Circadian Rhythms and Depression Sleep-Wake Cycle Is out of Phase with the Day- in the Day, While Bright Light Applied in the with Remission in Spring and Summer)

Total Page:16

File Type:pdf, Size:1020Kb

Circadian Rhythms and Depression Sleep-Wake Cycle Is out of Phase with the Day- in the Day, While Bright Light Applied in the with Remission in Spring and Summer) CLINICAL Circadian rhythms Philip Boyce Erin Barriball and depression However, current treatments have been developed Background on the basis of a causal model for depression. Depression is a common disorder in primary care. Disruptions to the circadian rhythms Focused psychological treatments target those associated with depression have received little attention yet offer new and exciting depressions that arise from psychosocial approaches to treatment. difficulties. Examples include: Objective • cognitive behavioural therapy (CBT), which This article discusses circadian rhythms and the disruption to them associated with corrects maladaptive thinking patterns depression, and reviews nonpharmaceutical and pharmaceutical interventions to shift • behavioural treatments that aim to overcome circadian rhythms. ‘depressogenic’ behaviours such as avoiding Discussion pleasurable activities, and Features of depression suggestive of a disturbance to circadian rhythms include early • lifestyle modifications, particularly work-life morning waking, diurnal mood changes, changes in sleep architecture, changes in balance, diet and exercise and sleep-wake timing of the temperature nadir, and peak cortisol levels. Interpersonal social rhythm cycle management.5 therapy involves learning to manage interpersonal relationships more effectively Antidepressant medications target the and stabilisation of social cues, such as including sleep and wake times, meal times, neurotransmitter disturbances (serotonin or and timing of social contact. Bright light therapy is used to treat seasonal affective noradrenaline) considered to underlie biological disorders. Agomelatine is an antidepressant that works in a novel way by targeting depression. While the focus of biological melatonergic receptors. aspects of depression has centred on changes in Keywords: circadian rhythm, depression neurotransmitters, there has been relatively little attention paid to the changes in circadian rhythms associated with depression that offer new and rational treatment options for depression. Circadian rhythms Over the past 5–10 years, there has been The regular rhythm of night (dark) and day (light) growing community awareness about regulates our life, as it does for most living depression, with an increased emphasis organisms. Associated with this are regular on its treatment in primary care. Evidence changes in core body temperature, hormonal based pharmacological and psychological secretions, heart rate, renal output and gut treatments for depression have been motility. Our mental ability and energy levels outlined in clinical practice guidelines.1,2 are highest during daylight hours, when we These treatments are recommended on the engage in exercise and social interactions, with basis of severity rather than depression type. our metabolism and physiology adapted to this. While such an approach makes treatment During the night, when activity levels drop, core decisions relatively straightforward, it body temperature falls and reaches its nadir, does not take into account the different while cortisol levels rise before awakening. causal explanations for depression; There are cyclic changes in the level of sleep (as particularly whether the depression is shown by changes on an electroencephalogram predominantly biological, such as that seen [EEG]) with hormonal release, such as the in melancholia3,4 and bipolar depression, or release of growth hormone linked to specific the result of psychosocial factors. phases of the regular sleep cycle.6–8 When our Reprinted from AusTrAliAn FAmily PhysiCiAn Vol. 39, No. 5, May 2010 307 CLINICAL Circadian rhythms and depression sleep-wake cycle is out of phase with the day- in the day, while bright light applied in the with remission in spring and summer). some night cycle (eg. due to jetlag or shift work), we evening will have an opposite effect by delaying patients with bipolar disorder also experience can experience dysphoria, poor functioning and circadian rhythms.16–18 episodes of depression or (hypo)mania at the increased health risk.7,9 same time each year. These seasonal changes are Social zeitgebers considered to be the result of a failure to adapt Regulating circadian rhythms Regular patterns of social behaviour can also the shift in day length that accompanies seasonal These rhythmic changes in metabolism and affect circadian rhythms and aid in regulating change.20,21 This adaptive failure leads to psychological activity are under the control of them. These cues are known as ‘social zeitgebers’ circadian rhythms becoming uncoupled, resulting a circadian clock; this ensures that our body is and include time of going to bed and waking, in the onset of mood disorder. For patients with attuned to the level of mental and physical activity social interactions, and meal times. bipolar disorder, this has shown very clearly with associated with a particular time of day or night. disruptions to the sleep-wake cycle triggering off When free of external environmental clues, Disruption to circadian rhythms episodes of hypomania or mania.22 A phase delay the amplitude of our daily rhythm is longer than in depression in circadian rhythms are proposed as a mechanism the 24 hour day-night cycle (hence the name Disruptions to circadian rhythms have been found for seasonal affective disorder as demonstrated circa diem – about a day) as demonstrated in among patients with major depression.19 While by the temperature