedding Minimum dilation stars Hyperconvexity and metric embedding D. Eppstein, 2009 Outline Hyperconvexity Tight spans Planar tight span construction Minimum dilation stars CC-BY-NC photo by Makz on Flickr, http://www.flickr.com/photos/makz/119762730/ Hyperconvexity and metric embedding D. Eppstein, 2009 Outline Hyperconvexity Tight spans Planar tight span construction Minimum dilation stars CC-BY-NC photo by Makz on Flickr, http://www.flickr.com/photos/makz/119762730/ Hyperconvexity and metric embedding D. Eppstein, 2009 Helly’s theorem [Helly 1923] Given a family of convex objects in d-dimensional Euclidean space: If each (d+1)-tuple has a common intersection, so does the whole family Hyperconvexity and metric embedding D. Eppstein, 2009 k-Helly family Any family of sets such that, for any subfamily, if all k-tuples in the subfamily intersect, then the whole subfamily has a common intersection (Like convex sets in (k–1)-dimensional Euclidean space) Helly family Special case of a 2-Helly family (the simplest nontrivial case of a k-Helly family, like intervals of the real line) Hyperconvexity and metric embedding D. -
Arxiv:1610.03307V1 [Math.MG] 11 Oct 2016 Hoyo Ovxsbes Ial,Ti Ed Oahlytp Theore Helly-Type a to Leads This Connec Finally, Subsets
BALL INTERSECTION PROPERTIES IN METRIC SPACES BENJAMIN MIESCH AND MAEL¨ PAVON´ Abstract. We show that in complete metric spaces, 4-hyperconvexity is equivalent to finite hyperconvexity. Moreover, every complete, almost n- hyperconvex metric space is n-hyperconvex. This generalizes among others results of Lindenstrauss and answers questions of Aronszajn-Panitchpakdi. Furthermore, we prove local-to-global results for externally and weakly ex- ternally hyperconvex subsets of hyperconvex metric spaces and find sufficient conditions in order for those classes of subsets to be convex with respect to a geodesic bicombing. 1. Introduction Hyperconvexity and related properties lie at the interface of several fields like fixed point theory [15], mapping extensions [1, 7], functional analysis [10, 14], geo- metric group theory [9] or convex geometry [8]. Motivated by these applications, we study weak notions of hyperconvexity and afterwards connect them with the theory of convex subsets. Finally, this leads to a Helly-type theorem for weakly externally hyperconvex subsets. In the first part of this work we generalize results related to extensions of uni- formly continuous functions and compact linear operators. In [10], Lindenstrauss characterizes all Banach spaces B with the property that any compact linear oper- ator with target B possesses an ”almost” norm preserving extension in pure metric terms, namely as the Banach spaces which are n-hyperconvex for every n. A coun- terpart for uniformly continuous maps between metric spaces was later proven by Esp´ınola and L´opez, see [7]. This motivates a closer look on results concerning n-hyperconvexity in general metric spaces. Note that the following definition is slightly different from the one given in [1]. -
Codomain from Wikipedia, the Free Encyclopedia Contents
Codomain From Wikipedia, the free encyclopedia Contents 1 Algebra of sets 1 1.1 Fundamentals ............................................. 1 1.2 The fundamental laws of set algebra .................................. 1 1.3 The principle of duality ........................................ 2 1.4 Some additional laws for unions and intersections .......................... 2 1.5 Some additional laws for complements ................................ 3 1.6 The algebra of inclusion ........................................ 3 1.7 The algebra of relative complements ................................. 4 1.8 See also ................................................ 5 1.9 References ............................................... 5 1.10 External links ............................................. 5 2 Axiom of choice 6 2.1 Statement ............................................... 6 2.1.1 Nomenclature ZF, AC, and ZFC ............................... 7 2.1.2 Variants ............................................ 7 2.1.3 Restriction to finite sets .................................... 7 2.2 Usage ................................................. 8 2.3 Examples ............................................... 8 2.4 Criticism and acceptance ....................................... 8 2.5 In constructive mathematics ..................................... 9 2.6 Independence ............................................. 10 2.7 Stronger axioms ............................................ 10 2.8 Equivalents .............................................. 10 2.8.1 Category -
