PROGRAM FEE : £800 PROGRAM PLUS SAFARI FEE : £1450 MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE the OCEANS Company No

Total Page:16

File Type:pdf, Size:1020Kb

PROGRAM FEE : £800 PROGRAM PLUS SAFARI FEE : £1450 MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE the OCEANS Company No PROGRAM FEE : £800 PROGRAM PLUS SAFARI FEE : £1450 MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales WHAT IS LOVE THE OCEANS? Love The Oceans is a charitable non-profit marine conservation organisation working in Guinjata Bay, Mozambique. Guinjata Bay, whilst home to a huge host of marine life, has never been studied in depth for any prolonged amount of time. LTO hopes to protect the diverse marine life found here, including many species of sharks, rays and the famous humpback whales. We use research, education and diving to drive action towards a more sustainable future. Our ultimate goal is to establish a Marine Protected Area for the Inhambane Province in Mozambique, achieving higher biodiversity whilst protecting endangered species. We offer a cutting edge volunteer program that gives individuals the chance to work alongside our marine biologists and the local community, helping with conservation, through research, education and diving, over a 2 week period. We are currently offering positions for a select number of participants in 2017 on the following program dates: March 26th – April 9th (Ending 14th April if participating in Safari) At the end of the program, we also offer an optional 5 night safari bringing the end of your trip to the 14th of April. Prospective volunteers are welcome to submit an application form, their resume and a photo in order to apply for a place on the program. WWW.FACEBOOK.COM/LOVE LOVETHEOCEANS.ORG +447881795062 THEOCEANSORGANISATION WWW.TWITTER.COM/LOVE [email protected] @LOVETHEOCEANS THEOCEANS MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales WHAT WILL I BE DOING? As a Love The Oceans volunteer, you form an essential part of our team. You will be rotating around our 4 principal activities: Fisheries Research Teaching and Painting Coral Reef Surveys Swimming Lessons Our volunteers have Saturday mornings and Sundays to participate in optional extra activities such as surf lessons, sailing trips or just relaxing on the beach. Saturday afternoons will be spent teaching the local school children how to swim. We stay in backpacker style accommodation in Guinjata Bay and rooms will hold a maximum of 6 people (genders will be separated). Running water and electricity is available at all times… with the exception of a few power cuts! Mosquito nets are provided. Your program is fully catered, however you may We are here want to bring money for internet, drinks and treats. You are required to bring an unlocked mobile phone with you in order to buy a local sim for internet as there is no wifi available. The local shop is a short walk away and holds a few western treasures. MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales After you have settled in, your program will start with an intense 3 days of training We aim to ensure that everyone on the program has the same level of knowledge about LTO, the conservation work we do and your role and responsibilities as an LTO volunteer. In these 3 days you’ll learn about your next two weeks in Mozambique. It is during the training that we will get to know each other better, refresh diving skills and learn new skills as you come up to speed with the research requirements. We expect you to learn and work together, setting a positive tone for the coming weeks. Toward the end of the training you will be placed into a team and will rotate around the following key activities: Fisheries Research Collecting fisheries data will allow us to assess how sustainable the fisheries are. From these assessments, eventually we would like to determine minimum landing size for individual species, as well as changing certain fishing legislation. We cover two fisheries sites; Guinjata Bay and Paindane Bay. A third may be sporadically covered in accordance with the shark fishing. Both sites have resorts and active local fishermen. The Guinjata research site is next to our dive centre, while the Paindane research site is a 45minute walk. Expect to walk to both sites. Every group will have a mobile phone so help is always at hand. Every day on fisheries you be responsible for recording the data into the logs along with the corresponding images (check shark and ray IDs with a field specialist if unsure), cleaning the collected shark/ray vertebrae, and ensuring equipment is clean and stored. This work can be upsetting at times but you cannot get involved in releasing animals; we are there