nadir and timing of melatonin experiments when individuals were placed these changes are thought to be a contributing secretion occurring later in the night.16 in temporal isolation10 or in conditions of factor to the depression (such as suggested permanent darkness such as subjects wintering by the dysphoria triggered by jetlag) it is also Manipulating circadian in the Antarctic.11 possible that they may arise as a consequence of rhythms The human circadian pacemaker or ‘clock‘ is the depression. The circadian rhythms disturbances of depression located in the suprachiasmatic nucleus of the can be corrected by novel nonpharmacological and Sleep anterior hypothalamus. This regulates the key pharmacological methods. circadian rhythmic changes such as cortisol, There are a number of features of depression Social zeitgebers thyroid hormone and core body temperature. suggestive of a disturbance to circadian rhythms; The mechanism for this is governed by a set of perhaps the most obvious are the changes in The timing of social zeitgebers, for example genes that operate through a series of feedback sleep, in particular waking early in the morning sleep or meal times, play a role in regulation and mechanisms with a regular cycle of about (but not which is usually linked to a diurnal mood change. disruption of circadian rhythms. Individuals who exactly) 24 hours.12–14 Sleep and polysomnographic studies demonstrate suffer from mood disorders show fewer routine The circadian pacemaker has to be other changes in circadian rhythms, particular activities than controls, and social rhythm resynchronised regularly to compensate to the sleep architecture that indicate a ‘phase regularity predicts time to prospective onset for the slightly longer than 24 hour cycle advance’ of such rhythms; specifically of the of a bipolar episode.23 In addition, it is thought of the ‘endogenous’ circadian rhythm. This temperature nadir and cortisol levels, which occur these individuals are more sensitive to circadian synchronisation to the external environment is earlier in the night.19 Sleep architecture also rhythm disruptions.24 mediated through the retinohypothalamic tract. reflects this with a shortened rapid eye movement The symptoms presented by patients with (rEm) latency and rEm sleep shifted to the first unipolar and bipolar depression tend to display Light zeitgebers third, rather than the latter third of the sleep circadian rhythmicity. For example, sleep, light acts a ‘zeitgeber’ or timekeeper, falling cycle. These observations, along with clinical hunger and concentration all have a propensity on the retina which then sends impulses to features, all support the notion of circadian to follow a 24 hour clock, and will be affected the suprachiasmatic nucleus; a process that is rhythm disturbance in depression.19 by disruption to biological rhythms. The mediated through the protein melanopsin (rather implementation of frequent and stable social Seasonal change than rods or cones).15 Bright light also has an rhythms has been shown to be an important effect by suppressing melatonin production. The most compelling evidence for a rhythm prophylactic treatment in affective disorders.24 For this to occur, a light intensity of at least disturbance hypothesis of depression is the link These activities, when performed regularly, have 1500 lux (brighter than standard artificial between mood disorders and seasonal change.20 the ability to entrain biological rhythms such as lighting) is required to switch off melatonin in addition to the 24 hour daily rhythm, there cortisol and body temperature.25 production. Suppressing melatonin can have are also regular rhythms over a year. These As a result, interpersonal social rhythm an effect in changing circadian rhythms: bright are known as circannual rhythms and reflect therapy (iPsrT) was created.24 interpersonal light administered in the early morning will the changing day length (photo period) during social rhythm therapy involves learning to manage suppress melatonin and therefore advance the year. Circannual rhythms
Recommended publications
  • Association of Locomotor Activity During Sleep Deprivation Treatment with Response
    ORIGINAL RESEARCH published: 21 July 2020 doi: 10.3389/fpsyt.2020.00688 Association of Locomotor Activity During Sleep Deprivation Treatment With Response Jerome Clifford Foo 1*, Lea Sirignano 1, Nina Trautmann 1,2,3, Jinhyuk Kim 4, Stephanie H. Witt 1, Fabian Streit 1, Josef Frank 1, Lea Zillich 1, Andreas Meyer-Lindenberg 2, Ulrich Ebner-Priemer 5, Claudia Schilling 2, Michael Schredl 2, Yoshiharu Yamamoto 6, Maria Gilles 2, Michael Deuschle 2 and Marcella Rietschel 1 1 Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, 2 Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, 3 Department of Child and Adolescent Psychiatry Edited by: and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Andrea De Bartolomeis, Germany, 4 Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, University of Naples Federico II, Italy Shizuoka, Japan, 5 Department of Sport and Sport Science, Karlsruhe Institute of Technology, Karlsruhe, Germany, 6 Reviewed by: Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan Vincenzo Natale, University of Bologna, Italy Disrupted circadian rhythms and sleep patterns are frequently observed features of Mirko Manchia, University of Cagliari, Italy psychiatric disorders, and especially mood disorders. Sleep deprivation treatment (SD) *Correspondence: exerts rapid but transient antidepressant effects in depressed patients and has gained Jerome Clifford Foo recognition as a model to study quick-acting antidepressant effects. It is of interest how [email protected] locomotor activity patterns during SD might be associated with and potentially predict Specialty section: treatment response.
