Using Strong Triadic Closure to Characterize Ties in Social Networks

Total Page:16

File Type:pdf, Size:1020Kb

Using Strong Triadic Closure to Characterize Ties in Social Networks Using Strong Triadic Closure to Characterize Ties in Social Networks Stavros Sintos Panayiotis Tsaparas Department of Computer Science and Department of Computer Science and Engineering Engineering University of Ioannina University of Ioannina Ioannina, Greece Ioannina, Greece [email protected] [email protected] ABSTRACT 1. INTRODUCTION In the past few years there has been an explosion of social The past few years have been marked by the emergence networks in the online world. Users flock these networks, and explosive growth of online social networks. Facebook, creating profiles and linking themselves to other individuals. LinkedIn, and Twitter are three prominent examples of such Connecting online has a small cost compared to the physi- online networks, which have become extremely popular, en- cal world, leading to a proliferation of connections, many of gaging hundreds of millions of users all over the world. On- which carry little value or importance. Understanding the line social networks grow much faster than physical social strength and nature of these relationships is paramount to networks since the \cost" of creating and maintaining con- anyone interesting in making use of the online social net- nections is much lower. The average user in Facebook has a work data. In this paper, we use the principle of Strong few hundreds of friends, and a sizeable fraction of the net- Triadic Closure to characterize the strength of relationships work has more than a thousands friends [20]. The social cir- in social networks. The Strong Triadic Closure principle cle of the average user contains connections with true friends, stipulates that it is not possible for two individuals to have but also with forgotten high-school classmates, distant rel- a strong relationship with a common friend and not know atives, and acquaintances made through brief encounters. each other. We consider the problem of labeling the ties Many of the online connections correspond to weak, or no of a social network as strong or weak so as to enforce the relationships in the physical world. Strong Triadic Closure property. We formulate the prob- Understanding the strength and nature of online relation- lem as a novel combinatorial optimization problem, and we ships is paramount to anyone interested in extracting some study it theoretically. Although the problem is NP-hard, utility out of the online social network data. For moneti- we are able to identify cases where there exist efficient al- zation purposes, knowing which relationships correspond to gorithms with provable approximation guarantees. We per- true friendships is of critical importance to advertisers who form experiments on real data, and we show that there is want to profile users based of their social circle and initiate a correlation between the labeling we obtain and empirical viral marketing campaigns. For sociologists, knowing the metrics of tie strength, and that weak edges act as bridges relative importance of online relationships can have a signif- between different communities in the network. Finally, we icant effect on the way they model and interpret dynamics study extensions and variations of our problem both theo- and norms in the social network. For friendship suggestion retically and experimentally. algorithms, knowing which friends matter more can have an important impact on the produced link recommendations. The problem of understanding the strength and nature Categories and Subject Descriptors of social ties has been studied in the past [12, 7, 6, 22]. J.4 [Computer Applications]: Social and behavioral sci- Previous approaches rely on user characteristics in order to ences; H.2.8 [Database Applications]: Data Mining; H.4 estimate the true affinity between two users. In this work we [Information Systems Applications]: Miscellaneous use solely the graph structure in order to derive the charac- terization of the ties within a social network. To this end we make use of the Strong Triadic Closure (STC) principle [4]. Keywords The STC principle has its roots into early works in Psychol- Strong Triadic Closure, Social Networks, Approximation Al- ogy [3, 15, 8], and it has been used in the study of social gorithms networks [4, 8]. Informally, the STC principle assumes that there are two types of ties, strong and weak, and it stip- Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed ulates that it is not possible for two individuals to have a for profit or commercial advantage and that copies bear this notice and the full citation strong relationship with a common friend and not know each on the first page. Copyrights for components of this work owned by others than the other. That is, it is not possible to have an open triangle author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or in the network graph where both edges of the triangle are republish, to post on servers or to redistribute to lists, requires prior specific permission labeled strong. and/or a fee. Request permissions from [email protected]. We use the STC property to characterize the ties of a so- KDD’14, August 24–27, 2014, New York, NY, USA. Copyright is held by the owner/author(s). Publication rights licensed to ACM. cial network by asking for a labeling of the edges of the social ACM 978-1-4503-2956-9/14/08 ...