to photograph and collect data in order to achieve a long-term solution. MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales Teaching and Painting Educating the next generation of fishermen in schools about sustainable fishing and why the ocean is important helps the local community protect their biodiversity assets – assets because of ecotourism and fisheries. As part of your volunteering, you will help at Guinjata and Paindane School Monday-Friday. You will be teaching 10-13 year olds about the marine environment, as well as painting classrooms which are in much need of some TLC. You will not be partaking in construction work as we prefer to employ local builders and put money back into the local economy. Swimming Lessons Surprisingly few local children are confident in the water. Part of our commitment to the local community is teaching the school children how to swim, helping to fuel their passion for the marine environment with a view to them one day being able to experience the underwater world for themselves. We also teach sea safety in our lessons. This is very important as children drowning is not uncommon in this area due to a strong rip and lack of awareness. You can help teach the children (and some adults) how to swim on Saturday afternoons. We ask for our volunteers to bring out 5kg of donations (books or stationery) for the children as well as any marine themed toys or swimming gear. MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales Coral Reef Surveys LTO collects coral reef data in order to lobby for a marine protected area which could enhance eco-tourism, bringing more money into the region and an alternate source of income to unsustainable fishing. We strongly believe we’re in a biodiversity hotspot and we need a coral reef data set to prove our area is worth protecting. To expand LTO’s coral reef logs, you will be diving and snorkelling to complete LTO surveys. You will identify different fish and coral species you see on each dive, and be responsible for logging the data into the scientific logs at the end of each day. We use Reef Life Survey methodology, allowing us to compare our data sets with other reef systems around the world. These dives require confident divers with good buoyancy. PADI Open Water is a prerequisite for our programs. MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales PROGRAM EXTRAS Safari We offer an optional extra 5 night safari that you can enjoy at the end of your volunteer program. You will leave Guinjata bay to explore the Balule Private Game Reserve in the Greater Kruger Park Ecosystem, staying at Ku Sungula Safari Lodge. During your 5 days you will participate in game drives, bush walks, a scenic tour through the Drakensburg Mountains (to see God’s Window, the Three Sisters and Bourke’s Luck Potholes) and have an animal behaviour bush walk and lecture from experienced field guides. You will then be transported to Johannesburg Airport. All of your meals are included, but the beers are on you! This trip is highly recommended. Weekend Activities There are optional weekend excursions you can participate in. They are not compulsory but have proved great fun in the past. These activities need to be paid for separately in cash in Mozambique. - Yacht Trip – We sail the Inhambane estuary on a yacht, with the chance to snorkel a few islands. - Surf Trip – A day trip to Tofo (the tourist hub) for a fun surf lesson and shop around their market. - Diving Courses – PADI scuba diving courses are available at Guinjata Dive Centre, from open water to dive master. - Ocean Safaris – Local dive centres offer various Ocean Safari tours where you can search for whale sharks and whales from the boat in an afternoon. MARINE CONSERVATION VOLUNTEER PROGRAM 2017 LOVE THE OCEANS Company no. 9322104, Registered in England and Wales F.A.Q.S ARE THERE ANY PREREQUISITES TO JOINING THE PROGRAM? Applicants must be 18 or over at the time of arrival. Applicants must be at least Open Water PADI qualified HOW CAN I GET MY PADI BEFORE THE PROGRAM? If you are not Open Water qualified, it is possible to come and do your Open Water the week before your volunteer program starts at an extra cost. Please email for details. HOW SAFE IS IT? Mozambique has struggled with civil conflict in the past, but now it is restricted to the north. LTO is based in the south in a more remote location which has been virtually untouched by political conflict. Your accommodation has a 24 hour guard and is in a place where the crime rate is very low due to a close knit village community. There is a local police station and main hospital is approximately a 30minute drive from our base. The closest decompression chamber is Durban, South Africa.