    [Show full text]
  • Coupling Sleep-Wake and Circadian Neurobiology to the Antidepressant Effects of Ketamine
    Pharmacology & Therapeutics 221 (2021) 107741 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine S. Kohtala a,b,1, O. Alitalo a,b,1,M.Rosenholma,b, S. Rozov a,b,T.Rantamäkia,b,⁎ a Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland b SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland article info abstract Available online 12 November 2020 Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antide- Keywords: pressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This Sleep translational gap is partially explained by a lack of understanding of the function of time and circadian timing in Circadian the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treat- Plasticity ment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for Depression the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes Rapid-acting antidepressant Slow-wave sleep induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-act- ing antidepressant effects and summarize how diverse phenomena associated with ketamine’s antidepressant actions – such as cortical excitation, synaptogenesis, and involved molecular determinants – are intimately con- nected with the neurobiology of wake, sleep, and circadian rhythms.
    [Show full text]
  • Differentiating External Zeitgeber Impact on Peripheral Circadian
    www.nature.com/scientificreports OPEN Diferentiating external zeitgeber impact on peripheral circadian clock resetting Isabel Heyde & Henrik Oster * Circadian clocks regulate physiological functions, including energy metabolism, along the 24-hour day cycle. The mammalian clock system is organized in a hierarchical manner with a coordinating pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). The SCN clock is reset primarily by the external light-dark cycle while other zeitgebers such as the timing of food intake are potent synchronizers of many peripheral tissue clocks. Under conficting zeitgeber conditions, e.g. during shift work, phase synchrony across the clock network is disrupted promoting the development of metabolic disorders. We established a zeitgeber desynchrony (ZD) paradigm to quantify the diferential contributions of the two main zeitgebers, light and food, to the resetting of specifc tissue clocks and the efect on metabolic homeostasis in mice. Under 28-hour light-dark and 24-hour feeding-fasting conditions SCN and peripheral clock, as well as activity and hormonal rhythms showed specifc periodicities aligning in-between those of the two zeitgebers. During ZD, metabolic homeostasis was cyclic with mice gaining weight under synchronous and losing weight under conficting zeitgeber conditions. In summary, our study establishes an experimental paradigm to compare zeitgeber input in vivo and study the physiological consequences of chronodisruption. In most species, endogenous circadian clocks have evolved adjusting behaviour and physiology to anticipate daily recurring events, thus increasing the organism’s chance of survival. In mammals, ubiquitously expressed cellular clocks are organized in a hierarchical network1 coordinated by a central pacemaker residing in the hypo- thalamic suprachiasmatic nucleus (SCN)2.
    [Show full text]
  • Chronobiology and the Design of Marine Biology Experiments Audrey M
    Chronobiology and the design of marine biology experiments Audrey M. Mat To cite this version: Audrey M. Mat. Chronobiology and the design of marine biology experiments. ICES Journal of Marine Science, Oxford University Press (OUP), 2019, 76 (1), pp.60-65. 10.1093/icesjms/fsy131. hal-02873899 HAL Id: hal-02873899 https://hal.archives-ouvertes.fr/hal-02873899 Submitted on 18 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ICES Journal of Marine Science (2019), 76(1), 60–65. doi:10.1093/icesjms/fsy131 Food for Thought Chronobiology and the design of marine biology experiments Downloaded from https://academic.oup.com/icesjms/article-abstract/76/1/60/5116189 by guest on 18 June 2020 Audrey M. Mat 1,2,* 1LEMAR, Universite´ de Bretagne Occidentale UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM, Rue Dumont D’Urville, 29280 Plouzane´, France 2Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, ZI de la Pointe du Diable, CS 10070, 29280 Plouzane´, France *Corresponding author: tel: þ33 (0)2 98 22 43 04; e-mail: [email protected]. Mat, A. M. Chronobiology and the design of marine biology experiments.