$15.00. graph into strong and weak such that the STC property is http://dx.doi.org/10.1145/2623330.2623664. satisfied. There is a trivial solution to this problem which is • We study our algorithms experimentally on real datasets. to label all edges weak. However, we believe that creating We show that there is a correlation between the label of strong relationships is the main motivation for users to join, an edge and naturally defined notions of tie strength, and actively engage with a social network, online or other- and that the weak edges act like bridges between dif- wise. Therefore, we look for a labeling that also maximizes ferent communities in the network. the number of strong ties (or minimizes the number of weak ties). The rest of the paper is structured as follows. In Section 2 We thus obtain the following two problems: the maxSTC we review some of the related work. In Section 3 we formally problem where we ask for a labeling of the graph such that define the problems we will study. In Section 4 we study the the STC property holds and the number of strong edges is complexity of our problem, and in Section 5 we consider maximized, and the minSTC problem where we seek to min- approximation algorithms. Section 6 considers extensions imize the number of weak edges. These are two novel com- to the basic problem. Section 7 contains the experimental binatorial optimization problems that are of independent evaluation, and Section 8 concludes the paper. theoretical interest. Both problems are NP-hard, and we thus look for efficient algorithms with approximation guar- 2. RELATED WORK antees. We show that this is not possible for the maxSTC In this paper we build upon the Strong Triadic Closure problem. For the problem, we show that it can be minSTC principle from Psychology. Strong Triadic Closure was first expressed as a graph vertex cover problem on an appropri- defined by Granovetter [8] in his seminal paper\The Strength ately defined graph, a problem known to have a constant of Weak Ties". Previously, Davis [3] and Newcomb [15] dis- factor approximation algorithm. cuss some evidence that this property exists in social net- We also extend our formulation to capture more complex works. The Strong Triadic Closure is discussed in detail in problems where new edges may be added to the graph, or the book of Easley and Kleinberg [4]. They discuss the effect ties in the network may be of different types. Of particular of the property on the structure of the network, and possible interest is the problem where we seek to en- minMultiSTC relaxations, but they do not consider the problem of labeling force a variant of the STC property in the presence of multi- the edges of the graph to enforce the property. In the dis- ple types of strong edges. The problem of understanding the cussion they also consider recent experiments [10, 16] which \type" of an edge is something that arises naturally in prac- demonstrate a correlation between structural properties of tice. Although there are specialized online social networks an edge and a notion of strength measured in practice. We catering to different needs of the users (social, professional, perform similar experiments in Section 7 where we study the informational), the boundaries between these different cir- correlation between the label of an edge and the empirical cles are not always clear. It is often the case that there are tie strength. multiple types of relationships in a single network. There- Recent work has considered the problem of assessing the fore, it is important to be able to not only distinguish be- link strength in a social network, using data from e-mails [14], tween strong and weak ties, but also to differentiate between phone calls [16], and social media [7]. Kahanda and Neville [12] different types of relationships and social circles. develop a supervised learning approach to predict link strength We test our algorithms experimentally on real datasets. from transactional information (communication, file trans- Our experiments demonstrate that the labeling we obtain fers, etc) and differentiate between strong and weak rela- based on the structural graph property of Strong Triadic tionships in large-scale social networks. Gilbert and Kara- Closure correlates well with empirical measures of tie strength.
Recommended publications
  • Adam Stier, Ties That Bind.Pdf
    Ties That Bind: American Fiction and the Origins of Social Network Analysis DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Adam Charles Stier, M.A. Graduate Program in English The Ohio State University 2013 Dissertation Committee: Dr. David Herman, Advisor Dr. Brian McHale Dr. James Phelan Copyright by Adam Charles Stier 2013 Abstract Under the auspices of the digital humanities, scholars have recently raised the question of how current research on social networks might inform the study of fictional texts, even using computational methods to “quantify” the relationships among characters in a given work. However, by focusing on only the most recent developments in social network research, such criticism has so far neglected to consider how the historical development of social network analysis—a methodology that attempts to identify the rule-bound processes and structures underlying interpersonal relationships—converges with literary history. Innovated by sociologists and social psychologists of the late nineteenth and early twentieth centuries, including Georg Simmel (chapter 1), Charles Horton Cooley (chapter 2), Jacob Moreno (chapter 3), and theorists of the “small world” phenomenon (chapter 4), social network analysis emerged concurrently with the development of American literary modernism. Over the course of four chapters, Ties That Bind demonstrates that American modernist fiction coincided with a nascent “science” of social networks, such that we can discern striking parallels between emergent network-analytic procedures and the particular configurations by which American authors of this period structured (and more generally imagined) the social worlds of their stories.
