<I>Erysiphe Pulchra</I> the Causal Agent of Powdery Mildew On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Powdery Mildew on Tomatoes
NEW POWDERY MILDEW ON TOMATOES Heather Scheck, Plant Pathologist Ag Commissioner’s Office, Santa Barbara County POWDERY MILDEW BIOLOGY Powdery mildew fungi are obligate, biotrophic parasites of the phylum Ascomycota of the Kingdom Fungi. The diseases they cause are common, widespread, and easily recognizable Individual species of powdery mildew fungi typically have a narrow host range, but the ones that infect Tomato are exceptionally large. Photo from APS Net POWDERY MILDEW BIOLOGY Unlike most fungal pathogens, powdery mildew fungi tend to grow superficially, or epiphytically, on plant surfaces. During the growing season, hyphae and spores are produced in large colonies that can coalesce Infections can also occur on stems, flowers, or fruit (but not tomato fruit) Our climate allows easy overwintering of inoculum and perfect summer temperatures for epidemics POWDERY MILDEW BIOLOGY Specialized absorption cells, termed haustoria, extend into the plant epidermal cells to obtain nutrition. Powdery mildew fungi can completely cover the exterior of the plant surfaces (leaves, stems, fruit) POWDERY MILDEW BIOLOGY Conidia (asexual spores) are also produced on plant surfaces during the growing season. The conidia develop either singly or in chains on specialized hyphae called conidiophores. Conidiophores arise from the epiphytic hyphae. This is the Anamorph. Courtesy J. Schlesselman POWDERY MILDEW BIOLOGY Some powdery mildew fungi produce sexual spores, known as ascospores, in a sac-like ascus, enclosed in a fruiting body called a chasmothecium (old name cleistothecium). This is the Teleomorph Chasmothecia are generally spherical with no natural opening; asci with ascospores are released when a crack develops in the wall of the fruiting body. -
Basal Resistance of Barley to Adapted and Non-Adapted Forms of Blumeria Graminis
Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis Reza Aghnoum Thesis committee Thesis supervisors Prof. Dr. Richard G.F. Visser Professor of Plant Breeding Wageningen University Dr.ir. Rients E. Niks Assistant professor, Laboratory of Plant Breeding Wageningen University Other members Prof. Dr. R.F. Hoekstra, Wageningen University Prof. Dr. F. Govers, Wageningen University Prof. Dr. ir. C. Pieterse, Utrecht University Dr.ir. G.H.J. Kema, Plant Research International, Wageningen This research was conducted under the auspices of the Graduate school of Experimental Plant Sciences. II Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis Reza Aghnoum Thesis Submitted in partial fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 16 June 2009 at 4 PM in the Aula. III Reza Aghnoum Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis 132 pages. Thesis, Wageningen University, Wageningen, NL (2009) With references, with summaries in Dutch and English ISBN 978-90-8585-419-7 IV Contents Chapter 1 1 General introduction Chapter 2 15 Which candidate genes are responsible for natural variation in basal resistance of barley to barley powdery mildew? Chapter 3 47 Transgressive segregation for extreme low and high level of basal resistance to powdery mildew in barley -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Blumeria Graminis F.Sp. Hordei ) : Interaction, Resistance and Tolerance
Egypt. J. Exp. Biol. (Bot.), 5: 1 – 20 (2009) © The Egyptian Society of Experimental Biology REVIEW ARTICLE Abdellah Akhkha Barley Powdery Mildew ( Blumeria graminis f.sp. hordei ) : Interaction, Resistance and Tolerance ABSTRACT : In the present review, the effect of 1. The importance of barley as a crop and powdery mildew ( Blumeria graminis f.sp. the economic significance of barley mildew hordei) on growth, physiology and metabolism (Blumeria graminis f.sp. hordei ) of barley crop ( Hordeum vulgare ) is discussed. Barley ( Hordeum vulgare ), a small-grain Furthermore, the interactions between the host cereal, belongs to the tribe Hordeae of the (barley) and the pathogen ( B. graminis ) are family Gramineae. It is a major world crop and reviewed in details. Different types of ranks as the most important cereal after rice, resistance including, complete and partial wheat and maize (Bengtsson, 1992). Barley is resistance were discussed. Plant tolerance of widely cultivated, being grown extensively in diseases was also presented in details as one Europe, around the Mediterranean rim, and in of the alternatives to protect crops from Ethiopia, Russia, China, India and North damage caused by the pathogen or the America (Harlan, 1995). In Britain, barley has disease. However, this phenomenon would not been the crop with the largest land acreage for involve pathogen limitation and the pathogen a considerable period of time and still would not affect the crop in a way other represents today, together with wheat, one of intolerant crops would do. The use of the major crops. tolerance in integrated disease management is It has been suggested that cultivated discussed. -