Recommended publications
  • Oceanography and Marine Biology an Annual Review Volume 56
    Oceanography and Marine Biology An Annual Review Volume 56 S.J. Hawkins, A.J. Evans, A.C. Dale, L.B. Firth & I.P. Smith First Published 2018 ISBN 978-1-138-31862-5 (hbk) ISBN 978-0-429-45445-5 (ebk) Chapter 5 Impacts and Environmental Risks of Oil Spills on Marine Invertebrates, Algae and Seagrass: A Global Review from an Australian Perspective John K. Keesing, Adam Gartner, Mark Westera, Graham J. Edgar, Joanne Myers, Nick J. Hardman-Mountford & Mark Bailey (CC BY-NC-ND 4.0) Oceanography and Marine Biology: An Annual Review, 2018, 56, 2-61 © S. J. Hawkins, A. J. Evans, A. C. Dale, L. B. Firth, and I. P. Smith, Editors Taylor & Francis IMPACTS AND ENVIRONMENTAL RISKS OF OIL SPILLS ON MARINE INVERTEBRATES, ALGAE AND SEAGRASS: A GLOBAL REVIEW FROM AN AUSTRALIAN PERSPECTIVE JOHN K. KEESING1,2*, ADAM GARTNER3, MARK WESTERA3, GRAHAM J. EDGAR4,5, JOANNE MYERS1, NICK J. HARDMAN-MOUNTFORD1,2 & MARK BAILEY3 1CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, M097, 35 Stirling Highway, Crawley, 6009, Australia 2University of Western Australia Oceans Institute, Indian Ocean Marine Research Centre, M097, 35 Stirling Highway, Crawley, 6009, Australia 3BMT Pty Ltd, PO Box 462, Wembley, 6913, Australia 4Aquenal Pty Ltd, 244 Summerleas Rd, Kingston, 7050, Australia 5Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, 7001, Australia *Corresponding author: John K. Keesing e-mail: [email protected] Abstract Marine invertebrates and macrophytes are sensitive to the toxic effects of oil. Depending on the intensity, duration and circumstances of the exposure, they can suffer high levels of initial mortality together with prolonged sublethal effects that can act at individual, population and community levels.
    [Show full text]
  • Biodiversity Enhances Reef Fish Biomass and Resistance to Climate Change
    Biodiversity enhances reef fish biomass and resistance to climate change Duffy, J. E., Lefcheck, J. S., Stuart-Smith, R. D., Navarrete, S. A., & Edgar, G. J. (2016). Biodiversity enhances reef fish biomass and resistance to climate change. Proceedings of the National Academy of Sciences, 113(22), 6230-6235. <10.1073/pnas.1524465113> Accessed 09 Jan 2021. Abstract Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey’s global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean...
    [Show full text]
  • Commonwealth Marine Reserves Review
    Chapter 3 Assessments of new scientific information to support Commonwealth marine reserve zoning and management decisions The Expert Scientific Panel (ESP) terms of reference included providing advice on options for zoning and allowed uses consistent with the Goals and principles for the establishment of the National Representative System of Marine Protected Areas in Commonwealth waters (the Goals and Principles). Noting the extensive scientific process that underpinned the design of the Commonwealth marine reserves (CMRs) proclaimed in 2012, as outlined in chapter 2, and mindful of work of the Bioregional Advisory Panel (BAP) to identify possible new zoning boundaries for the CMR estate, the ESP focused its work on this term of reference on new science directly relevant to the needs of the BAP. The BAP referred a number of matters to the ESP for advice. These matters related to areas of contention identified through the BAP consultation process. They are listed in table 3.1 and are addressed in this chapter. The associated findings were communicated to the BAP for consideration in formulating recommendations on zoning options. Broadly, these matters related to: • concerns about the applicability of Fishing Gear Risk Assessment (FGRA) findings to certain gear types in certain areas of the CMR estate (section 3.1) • concerns about the impact of recreational fishing (section 3.2) • concerns about the effectiveness of different zone types (section 3.3) • the need to have up-to-date scientific information for particular marine features and particular CMRs (sections 3.4 and 3.5). Table 3.1 Issues referred by the Bioregional Advisory Panel to the Expert Scientific Panel for advice Advice request CMR and/or network to Relevant which the request related section of ESP report Evaluate the process used to determine fishing gear risk for Estate-wide 2.3.5 CMRs.