    [Show full text]
  • Social Network Analysis: Homophily
    Social Network Analysis: homophily Donglei Du ([email protected]) Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 Donglei Du (UNB) Social Network Analysis 1 / 41 Table of contents 1 Homophily the Schelling model 2 Test of Homophily 3 Mechanisms Underlying Homophily: Selection and Social Influence 4 Affiliation Networks and link formation Affiliation Networks Three types of link formation in social affiliation Network 5 Empirical evidence Triadic closure: Empirical evidence Focal Closure: empirical evidence Membership closure: empirical evidence (Backstrom et al., 2006; Crandall et al., 2008) Quantifying the Interplay Between Selection and Social Influence: empirical evidence—a case study 6 Appendix A: Assortative mixing in general Quantify assortative mixing Donglei Du (UNB) Social Network Analysis 2 / 41 Homophily: introduction The material is adopted from Chapter 4 of (Easley and Kleinberg, 2010). "love of the same"; "birds of a feather flock together" At the aggregate level, links in a social network tend to connect people who are similar to one another in dimensions like Immutable characteristics: racial and ethnic groups; ages; etc. Mutable characteristics: places living, occupations, levels of affluence, and interests, beliefs, and opinions; etc. A.k.a., assortative mixing Donglei Du (UNB) Social Network Analysis 4 / 41 Homophily at action: racial segregation Figure: Credit: (Easley and Kleinberg, 2010) Donglei Du (UNB) Social Network Analysis 5 / 41 Homophily at action: racial segregation Credit: (Easley and Kleinberg, 2010) Figure: Credit: (Easley and Kleinberg, 2010) Donglei Du (UNB) Social Network Analysis 6 / 41 Homophily: the Schelling model Thomas Crombie Schelling (born 14 April 1921): An American economist, and Professor of foreign affairs, national security, nuclear strategy, and arms control at the School of Public Policy at University of Maryland, College Park.
    [Show full text]
  • Strong and Weak Ties
    From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010. Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/ Chapter 3 Strong and Weak Ties One of the powerful roles that networks play is to bridge the local and the global — to offer explanations for how simple processes at the level of individual nodes and links can have complex effects that ripple through a population as a whole. In this chapter, we consider some fundamental social network issues that illustrate this theme: how information flows through a social network, how different nodes can play structurally distinct roles in this process, and how these structural considerations shape the evolution of the network itself over time. These themes all play central roles throughout the book, adapting themselves to different contexts as they arise. Our context in this chapter will begin with the famous “strength of weak ties” hypothesis from sociology [190], exploring outward from this point to more general settings as well. Let’s begin with some backgound and a motivating question. As part of his Ph.D. thesis research in the late 1960s, Mark Granovetter interviewed people who had recently changed employers to learn how they discovered their new jobs [191]. In keeping with earlier research, he found that many people learned information leading to their current jobs through personal contacts. But perhaps more strikingly, these personal contacts were often described
    [Show full text]
  • Predicting Triadic Closure in Networks Using Communicability Distance Functions
    PREDICTING TRIADIC CLOSURE IN NETWORKS USING COMMUNICABILITY DISTANCE FUNCTIONS ERNESTO ESTRADA† AND FRANCESCA ARRIGO ‡ Abstract. We propose a communication-driven mechanism for predicting triadic closure in complex networks. It is mathematically formulated on the basis of communicability distance func- tions that account for the “goodness” of communication between nodes in the network. We study 25 real-world networks and show that the proposed method predicts correctly 20% of triadic closures in these networks, in contrast to the 7.6% predicted by a random mechanism. We also show that the communication-driven method outperforms the random mechanism in explaining the clustering coefficient, average path length, average communicability, and degree heterogeneity of a network. The new method also displays some interesting features toward its use for optimizing communication and degree heterogeneity in networks. Key words. network analysis; triangles; triadic closure; communicability distance; adjacency matrix; matrix functions; quadrature rules. AMS subject classifications. 05C50, 15A16, 91D30, 05C82, 05C12. 1. Introduction. Complex networks are ubiquitous in many real-world scenar- ios, ranging from the biomolecular—those representing gene transcription, protein interactions, and metabolic reactions—to the social and infrastructural organization of modern society [12, 18, 44]. Mathematically, these networks are represented as graphs, where the nodes represent the entities of the system and the edges represent the “relations” among those entities. A vast accumulation of empirical evidence has left little doubts about the fact that most of these real-world networks are dissimilar from their random counterparts in many structural and functional aspects [18]. In particular, it is well-documented nowadays that the relative number of triangles is significantly higher in those networks arising in natural or man-made contexts that what one would expect from a random wiring of nodes [44].
