Ethanol Recovery from Solid State Fermented Apple Pomace and Evaluation of Physico-Chemical Characteristics of the Residue

Total Page:16

File Type:pdf, Size:1020Kb

Ethanol Recovery from Solid State Fermented Apple Pomace and Evaluation of Physico-Chemical Characteristics of the Residue Natural Product Radiance, Vol. 7(2), 2008, pp.127-132 Research Paper Ethanol recovery from solid state fermented apple pomace and evaluation of physico-chemical characteristics of the residue V K Joshi*and A Devrajan Department of Postharvest Technology Dr Y S Parmar University of Horticulture and Forestry Nauni, Solan-173 230, Himachal Pradesh, India *Correspondent author, E-mail: [email protected]; Phone: +91-01792-252410 Received 23 April 2007; Accepted 29 November 2007 handled properly. Thus, there is a strong Abstract In view of the growing demand of ethanol the identification of resources and development need to devise techniques to utilize apple of economical methods for its extraction are very essential. Fermented apple pomace has been pomace in an economical and effective identified as a rich source of ethanol especially for the Himalayan region where apple is grown at way to avoid the environmental pollution large scale. There are various methods of alcohol recovery from solid state fermented apple and to obtain value-added products from pomace (hot water extraction followed by distillation, vacuum distillation, hydraulic pressure and waste materials3-5. direct steam distillation) hence, present study was carried out to standardize an efficient and economical method. The physico-chemical characteristics of dried apple pomace residue after the Use of apple pomace has been recovery of ethanol by different methods were also evaluated for knowing loss of nutrients during made through fermentation into several extraction of ethanol. For present study two types of solid state fermented (SSF) apple pomace, products including citric acid, ethanol, obtained by two treatments (one by Saccharomyces cerevisiae and other by Candida utilis pigment, mushroom substrate, single cell and Kloeckera spp. as sequential interactive co-cultures) were used. Out of different methods of protein, etc4-8. The most promising alcohol recovery tried, steam distillation method gave the highest separation efficiency while hydraulic pressing gave the lowest separation efficiency. Evaluation of some of the physico-chemical method for complete utilization of apple characteristics of dried apple pomace after recovery of ethanol by different methods indicated that pomace may be through solid state steam distillation resulted in minimum nutritional loss, viz. crude and soluble proteins, reducing fermentation with yeasts, separating out and total sugars. The maximum nutritional loss took place in hydraulic pressing, wherein the base ethanol and using the left-over protein of distillate was not added back to the pomace, prior to drying. Steam distillation method of rich material after drying as an animal ethanol recovery from fermented apple pomace was the best since it gave the dried pomace with minimum loss of nutrients. feed. Concomitant production of ethanol and animal feed from apple pomace has Keywords: Ethanol recovery, Apple pomace, Malus pumila, Physico-chemical characteristics, 9, 10 Steam distillation. also been reported . Among the strategies employed to recover products IPC code; Int. cl.8— C12F 3/08, C12S 3/00, C12S 3/14 from fermented solids are the percolation techniques, multiple contact counter Introduction products of juice extraction and is current leaching, supercritical fluid Apple (Malus pumila Mill. generated in large quantities which are extraction, hydraulic pressing and pulsed syn. M. domestica Borkh.) is the oldest difficult to handle especially in hilly areas plug flow extraction11. Although ethanol fruit known to man and is grown thus, creates environmental pollution. It separation has been reported from pulpy extensively throughout the temperate is a rich source of several nutrients hence, fermented tapioca12, till now only vacuum zones of the world. Several processed throwing it into the river is not distillation method has been applied to products like juice concentrate, jam, jelly, appreciated. Being a rich source of several separate out ethanol from fermented apple squash, preserve, wine, cider, vermouth, nutrients and organic matter it is highly pomace. In the present paper results of etc. are made from apple1, 2. At the same biodegradable in nature which affects various methods adopted for extracting time, it also results in the generation of ecosystem and creates foul smell around ethanol from solid state fermented waste3. Apple pomace is one of the by- the fruit processing industries, if not apple pomace have been communicated. Vol 7(2) March-April 2008 127 Research Paper Materials and Methods arrangement is shown in Fig. 2. as an indicator and was expressed as per Solid state fermentation: (iii) Steam distillation: Fermented cent malic acid15. The total and reducing Sequential co-culture of apple pomace apple pomace (1.5 kg) was sugars were measured by Lane and Eynon’s was carried out in solid state transferred to 5L conical flask and the volumetric method16. Crude protein was fermentation, using five yeasts, same quantity of water was added. The estimated by micro-kjeldahl method16. Saccharomyces cerevisiae, mouth of the flask was fitted with a Soluble proteins were measured by using Kloeckera, Schizosachharomyces cork having a steam inlet going up to the method of Lowry et al (1951)17. In pombe, Candida utilis and Torula the bottom of the flask (Fig. 3). Steam the estimation, 500 mg of dried and utilis. The fermentations were carried out was generated in an autoclave up to ground sample were taken and the soluble in 5 litre conical flasks with 3 kg of 25lb and thereafter, the