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • Methods for the Study of Marine Biodiversity
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Methods for the study of marine biodiversity Costello, M. I.; Basher, Z.; McLeod, L.; Asaad, I.; Claus, S.; Vanderpitte, L.; Moriaki, Y.; Gislason, Henrik; Edwards, M.; Appeltans, W. Total number of authors: 17 Published in: The GEO Handbook on Biodiversity Observation Networks Link to article, DOI: 10.1007/978-3-319-27288-7_6 Publication date: 2016 Document Version Version created as part of publication process; publisher's layout; not normally made publicly available Link back to DTU Orbit Citation (APA): Costello, M. I., Basher, Z., McLeod, L., Asaad, I., Claus, S., Vanderpitte, L., Moriaki, Y., Gislason, H., Edwards, M., Appeltans, W., Enevoldsen, H., Edgar, G. I., Miloslavich, P., Monte, S. D., Pinto, I. S., Obura, D., & Bates, A. E. (2016). Methods for the study of marine biodiversity. In M. Walters, & R. J. Scholes (Eds.), The GEO Handbook on Biodiversity Observation Networks (pp. 129-163). Springer. https://doi.org/10.1007/978-3-319- 27288-7_6 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Reef Life Survey Assessment of Coral Reef Biodiversity in the North -West Marine Parks Network
    Reef Life Survey Assessment of Coral Reef Biodiversity in the North -west Marine Parks Network Graham Edgar, Camille Mellin, Emre Turak, Rick Stuart- Smith, Antonia Cooper, Dani Ceccarelli Report to Parks Australia, Department of the Environment 2020 Citation Edgar GJ, Mellin C, Turak E, Stuart-Smith RD, Cooper AT, Ceccarelli DM (2020) Reef Life Survey Assessment of Coral Reef Biodiversity in the North-west Marine Parks Network. Reef Life Survey Foundation Incorporated. Copyright and disclaimer © 2020 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of The Reef Life Survey Foundation. Important disclaimer The RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, The RLSF (including its volunteers and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Images Cover: RLS diver
    [Show full text]
  • Reef Resilience Summary Report
    Reef Resilience Summary Report Table of Contents Toolkit Review & Updates ............................................................................................................. 2 Case Studies .................................................................................................................................... 2 Article Summaries .......................................................................................................................... 3 Newsletter ....................................................................................................................................... 8 Webinars ....................................................................................................................................... 37 Network Forum ............................................................................................................................. 38 Online Course ............................................................................................................................... 39 Learning Exchanges & Workshops .............................................................................................. 40 This report was supported by The Nature Conservancy under cooperative agreement award #NA13NOS4820145 from the National Oceanic and Atmospheric Administration's (NOAA) Coral Reef Conservation Program, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA, the
    [Show full text]
  • Dynamic Distributions of Coastal Zooplanktivorous Fishes
    Dynamic distributions of coastal zooplanktivorous fishes Matthew Michael Holland A thesis submitted in fulfilment of the requirements for a degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science University of New South Wales, Australia November 2020 4/20/2021 GRIS Welcome to the Research Alumni Portal, Matthew Holland! You will be able to download the finalised version of all thesis submissions that were processed in GRIS here. Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis that you submit to the Library. Information on how to submit the final copies of your thesis to the Library is available in the completion email sent to you by the GRS. Thesis submission for the degree of Doctor of Philosophy Thesis Title and Abstract Declarations Inclusion of Publications Statement Corrected Thesis and Responses Thesis Title Dynamic distributions of coastal zooplanktivorous fishes Thesis Abstract Zooplanktivorous fishes are an essential trophic link transferring planktonic production to coastal ecosystems. Reef-associated or pelagic, their fast growth and high abundance are also crucial to supporting fisheries. I examined environmental drivers of their distribution across three levels of scale. Analysis of a decade of citizen science data off eastern Australia revealed that the proportion of community biomass for zooplanktivorous fishes peaked around the transition from sub-tropical to temperate latitudes, while the proportion of herbivores declined. This transition was attributed to high sub-tropical benthic productivity and low temperate planktonic productivity in winter.