The Mitochondrial Genome of the Grape Powdery Mildew Pathogen Erysiphe Necator Is Intron Rich and Exhibits a Distinct Gene Organization Alex Z
www.nature.com/scientificreports OPEN The mitochondrial genome of the grape powdery mildew pathogen Erysiphe necator is intron rich and exhibits a distinct gene organization Alex Z. Zaccaron1, Jorge T. De Souza1,2 & Ioannis Stergiopoulos1* Powdery mildews are notorious fungal plant pathogens but only limited information exists on their genomes. Here we present the mitochondrial genome of the grape powdery mildew fungus Erysiphe necator and a high-quality mitochondrial gene annotation generated through cloning and Sanger sequencing of full-length cDNA clones. The E. necator mitochondrial genome consists of a circular DNA sequence of 188,577 bp that harbors a core set of 14 protein-coding genes that are typically present in fungal mitochondrial genomes, along with genes encoding the small and large ribosomal subunits, a ribosomal protein S3, and 25 mitochondrial-encoded transfer RNAs (mt-tRNAs). Interestingly, it also exhibits a distinct gene organization with atypical bicistronic-like expression of the nad4L/nad5 and atp6/nad3 gene pairs, and contains a large number of 70 introns, making it one of the richest in introns mitochondrial genomes among fungi. Sixty-four intronic ORFs were also found, most of which encoded homing endonucleases of the LAGLIDADG or GIY-YIG families. Further comparative analysis of fve E. necator isolates revealed 203 polymorphic sites, but only fve were located within exons of the core mitochondrial genes. These results provide insights into the organization of mitochondrial genomes of powdery mildews and represent valuable resources for population genetic and evolutionary studies. Erysiphe necator (syn. Uncinula necator) is an obligate biotrophic ascomycete fungus that belongs to the Ery- siphaceae family (Leotiomycetes; Erysiphales) and causes grape powdery mildew, one of the most widespread and destructive fungal diseases in vineyards across the world1. -
Genetic Diversity and Host Range of Powdery Mildews on Papaveraceae
Mycol Progress (2016) 15: 36 DOI 10.1007/s11557-016-1178-8 ORIGINAL ARTICLE Genetic diversity and host range of powdery mildews on Papaveraceae Katarína Pastirčáková1 & Tünde Jankovics2 & Judit Komáromi3 & Alexandra Pintye2 & Martin Pastirčák4 Received: 29 September 2015 /Revised: 19 February 2016 /Accepted: 23 February 2016 /Published online: 10 March 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Because of the strong morphological similarity of of papaveraceous hosts. Although E. macleayae occurred nat- the powdery mildew fungi that infect papaveraceous hosts, a urally on Macleaya cordata, Macleaya microcarpa, M. total of 39 samples were studied to reveal the phylogeny and cambrica,andChelidonium majus only, our inoculation tests host range of these fungi. ITS and 28S sequence analyses revealed that the fungus was capable of infecting Argemone revealed that the isolates identified earlier as Erysiphe grandiflora, Glaucium corniculatum, Papaver rhoeas, and cruciferarum on papaveraceous hosts represent distinct line- Papaver somniferum, indicating that these plant species may ages and differ from that of E. cruciferarum sensu stricto on also be taken into account as potential hosts. Erysiphe brassicaceous hosts. The taxonomic status of the anamorph cruciferarum originating from P. somniferum was not able to infecting Eschscholzia californica was revised, and therefore, infect A. grandiflora, C. majus, E. californica, M. cordata, a new species name, Erysiphe eschscholziae, is proposed. The and P. rhoeas. The emergence of E. macleayae on M. taxonomic position of the Pseudoidium anamorphs infecting microcarpa is reported here for the first time from the Glaucium flavum, Meconopsis cambrica, Papaver dubium, Czech Republic and Slovakia. The appearance of chasmothecia and Stylophorum diphyllum remain unclear. -
<I>Pseudoidium Kalanchoes</I>