Convexity in Combinatorial Structures
WSAA 14 Pierre Duchet Convexity in combinatorial structures In: Zdeněk Frolík and Vladimír Souček and Marián J. Fabián (eds.): Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 14. pp. [261]--293. Persistent URL: http://dml.cz/dmlcz/701901 Terms of use: © Circolo Matematico di Palermo, 1987 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz CONVEXITY IN COMBINATORIAL STRUCTURES (*) Pierre Duchet CNRS3 Paris SUMMARY. The recent (since 1968) combinatorial developments of abs tract convexity are surveyed. The combinatorial properties' of convex r sets (Hetty propertys Eckhoff s partition problem ...) are consider ed in the general setting of finitary closure systems ("Convexity Spaces" or "Alignements "). In ordered sets3 in tree-like structures and in combinatorial structures inspired by Geometry (e.g. "oriented matroids") there are natural definitions of convex sets : an axiomatic common background is the theory, of "convex geometries" (or anti-• exchange convexitiesff) of Edelman and Jamison or dually the theory of "shelling structures" (or "APS-greedoids")of Korte and Lovasz. Convexity in graphs recently appeared of independent interest (contraction into complete graphs^ universal properties of geodesic convexity .. ) I - INTRODUCTION Properly speaking, convexity is not a mathematical theory, but rather a notional domain where five basic concepts operate : between- ness (-* medians, convex dependance) , algebraicness (-+convex hull operator, dimension), separation ( •>hemispaces, copoints), connected- ness and optimization (-*• extremal points, face-lattices, duality). -
Sobre a Propriedade Helly De Alguns Grafos De Interseção
ON THE HELLY PROPERTY OF SOME INTERSECTION GRAPHS Tanilson Dias dos Santos Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia de Sistemas e Computação. Orientadores: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza Rio de Janeiro Setembro de 2020 ON THE HELLY PROPERTY OF SOME INTERSECTION GRAPHS Tanilson Dias dos Santos TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO. Orientadores: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza Aprovada por: Prof. Jayme Luiz Szwarcfiter, Ph.D. Prof. Uéverton dos Santos Souza, D.Sc. Prof. Claudson Ferreira Bornstein, Ph.D. Profa. Liliana Alcón, D.Sc. Profa. María Pía Mazzoleni, D.Sc. Profa. Márcia Rosana Cerioli, D.Sc. RIO DE JANEIRO, RJ – BRASIL SETEMBRO DE 2020 Santos, Tanilson Dias dos On the Helly Property of Some Intersection Graphs/Tanilson Dias dos Santos. – Rio de Janeiro: UFRJ/COPPE, 2020. IX, 94 p. 29; 7cm. Orientadores: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza Tese (doutorado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2020. Referências Bibliográficas: p. 88 – 94. 1. Edge Path. 2. Grid Path. 3. Intersections. 4. search. I. Szwarcfiter, Jayme Luiz et al. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Sistemas e Computação. III. -
Gluing Constructions and Local-To-Global Results for Hyperconvex Metric Spaces
Research Collection Doctoral Thesis Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces Author(s): Miesch, Benjamin Publication Date: 2017 Permanent Link: https://doi.org/10.3929/ethz-a-010867059 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 23997 Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH¨ (Dr. sc. ETH Z¨urich) presented by Benjamin Raphael Miesch MSc ETH Mathematik, ETH Z¨urich born May 14, 1987 citizen of Titterten BL accepted on the recommendation of Prof. Dr. Urs Lang, examiner Prof. Dr. Rafael Esp´ınola,co-examiner 2017 Soli Deo Gloria. Zusammenfassung Hyperkonvexit¨at beschreibt eine Schnitteigenschaft von B¨allen in metrischen R¨aumen und wurde 1956 von N. Aronszajn and P. Panitchpakdi fur¨ das Studi- um von Erweiterungen gleichm¨assig stetiger Abbildungen eingefuhrt.¨ In dieser Arbeit studieren wir nun verschiedene Eigenschaften von hyperkon- vexen metrischen R¨aumen. Zuerst untersuchen wir Verklebungen von solchen R¨aumen entlang isometrischer Teilmengen. Fur¨ schwach extern hyperkonvexe Klebmengen k¨onnen wir eine notwendige und hinreichende Bedingung angeben, so dass der resultierende Raum wieder hyperkonvex ist. Als Konsequenz erhal- ten wir, dass das Verkleben von metrischen R¨aumen entlang extern hyperkon- vexer oder stark konvexer Teilmengen die Hyperkonvexit¨at erhaltet. Wir geben auch eine Klassifizierung fur¨ Verklebungen von hyperkonvexen Vektorr¨aumen entlang eines linearen Unterraumes. In einem zweiten Teil analysieren wir, wann ein lokal hyperkonvexer me- trischer Raum hyperkonvex ist.