    [Show full text]
  • Effects of Light Therapy on Mood and Insulin Sensitivity in Patients With
    Diabetes Care Volume 42, April 2019 529 Annelies Brouwer,1 Daniel H. van Raalte,2 Effects of Light Therapy on Mood Hoang-Ton Nguyen,3 Femke Rutters,4 CLIN CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL Peter M. van de Ven,4 Petra J.M. Elders,5 and Insulin Sensitivity in Patients Annette C. Moll,3 Eus J.W. Van Someren,1,6,7 Frank J. Snoek,8 With Type 2 Diabetes and Aartjan T.F. Beekman,1 and Depression: Results From a Marijke A. Bremmer1 Randomized Placebo-Controlled Trial Diabetes Care 2019;42:529–538 | https://doi.org/10.2337/dc18-1732 1Amsterdam UMC, Vrije Universiteit, and GGZ inGeest, Department of Psychiatry, Amsterdam Public Health research institute, Amsterdam, the OBJECTIVE Netherlands 2Amsterdam UMC, Vrije Universiteit, Depart- Depression is common in patients with type 2 diabetes and adversely affects ment of Internal Medicine, Diabetes Center, quality of life and diabetes outcomes. We assessed whether light therapy, an Amsterdam, the Netherlands 3 antidepressant, improves mood and insulin sensitivity in patients with depression and Amsterdam UMC, Vrije Universiteit, Depart- ment of Ophthalmology, Amsterdam, the Nether- type 2 diabetes. lands 4Amsterdam UMC, Vrije Universiteit, Depart- RESEARCH DESIGN AND METHODS ment of Epidemiology and Biostatistics, Am- This randomized, double-blind, placebo-controlled trial included 83 patients with sterdam Public Health research institute, depression and type 2 diabetes. The intervention comprised 4 weeks of light Amsterdam, the Netherlands 5Amsterdam UMC, Vrije Universiteit, Depart- therapy (10,000 lux) or placebo light therapy daily at home. Primary outcomes ment of General Practice and Elderly Care included depressive symptoms (Inventory of Depressive Symptomatology [IDS]) Medicine, Amsterdam Public Health research and insulin sensitivity (M-value derived from the results of a hyperinsulinemic- institute, Amsterdam, the Netherlands 6 euglycemic clamp).
    [Show full text]
  • Circadian Phase Sleep and Mood Disorders (PDF)
    129 CIRCADIAN PHASE SLEEP AND MOOD DISORDERS ALFRED J. LEWY CIRCADIAN ANATOMY AND PHYSIOLOGY SCN Efferent Pathways Anatomy Not much is known about how the SCN entrains overt circadian rhythms. We know that the SCN is the master The Suprachiasmatic Nucleus: Locus of the pacemaker, but regarding its regulation of the rest/activity Biological Clock cycle, core body temperature rhythm and cortisol rhythm, Much is known about the neuroanatomic connections of among others, it is not clear if there is a humoral factor or the circadian system. In vertebrates, the locus of the biologi- neural connection that transmits the SCN’s efferent signal; cal clock (the endogenous circadian pacemaker, or ECP) however, a great deal is known about the efferent neural pathway between the SCN and pineal gland. that drives all circadian rhythms is in the hypothalamus, specifically, the suprachiasmatic nucleus (SCN)(1,2).This paired structure derives its name because it lies just above The Pineal Gland the optic chiasm. It contains about 10,000 neurons. The In mammals, the pineal gland is located in the center of molecular mechanisms of the SCN are an active area of the brain; however, it lies outside the blood–brain barrier. research. There is also a great deal of interest in clock genes Postganglionic sympathetic nerves (called the nervi conarii) and clock components of cells in general, not just in the from the superior cervical ganglion innervate the pineal (4). SCN. The journal Science designated clock genes as the The preganglionic neurons originate in the spinal cord, spe- second most important breakthrough for the recent year; cifically in the thoracic intermediolateral column.