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2019 July–September 2019—Volume 134, pp. 545–553 https://doi.org/10.5248/134.545 Phylogenetic affinity and taxonomic reassessment of Pseudoidium kalanchoes Monika Götz1, Elke Idczak1, Uwe Braun2* 1 Institute for Plant Protection in Horticulture and Forests, JKI, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104 Braunschweig, Germany 2 Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Neuwerk 21, 06099 Halle, Germany * Correspondence to: [email protected] Abstract—Pseudoidium kalanchoes, retrieved from powdery mildew on Kalanchoe spp. in Asia, has been re-examined and reassessed based on phylogenetic analyses of the ITS and 28S rDNA regions. The results confirmed that sequences retrieved from Asian Kalanchoe powdery mildew have 100% congruence with sequences obtained from Erysiphe sedi on Sedum spp. A German collection of P. kalanchoes on Kalanchoe blossfeldiana was morphologically and genetically examined and analyzed and is designated as neotype with an ex-neotype reference sequence. Morphologically, the asexual morph on Kalanchoe spp. agrees with the asexual morph of E. sedi. Consequently, P. kalanchoes is reduced to synonymy with E. sedi. Key words —Erysiphales, “Oidium calanchoeae,” phylogeny Introduction Lüstner (1935) introduced the name “Oidium calanchoeae” for an asexual powdery mildew on Kalanchoe sp. (very probably K. blossfeldiana Poelln.) from Germany. He failed to present the Latin description or diagnosis required by ICN (Shenzhen) Art. 39.1, making his binomial invalid; and his epithet “calanchoeae” required a twofold correction, to kalanchoes, an orthography based on the accepted name of the host genus (ICN Art. -
Foliar Diseases of Hydrangeas
Foliar Diseases of Hydrangeas Dr. Fulya Baysal-Gurel, Md Niamul Kabir and Adam Blalock Otis L. Floyd Nursery Research Center ANR-PATH-5-2016 College of Agriculture, Human and Natural Sciences Tennessee State University Hydrangeas are summer-flowering shrubs and are one of the showiest and most spectacular flowering woody plants in the landscape (Fig. 1). The appearance, health, and market value of hydrangea can be significantly influenced by the impact of different diseases. This publication focuses on common foliar diseases of hydrangea and their management recommendations. Powdery Mildew Fig 1. Hydrangea cv. Munchkin Causal agents: Golovinomyces orontii (formerly Erysiphe polygoni), Erysiphe poeltii, Microsphaera friesii, Oidium hortensiae Class: Leotiomycetes Powdery mildew pathogens have a very broad host range including hydrangeas. Some hydrangea species such as the bigleaf hydrangeas (Hydrangea macrophylla) are more susceptible to this disease while other species such as the oakleaf hydrangea (H. quercifolia), appear to be more resistant. In an outdoor environment, powdery mildew pathogens generally overwinter in the form of spores or fungal hyphae. In a heated greenhouse setting, powdery mildew can be active Fig 2. Powdery mildew year round. Spores and hyphae begin to grow when humidity is high but the leaf surface is dry. Warm days and cool nights also favor powdery mildew growth. The first sign of the disease is small fuzzy gray circles or patches on the upper surface of the leaf (Figs. 2 and 3). Inspecting these circular patches of fuzzy gray growth with a hand lens will reveal an intricate web of fungal hyphae. Sometimes small dark dots or structures can be seen within the web of fungal hyphae. -
The Dispersal Pattern of Thekopsora Minima in Wild Blueberry Determined by a Molecular Detection Method Nghi Nguyen [email protected]
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-23-2019 The dispersal pattern of Thekopsora minima in wild blueberry determined by a molecular detection method Nghi Nguyen [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Agricultural Science Commons, Botany Commons, Molecular Genetics Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Nguyen, Nghi, "The dispersal pattern of Thekopsora minima in wild blueberry determined by a molecular detection method" (2019). Electronic Theses and Dissertations. 3065. https://digitalcommons.library.umaine.edu/etd/3065 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE DISPERSAL PATTERN OF THEKOPSORA MINIMA IN WILD BLUEBERRY DETERMINED BY A MOLECULAR DETECTION METHOD Nghi S. Nguyen B.S University of North Texas, 2013 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Botany and Plant Pathology) The Graduate School The University of Maine August 2019 Advisory Committee: Seanna Annis, Ph.D., Associate Professor of Mycology, Advisor, School of Biology and Ecology, Advisor David Yarborough, Ph.D., Wild Blueberry Specialist, Professor of Horticulture, School of Food and Agriculture Jianjun (Jay) Hao, Ph. D, Associate Professor of Plant Pathology, School of Food and Agriculture Ek Han Tan, Ph. D, Assistant Professor of Plant Genetics, School of Biology and Ecology © 2019 NGHI S. -
