http://www.diva-portal.org This is the published version of a paper published in . Citation for the original published paper (version of record): Goranko, V. (2019) Hybrid Deduction–Refutation Systems Axioms, 8(4): 118 https://doi.org/10.3390/axioms8040118 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-177315 axioms Article Hybrid Deduction–Refutation Systems Valentin Goranko 1,2 1 Department of Philosophy, Stockholm University, SE-10691 Stockholm, Sweden;
[email protected] 2 Visiting professorship at Department of Mathematics, University of Johannesburg, Johannesburg 2006, South Africa Received: 27 August 2019; Accepted: 10 October 2019; Published: 21 October 2019 Abstract: Hybrid deduction–refutation systems are deductive systems intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing together separate derivability operators for each of these and combining ‘hybrid derivation rules’ that involve both deduction and refutation. The goal of this paper is to develop a basic theory and ‘meta-proof’ theory of hybrid deduction–refutation systems. I then illustrate the concept on a hybrid derivation system of natural deduction for classical propositional logic, for which I show soundness and completeness for both deductions and refutations. Keywords: deductive refutability; refutation systems; hybrid deduction–refutation rules, derivative hybrid rules, soundness, completeness, natural deduction, meta-proof theory 1. Introduction 1.1. Semantic vs. Deductive Refutability Consider a generic logical system L, comprising a formal logical language with a given semantics.