    [Show full text]
  • Non-24-Hour Sleep-Wake Disorder Revisited – a Case Study
    CASE REPORT published: 29 February 2016 doi: 10.3389/fneur.2016.00017 Non-24-Hour Sleep-Wake Disorder Revisited – a Case study Corrado Garbazza1,2† , Vivien Bromundt3† , Anne Eckert2,4 , Daniel P. Brunner5 , Fides Meier2,4 , Sandra Hackethal6 and Christian Cajochen1,2* 1 Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland, 2 Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland, 3 Sleep-Wake-Epilepsy-Centre, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland, 4 Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Hospital of the University of Basel, Basel, Switzerland, 5 Center for Sleep Medicine, Hirslanden Clinic Zurich, Zurich, Switzerland, 6 Charité – Universitaetsmedizin Berlin, Berlin, Germany The human sleep-wake cycle is governed by two major factors: a homeostatic hourglass process (process S), which rises linearly during the day, and a circadian process C, which determines the timing of sleep in a ~24-h rhythm in accordance to the external Edited by: Ahmed S. BaHammam, light–dark (LD) cycle. While both individual processes are fairly well characterized, the King Saud University, Saudi Arabia exact nature of their interaction remains unclear. The circadian rhythm is generated by Reviewed by: the suprachiasmatic nucleus (“master clock”) of the anterior hypothalamus, through Axel Steiger, cell-autonomous feedback loops of DNA transcription and translation. While the phase Max Planck Institute of Psychiatry, Germany length (tau) of the cycle is relatively stable and genetically determined, the phase of Timo Partonen, the clock is reset by external stimuli (“zeitgebers”), the most important being the LD National Institute for Health and Welfare, Finland cycle.
    [Show full text]
  • Sleep Deprivation Increases Dorsal Nexus Connectivity to the Dorsolateral Prefrontal Cortex in Humans
    Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans Oliver G. Boscha,1, Julia S. Rihmb, Milan Scheideggera,c, Hans-Peter Landoltd, Philipp Stämpflie, Janis Brakowskia, Fabrizio Espositof, Björn Raschg, and Erich Seifritza aDepartment of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, 8032 Zurich, Switzerland; bDivision of Biopsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; cInstitute for Biomedical Engineering, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland; dInstitute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; eMR-Center of the Hospital of Psychiatry and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland; fDepartment of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; and gDivision of Cognitive Biopsychology and Methods, Department of Psychology, University of Fribourg, 1701 Fribourg, Switzerland Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved October 21, 2013 (received for review September 18, 2013) In many patients with major depressive disorder, sleep depriva- areas such as hypothalamus, amygdala, entorhinal cortex, and tion, or wake therapy, induces an immediate but often transient nucleus accumbens (18, 19). antidepressant response. It is known from brain imaging studies Increased connectivity of DMN, CCN, and AN with a distinct that changes
    [Show full text]
  • Melatonin Treatment of Winter Depression Following Total Sleep Deprivation: Waking EEG and Mood Correlates
    Neuropsychopharmacology (2005) 30, 1345–1352 & 2005 Nature Publishing Group All rights reserved 0893-133X/05 $30.00 www.neuropsychopharmacology.org Melatonin Treatment of Winter Depression Following Total Sleep Deprivation: Waking EEG and Mood Correlates ,1 2 Konstantin V Danilenko* and Arcady A Putilov 1Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia; 2Research Institute for Molecular Biology and Biophysics, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia Patients with winter depression (seasonal affective disorder (SAD)) commonly complain of sleepiness. Sleepiness can be objectively measured by spectral analysis of the waking electroencephalogram (EEG) in the 1–10 Hz band. The waking EEG was measured every 3 h in 16 female SAD patients and 13 age-matched control women throughout a total sleep deprivation of 30 h. Melatonin (or placebo) under double-blind conditions was administered subsequently (0.5 mg at 1700 h for 6 days), appropriately timed to phase advance circadian rhythms, followed by reassessment in the laboratory for 12 h. The increase in EEG power density in a narrow theta band (5– 5.99 Hz, derivation Fz–Cz) during the 30 h protocol was significantly attenuated in patients compared with controls (difference between linear trends p ¼ 0.037). Sleepiness (p ¼ 0.092) and energy (p ¼ 0.045) self-ratings followed a similar pattern. Six patients improved after X sleep deprivation ( 50% reduction on SIGH-SAD22 score). EEG power density dynamics was correlated with clinical response to sleep deprivation: the steeper the build-up (as in controls), the better the improvement (po0.05).