ABSTRACT MEYERS, EMILY ANN. Evaluation of Fungicide Sensitivity of United States Blumeria Graminis F. Sp. Tritici Population
ABSTRACT MEYERS, EMILY ANN. Evaluation of Fungicide Sensitivity of United States Blumeria graminis f. sp. tritici Population. (Under the direction of Dr. Christina Cowger). Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is managed primarily with wheat (Triticum aestivum) cultivar resistance and foliar fungicides in the United States (U.S.). Both management strategies are prone to deterioration and defeat simply due to the biology and disease cycle of this pathogen. In the U.S., host resistance gene effectiveness has been measured once a decade for the past 30 years. Despite high levels of fungicide insensitivity in other global cereal powdery mildew populations, fungicide sensitivity in the U.S. B. graminis f. sp. tritici population has never been evaluated. Formulated fungicide products from three mode-of-action categories are labelled for use on wheat in the U.S.: demethylation inhibitors (DMIs), quinone outside inhibitors (QoIs), and succinate dehydrogenase inhibitors (SDHIs). The study presented here sought to measure the sensitivity of the U.S. B. graminis f. sp. tritici population to fungicides from each of the three categories and determine the genetic causation of any observed decreases in sensitivity. Nearly 400 B. graminis f. sp. tritici isolates were collected from 27 fields in 15 states in the central and eastern U.S. in the 2013 and 2014 wheat growing seasons. Six fungicides were evaluated: 3 DMIs, (tebuconazole, prothioconazole, and metconazole), 2 QoIs (pyraclostrobin and picoxystrobin), and 1 SDHI (fluxapyroxad). Isolates were screened for fungicide sensitivity using a detached-leaf assay in which susceptible seedlings were sprayed with a concentrations of a formulated fungicide active ingredient, then cut into leaf segments which were floated atop water agar, and inoculated with a single B. -
First Record of the Powdery Mildew Fungus Erysiphe Polygoni on the Introduced Coral Vine Antigonon Leptopus (Polygonaceae) in Taiwan
Plant Pathology & Quarantine 9(1): 160–165 (2019) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/9/1/14 First record of the powdery mildew fungus Erysiphe polygoni on the introduced coral vine Antigonon leptopus (Polygonaceae) in Taiwan Wang CT1, Yeh YW2, Lin LD3 and Kirschner R4 1 The Experimental Forest, College of Bioresources and Agriculture, National Taiwan University, Jhushan Township, Nantou, Taiwan 2 Department of Biomedical Sciences & Engineering, National Central University, Taoyuan, Taiwan 3 Department of Cultural Heritage Conservation, National Yunlin University of Science and Technology, Yunlin, Taiwan 4 School of Forestry & Resource Conservation, National Taiwan University, Taipei, Taiwan Wang CT, Yeh YW, Lin LD, Kirschner R 2019 – First record of the powdery mildew fungus Erysiphe polygoni on the introduced coral vine Antigonon leptopus (Polygonaceae) in Taiwan. Plant Pathology & Quarantine 9(1), 160–165, Doi 10.5943/ppq/9/1/14 Abstract Antigonon leptopus has been naturalized in Taiwan for about 100 years, but hitherto no fungal species was recorded on this plant in Taiwan. A powdery mildew fungus collected on A. leptopus in central and northern Taiwan was identified as Erysiphe polygoni based on internal transcribed spacer sequence comparison and morphology of the anamorph. Key words – Erysiphaceae – ITS – new host record – pathogenic Ascomycota – pest insects Introduction Antigonon leptopus Hook. & Arn. (Polygonaceae) is a liana native to the neotropical region (Mexico) (Burke & DiTommaso 2011). After introduction as ornamental in tropical countries worldwide and particularly in islands, the plant became invasive due to its high clonal reproduction from tuberous roots (Burke & DiTommaso 2011). The species was first recorded as naturalized in Taiwan in 1916 (Wu et al. -
Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by By Nigel Maxted and Shelagh Kell1 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO, or its Members. 2 1 School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 PART 1: INTRODUCTION 7 1.1 Background 7 1.2 The global and local importance of crop wild relatives 8 1.3 Definition of a crop wild relative 8 1.4 Global numbers of crop wild relatives 9 1.5 Threats to