    [Show full text]
  • Triadic Analysis of Affiliation Networks
    ZU064-05-FPR triadic-arxiv 27 June 2016 0:25 Under consideration for publication in Network Science 1 Triadic analysis of affiliation networks JASON CORY BRUNSON Center for Quantitative Medicine, UConn Health, Farmington, CT 06030 (e-mail: [email protected]) Abstract Triadic closure has been conceptualized and measured in a variety of ways, most famously the clus- tering coefficient. Existing extensions to affiliation networks, however, are sensitive to repeat group attendance, which manifests in bipartite models as biclique proliferation. Whereas this sensitivity does not reflect common interpretations of triadic closure in social networks, this paper proposes a measure of triadic closure in affiliation networks designed to control for it. To avoid arbitrariness, the paper introduces a triadic framework for affiliation networks, within which a range of measures can be defined; it then presents a set of basic axioms that suffice to narrow this range to the one measure. An instrumental assessment compares the proposed and two existing measures for reliability, validity, redundancy, and practicality. All three measures then take part in an investigation of three empirical social networks, which illustrates their differences. 1 Introduction Triadic analysis, which emphasizes the interactions within subsets of three nodes, has long been central to network science. Meanwhile, affiliation (or co-occurrence) data have long been a major source of empirical networks. Most triadic analyses of affiliation networks either collapse their higher-order structure or focus on relations among triples of nodes, often of mixed type. This paper, building upon some recent contributions, focuses instead on triples of actors, together with the non-actor structure that establishes relations among them.
    [Show full text]
  • Abstract Applying the Concept of Triadic Closure to Coauthorship
    This is a pre-print of a paper published in Social Network Analysis and Mining. Kim, J., & Diesner, J. (2017). Over-time measurement of triadic closure in coauthorship networks. Social Network Analysis and Mining, 7(1), 1-12. Abstract Applying the concept of triadic closure to coauthorship networks means that scholars are likely to publish a joint paper if they have previously coauthored with the same people. Prior research has identified moderate to high (20% to 40%) closure rates; suggesting that this mechanism is a reasonable explanation for tie formation between future coauthors. We show how calculating triadic closure based on prior operationalizations of closure, namely Newman’s measure for one-mode networks (NCC) and Opsahl’s measure for two-mode networks (OCC), may lead to higher amounts of closure as compared to measuring closure over time via a metric that we introduce and test in this paper. Based on empirical experiments using four large-scale, longitudinal datasets, we find a lower bound of about 1~3% closure rates and an upper bound of about 4~7%. These results motivate research on new explanatory factors for the formation of coauthorship links. Keywords: clustering coefficient, transitivity, triadic closure, scientific collaboration networks 1. Introduction and Background In the field of collaboration networks research, scholars aim to understand the mechanisms that underlie the formation of relationships between authors, which result in coauthorship ties and networks. One of these mechanisms is homophily (McPherson, Smith-Lovin, & Cook, 2001), i.e., the tendency of scholars to be more likely to collaborate with each other if they share personal, behavioral, sociodemographic or other attributes.