    [Show full text]
  • Standardised Survey Procedures for Monitoring Rocky & Coral Reef
    STANDARDISED SURVEY PROCEDURES FOR MONITORING ROCKY & CORAL REEF ECOLOGICAL COMMUNITIES TABLE OF CONTENTS INTRODUCTION 3 HOW IT WORKS 5 SURVEY EQUIPMENT 6 CHOOSING A SITE 7 DETAILS OF METHODS: 11 THE FISH SURVEY (M1) 11 THE INVERTEBRATE SURVEY (M2) 15 - MANUFACTURED DEBRIS 19 METHOD “0” (M0) 20 DIGITAL PHOTO-QUADRATS 21 DATA ENTRY 25 SUBMITTING DATA 28 APPENDIX 1 - INVERTEBRATE/CRYPTIC FISH FAMILIES 29 APPENDIX 2 - SURVEYS IN SPECIAL CIRCUMSTANCES 31 APPENDIX 3 – UPLOADING DATA TO DROPBOX 38 2 INTRODUCTION This manual describes the standard Reef Life Survey (RLS) methods for estimating densities of fishes, large macroinvertebrates, and sessile communities on rocky and coral reefs. These (and compatible) methods have been used in thousands of surveys all around the world and at some locations for more than 20 years. Visual census techniques such as these provide an effective, non-destructive way to monitor species at shallow-water sites because large amounts of data on a broad range of species can be collected within a short dive period, with little post- processing time required. The broad taxonomic range covered allows detection of human impacts affecting different levels of the food web, making these methods ideal for assessing and monitoring ecological consequences of point source impacts such as pollution, oil spills, ocean warming and coral bleaching events, as well as the effectiveness of management actions such as the declaration of Marine Protected Areas (MPAs), for example. 3 INTRODUCTION These survey methods were designed to maximise the collection of ecological information related to all conspicuous taxa that can be obtained during a dive with a single tank of air.
    [Show full text]
  • Abundance and Local-Scale Processes Contribute to Multi-Phyla Gradients in Global Marine Diversity
    W&M ScholarWorks VIMS Articles 2017 Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity GJ Edgar TJ Alexander JS Lefcheck Virginia Institute of Marine Science AE Bates SJ Kininmonth See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Edgar, GJ; Alexander, TJ; Lefcheck, JS; Bates, AE; Kininmonth, SJ; and Et al., "Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity" (2017). VIMS Articles. 760. https://scholarworks.wm.edu/vimsarticles/760 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors GJ Edgar, TJ Alexander, JS Lefcheck, AE Bates, SJ Kininmonth, and Et al. This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/760 SCIENCE ADVANCES | RESEARCH ARTICLE MARINE BIODIVERSITY Copyright © 2017 The Authors, some Abundance and local-scale processes contribute to rights reserved; exclusive licensee multi-phyla gradients in global marine diversity American Association for the Advancement 1 2 3 4 of Science. No claim to Graham J. Edgar, * Timothy J. Alexander, Jonathan S. Lefcheck, Amanda E. Bates, original U.S. Government 5,6 7 8 Stuart J. Kininmonth, Russell J. Thomson, J. Emmett Duffy, Works. Distributed 9 1 Mark J. Costello, Rick D. Stuart-Smith under a Creative Commons Attribution Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, NonCommercial including discrepancies observed at different spatial scales.