    [Show full text]
  • An Integrative Chronobiological-Cognitive Approach to Seasonal Affective Disorder Jennifer Nicole Rough University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2016 An integrative chronobiological-cognitive approach to seasonal affective disorder Jennifer Nicole Rough University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Clinical Psychology Commons Recommended Citation Rough, Jennifer Nicole, "An integrative chronobiological-cognitive approach to seasonal affective disorder" (2016). Graduate College Dissertations and Theses. 483. https://scholarworks.uvm.edu/graddis/483 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. AN INTEGRATIVE CHRONOBIOLOGICAL-COGNITIVE APPROACH TO SEASONAL AFFECTIVE DISORDER A Dissertation Presented by Jennifer Nicole Rough to the Faculty of the Graduate College of the University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Clinical Psychology January, 2016 Defense Date: September, 17, 2015 Dissertation Examination Committee: Kelly Rohan, Ph.D., Advisor Terry Rabinowitz, M.D., Chairperson Timothy Stickle, Ph.D. Mark Bouton, Ph.D. Donna Toufexis, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Seasonal affective disorder (SAD) is characterized by annual recurrence of clinical depression in the fall and winter months. The importance of SAD as a public health problem is underscored by its high prevalence (an estimated 5%) and by the large amount of time individuals with SAD are impaired (on average, 5 months each year).
    [Show full text]
  • SAD Presentation Copy
    Winter Is Coming How to Recognize and Treat Seasonal Affective Disorder Karl Lanocha, MD November 8, 2017 Objectives • Clinical presentation, epidemiology, and pathophysiology of seasonal affective disorder (SAD), winter type • Light therapy as treatment for SAD • Mechanism of action of light therapy • Optimum dosing and timing based on chronotype and circadian rhythm • Recognize and limit side effects Definition • Depression that occurs during a specific season, usually winter • At least two episodes of seasonal mood disorder • Seasonal episodes outnumber non-seasonal episodes • Unclear if a discreet diagnostic entity Clinical Features • Sadness, irritability, mood reactivity • Lethargy, increased sleep • Social withdrawal • Carbohydrate craving, weight gain • Cognitive problems, psychomotor slowing Epidemiology • Female > Male (4:1) • Incidence correlates with latitude Tropic of Cancer 30° N Lat No SAD Tropic of Capricorn 30° S Lat Scientific American Mind, Vol 16, Nr 3, 2005 NH 10% Portland 10% NY 7% 45° N Lat Halfway Between Equator and North Pole MD 5% San Francisco 5% 38° N Lat San Diego 2% FL 1% 30° N Lat AK >10% HI 0% 54-71° N Lat 18-28° N Lat 52bc835a15d22daeadf44fd316dd2a25.jpg 800×720 pixels 10/28/17, 1)18 PM Vitamin D synthesis https://i.pinimg.com/originals/52/bc/83/52bc835a15d22daeadf44fd316dd2a25.jpg Page 1 of 1 Etiology • Neurotransmitters • Genetic polymorphisms • Hormonal factors • Psychological factors • Circadian rhythm dysregulation Neurotransmitter Factors • Serotonin turnover decreases during winter • Light therapy
    [Show full text]
  • Circadian Misalignment and Metabolic Disorders: a Story of Twisted Clocks
    biology Review Circadian Misalignment and Metabolic Disorders: A Story of Twisted Clocks Aurore Woller 1 and Didier Gonze 2,* 1 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel; [email protected] 2 Unité de Chronobiologie Théorique, Faculté des Sciences CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium * Correspondence: [email protected] Simple Summary: In mammals, many physiological processes follow a 24 h rhythmic pattern. These rhythms are governed by a complex network of circadian clocks, which perceives external time cues (notably light and nutrients) and adjusts the timing of metabolic and physiological functions to allow a proper adaptation of the organism to the daily changes in the environmental conditions. Circadian rhythms originate at the cellular level through a transcriptional–translational regulatory network involving a handful of clock genes. In this review, we show how adverse effects caused by ill-timed feeding or jet lag can lead to a dysregulation of this genetic clockwork, which in turn results in altered metabolic regulation and possibly in diseases. We also show how computational modeling can complement experimental observations to understand the design of the clockwork and the onset of metabolic disorders. Abstract: Biological clocks are cell-autonomous oscillators that can be entrained by periodic envi- ronmental cues. This allows organisms to anticipate predictable daily environmental changes and, thereby, to partition physiological processes into appropriate phases with respect to these changing Citation: Woller, A.; Gonze, D. Circadian Misalignment and external conditions. Nowadays our 24/7 society challenges this delicate equilibrium. Indeed, many Metabolic Disorders: A Story of studies suggest that perturbations such as chronic jet lag, ill-timed eating patterns, or shift work in- Twisted Clocks.
    [Show full text]