    [Show full text]
  • Social and Information Network Analysis Strong and Weak Ties
    Social and Information Network Analysis Strong and Weak Ties Cornelia Caragea Department of Computer Science and Engineering University of North Texas Acknowledgement: Jure Leskovec June 13, 2016 Announcements Class notes: http://www.cse.unt.edu/∼ccaragea/kdsin16.html Lab sessions: Wednesdays, June 15 and 22, 4:30pm - 6:00pm. Homework assignment available at: http://www.cse.unt.edu/∼ccaragea/kdsin16/assignments.html Project topic presentations: Monday June 20, 4:30pm - 6:00pm. Exam: Tuesday June 21, 4:30pm - 6:00pm. To Recap What is the structure of a network? How to characterize a network structure? Connectivity Path length Small world phenomenon Node degree and degree distribution Clustering coefficient For Today’s Class We look at some fundamental social network issues: How information flows through a social network How different nodes can play structurally distinct roles in this process How these structural considerations shape the evolution of the network itself over time Networks and Communities How do we often think of networks? “Looking" which way? Networks: Flow of Information Networks play powerful roles in “bridging the local and the global" Specifically, in offering explanations for how simple processes at the level of individual nodes and links can have complex effects on a population as a whole. Motivating Question How people find out about new jobs? Mark Granovetter, as part of his PhD in 1960s, interviewed people who had recently changed employers to learn how they discovered their new jobs People find the information through personal
    [Show full text]
  • Triadic Closure Alleviates Network Segregation
    Triadic Closure Alleviates Network Segregation Rediet Abebe∗ Nicole Immorlica Jon Kleinberg y Harvard University Microsoft Research Cornell University [email protected] [email protected] [email protected] Brendan Lucier Microsoft Research [email protected] Abstract Homophily – the tendency for individuals to form social ties to others who are similar to themselves – is one of the most robust sociological principles, leading to patterns of linkage in social networks that segregate people along many different demographic dimensions. This phenomena, in turn, can result in inequalities in access to information and opportunities by members of different demographic groups. As we consider potential interventions that might alleviate the effects of network segregation, we face the challenge that homophily constitutes a pervasive and organic force that is difficult to push back against. The design of interventions can therefore benefit from identifying counterbalancing natural processes in the network that might be harnessed to work in opposition to segregation. In this work, we examine several fundamental network formation models to show that triadic closure is one such process. Our analyses show the power for triadic closure to reduce network segregation at the level of graph structure. We believe that the insights in this work have qualitative implications for the design of network interventions in settings such as online platforms and college dorm assignments, where the designer has a vested interest in mitigating network segregation. 1 Introduction Across societies, the tendency for individuals to form social ties with others with whom they share similarities is a robust and pervasive social phenomena impacting the formation of social networks [26, 27, 29, 30].
    [Show full text]
  • Mining Triadic Closure Patterns in Social Networks
    Mining Triadic Closure Patterns in Social Networks Hong Huangy, Jie Tangz, Sen Wu], Lu Liu?, and Xiaoming Fuy yUniversity of Göttingen, Germany zTsinghua University, China {hhuang,fu}@cs.uni-goettingen.de, [email protected], ]Stanford University, USA ?Northwestern University, USA [email protected], [email protected] ABSTRACT In this paper, employing a large microblogging network from 1 A closed triad is a group of three people who are connected with Weibo as the basis in our study, we systematically investigate the each other. It is the most basic unit for studying group phenomena problem of mining patterns in triadic closure process. Our major in social networks. In this paper, we study how closed triads are goal is to discover the fundamental factors that trigger the forma- formed in dynamic networks. More specifically, given three per- tion of groups among people. We further compare the discoveries sons, what are the fundamental factors that trigger the formation from Weibo with that from Twitter. We found many generic pat- of triadic closure? There are various factors that may influence the terns underlying the dynamics of the two networks on one hand. formation of a relationship between persons. Can we design a uni- And on the other hand, we also identify several important patterns fied model to predict the formation of triadic closure? Employing that behave differently, which, from one perspective, reflects the a large microblogging network as the source in our study, we for- different motivations for users to use these two networks; and, from mally define the problem and conduct a systematic investigation.