    [Show full text]
  • Journal of Student Initiated Research
    Barna Volume VI Spring 2019 BARNA Journal of Student Initiated Research Volume IV Spring 2020 1 CIEE Perth Photograph credits Front Cover: Alicia Sutton Title page: Alicia Sutton Biography Photos: Kate Rodger, Alicia Sutton, Faith Lundberg, Avery Zartarian, Jesse Girolamo Table of contents: Rick Stuart-Smith- Reef Life Survey, providencetrade.com, Daniel Norwood Back Cover: Alicia Sutton Editors Editor-in-Chief: Alicia Sutton Text Editor: Kate Rodger Format Editor: Alicia Sutton i Barna Journal of Student Initiated Research CIEE Perth Biology and Ecology Field Studies Volume IV Spring 2020 ii FOREWORD Students who participated in the Independent Field Research Project for Biology and Ecology Field Studies were given the opportunity to showcase their research in the student journal Barna: Journal of Student Initiated Research. This course was part of a semester program that took place at Perth in Western Australia. Given the unfortunate occurrence of COVID-19 during this time, students were required to return to their home state and complete their studies online. This meant developing a research project based off previously collected and freely available data. What the students missed out on in terms of field work, they gained from learning how to manage large datasets, larger than what they would have been able to collect themselves in short window of field work. Lectures and weekly meetings with each student allowed for the formulation of project ideas and project design, and students gave feedback to each other which meant they received exposure to a number of different research topics and research methods different from their own. Since 1947, CIEE has helped thousands of students gain the knowledge and skills necessary to live and work in a globally interdependent and culturally diverse world by offering the most comprehensive, relevant, and valuable exchange programs available.
    [Show full text]
  • Reef Life Survey Assessment of Biodiversity in Northern New Zealand Marine Reserves and Associated Coastlines
    Reef Life Survey Assessment of Biodiversity in Northern New Zealand Marine Reserves and Associated Coastlines Report for New Zealand Department of Conservation Report authors: Graham Edgar, Rick Stuart-Smith, Russell Thomson, Debbie Freeman, Peter Southwood AQUENAL PTY LTD 1 www.aquenal.com.au Biodiversity Assessment of New Zealand marine reserves Reef Life Survey and Aquenal Pty Ltd PUBLICATION SUMMARY TITLE: Reef Life Survey assessment of biodiversity in northern New Zealand marine reserves and associated coastlines. CLIENT: New Zealand Department of Conservation COMPILATION: Reef Life Survey Foundation Inc. Battery Point, Tas 7004 Australia Website: www.reeflifesurvey.com AQUENAL PTY LTD ABN 74 151 011 157 244 Summerleas Road Kingston, Tasmania 7050 Phone +61 (0)3 6229 2334 E-mail: [email protected] Website: www.aquenal.com.au CONTRIBUTING AUTHORS: Graham Edgar, Rick Stuart-Smith, Russell Thomson, Debbie Freeman, Peter Southwood DOCUMENT SUBMITTED: 30 August 2013 ELECTRONIC FILE NAME: AQ13_1121 RLS_NZ DOC V2.0.doc JOB NUMBER 13/1121 REPORT CITATION: Edgar, G., Stuart-Smith, S., Thomson, R., Freeman, D. & Southwood, P. (2013) Reef Life Survey assessment of biodiversity in northern New Zealand marine reserves and associated coastlines. Report for New Zealand Department of Conservation. Aquenal Pty Ltd and Reef Life Survey Inc., Hobart. Cover images (top left to bottom right): RLS survey at Curtis Island in the Kermadecs; Evechinus chloroticus at Northland; Dougall Rock, Raoul Island at Kermadec MR; Arctides antipodarum at Northland; Jasus edwardsii at Bay of Islands, Sagmariasus verreauxi at Bay of Islands, Lessonia variegata at Northland. 1 Biodiversity Assessment of New Zealand marine reserves Reef Life Survey and Aquenal Pty Ltd Executive Summary This report summarises results of subtidal surveys of marine animals and macroalgae undertaken between September 2012 and January 2013 within northern New Zealand marine reserves and fished coastlines.
    [Show full text]