    [Show full text]
  • Community Detection Algorithms
    Community Detection Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University, Jackson, MS E-mail: [email protected] Community • Community: It is formed by individuals such that those within a group interact with each other more frequently than with those outside the group. • Community detection: discovering groups in a network where individuals’ group memberships are not explicitly given. – Interactions (edges) between nodes can help determine communities • Community structures are quite common in real networks. Social networks include community groups based on common location, interests, occupation, etc. • Metabolic networks have communities based on functional groupings. • Citation networks form communities by research topic. • Identifying the community sub structures within a network can provide insight into how network function and topology affect each other. There is most likely a path from one vertex to another vertex within a community through the vertices that are also part of the same community. For the Karate Club network (to the left), the internal densities of the two communities are 0.26 and 0.24; the external densities are 0.035; the overall network density is 0.14. Internal and External Community Densities C1 C2 C3 • Let C be a subset of nodes (V) that form a community. int ext • For every node i in C, let ki and ki be the # links connecting node i to a node in C and outside C respectively. int ext The internal density of every cluster ∑ki ∑ki is significantly larger than the external δ (C) = i δ (C) = i int n (n − )1 ext 2n (n − )1 density as well as the total density of C C C C the network.
    [Show full text]
  • Triadic Closure and Its Influence in Social Networks – a Microscopic View of Network Structural Dynamics
    Triadic Closure and Its Influence in Social Networks – A Microscopic View of Network Structural Dynamics Dissertation for the award of the degree "Doctor of Philosophy" Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program in Computer Science (PCS) of the Georg-August University School of Science (GAUSS) submitted by Hong Huang from Jiangxi, China Göttingen, 2016 Thesis Committee Prof. Dr. Xiaoming Fu Institute of Computer Science, University of Göttingen Dr. Jan Nagler Max Planck Institute for Dynamics and Self-Organization Dr. Wenzhong Li Department of Computer Science, Nanjing University, China Members of the Examination Board / Reviewer Prof. Dr. Xiaoming Fu Institute of Computer Science, University of Göttingen JProf. Dr.-Ing. Marcus Baum Institute of Computer Science, University of Göttingen Prof. Dr. techn. Dipl. Ing. Wolfgang Nejdl Department for Electrical Engineering and Computer Science, Leibniz Universität Hannover Further members of the Examination Board Prof. Dr. Dieter Hogrefe Institute of Computer Science, University of Göttingen Prof. Dr. Jens Grabowski Institute of Computer Science, University of Göttingen Prof. Dr. Jar-Der Luo Department of Sociology, Tsinghua University, Beijing, China Date of the oral examination: 01. 09. 2016 I would like to dedicate this thesis to my parents, my brother and my sister . Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.
    [Show full text]
  • Social Network Analysis Measuring, Mapping, and Modeling Collections of Connections
    CHAPTER 3 Social Network Analysis Measuring, Mapping, and Modeling Collections of Connections OUTLINE 3.1 Introduction 31 3.5.3 Clustering and Community Detection Algorithms 41 3.2 The Network Perspective 32 3.5.4 Structures, Network Motifs, and Social 3.2.1 A Simple Twitter Network Example 33 Roles 41 3.2.2 Vertices 34 3.2.3 Edges 34 3.6 Social Networks in the Era of Abundant 3.2.4 Network Data Representations 34 Computation 44 3.3 Types of Networks 36 3.7 The Era of Abundant Social Networks: 3.3.1 Full, Partial, and Egocentric Networks 36 From the Desktop to Your Pocket 46 3.3.2 Unimodal, Multimodal, and Affi liation 3.8 Tools for Network Analysis 47 Networks 36 3.3.3 Multiplex Networks 37 3.9 Node-Link Diagrams: Visually Mapping Social Networks 47 3.4 The Network Analysis Research and Practitioner Landscape 37 3.10 Common Network Analysis Questions Applied to Social Media 47 3.5 Network Analysis Metrics 39 3.11 Practitioner ’ s Summary 48 3.5.1 Aggregate Networks Metrics 40 3.5.2 Vertex-Specifi c Networks Metrics 40 3.12 Researcher ’ s Agenda 49 3.1 INTRODUCTION are primordial. Simply stated, a network is a collection of things and their relationships to one another. The Human beings have been part of social networks “ things ” that are connected are called nodes, vertices, since our earliest days. We are born and live in a world entities, and in some contexts people. The connections of connections. People connect with others through between the vertices are called edges, ties, and links.
    [Show full text]