steam was proteins were extracted in 19.5 ml of reconstituted apple pomace. Conditions released into the flask. From the top phosphate buffer (pH 7.5). The sediments of fermentations were the same as outlet of flask, steam was collected were removed by centrifuging at 4500 rpm reported earlier13. The best two and condensed. and estimation was made as per the treatments, viz. SSF fermented first by (iv) Vacuum distillation: Hot water method described. Saccharomyces cerevisiae and second (175 ml) at 50oC was added to the by Candida utilis followed by fermented apple pomace (175g). The Results and Discussion Kloeckera spp. were selected on the material was allowed to stand for 30 The mass flow and the separation basis of high ethanol and crude protein min and was transferred to vacuum of ethanol from fermented apple pomace content, respectively. distillation flask which was kept in a by four different methods are shown in Ethanol recovery: Ethanol in water bath (Fig. 4). The temperature Table1. Differences in the initial ethanol o the fermented apple pomace was extracted was maintained constantly at 70 C. content exhibited by the results reflect the by four different methods described Drying of apple pomace differences in the two treatments at the below: residue: The fermented apple pomace start of fermentation. It is also evident that (i) Hydraulic pressing: Fermented apple was dried in a mechanical dehydrator at complete alcohol in the fermented apple o pomace (1.5 kg) was transferred to 60 + 1 C for 8h (Fig. 5) and thereafter, pomace is not removed in the first press, 5L conical flask. Hot water (750ml) ground into powder. It was packed in as shown by the alcohol levels in the first was added at 50oC and the flask along polythene bags. The dried apple pomace and second press. It has also been reported with contents was allowed to stand for was analysed for different parameters, viz. earlier that leaching of the product from 30 min, followed by pressing. To the proteins (crude and soluble) and total fermented solids in a single contact step second press, the same quantity of sugars. would not be 100% effective as the dry water was added, followed by pressing Physico-chemical analysis of solids absorb aqueous solvent two times (Fig. 1). The pooled extract of both dried apple pomace: Various physico- the weight of the solids in case of wheat the extractions were collected and 1/ chemical characteristics of apple pomace bran18. Further, the final ethyl alcohol 3rd of the initial content of material were analysed. Ethyl alcohol was contents in the distillates were according 14 was distilled (1L). determined by colourimetric method and to that present in the fermented apple o (ii) Direct distillation: The fermented TSS was measured in Brix using Erma pomace after solid state fermentation apple pomace (1.5 kg) was hand refractometer. The readings were (SSF). transferred to 5L conical flask and the corrected by applying the correction factor The average ethanol separation 15 water and fermented apple pomace for temperature variation . Titratable efficiency of four different methods varied ratio was kept at 1:1. The flask was acidity was determined by titrating a from 73.16 to 99.45 per cent. The highest directly kept on the heater, followed known aliquot of the sample (solid ethanol separation efficiency was shown by distillation and 1/3rd of the total materials were diluted to 10 times) against by steam distillation and the lowest by hot volume was distilled (1L). The N/10 NaOH solution using phenophthalein water extraction followed by pressing in 128 Natural Product Radiance Research Paper 1 2 3 form of vapours due to uniformally high temperature. There is no report on the separation efficiency of ethanol from apple pomace using different methods except separation of ethanol by vacuum distillation by Hang et al (1982)6 whose results also confirm these findings. The fermented apple pomace of different treatments after removal of ethanol by different methods as discussed earlier, was dried separately and analyzed for 4 5 different physico-chemical characteristics (Table 2). It is clear from the results that extraction of ethanol by different methods did not have any significant effect on moisture content of dried apple pomace. Since similar time, temperature and drying method were employed for all the four treatments it might be the reason for the non- Fig. 1-5: 1. Ethanol containing liquid being separated by hydraulic pressing of fermented apple pomace; significant differences 2.
Recommended publications
  • B. F. Clyde's Cider Mill
    B. F. Clyde’s Cider Mill Established 1898 Old Mystic, Connecticut National Mechanical Engineering Site Dedication October 29, 1994 The American Society of Mechanical Engineers required equipment that was operated only once a History of Cider in the U.S. year, farmers found it more convenient to travel consid- Apple cider dates back to the earliest days of erable distances to bring their fruit to a large mill for English settlement in the thirteen colonies. Colonists processing into juice (sweet cider). Surplus apples brought seed from England to plant apple trees. could be sold or bartered to the mill owner who would Later, seedlings and whole trees were transported to produce cider to sell. Farmers returned home and used the colonies by wealthier colonists who established their own method of fermentation to produce cider. large apple orchards. Although apples were a staple In 1881, Mr. Ben- in the meager diet of jamin F. Clyde decided early settlers, the moti- to produce and sell cider vation for raising apple in Mystic, now referred trees was equally for to as Old Mystic. For the the purpose of making first few years, he cider. Cider was easy pressed his apples at lo- to make, stored well, cal mills. Eventually, he and provided a mildly bought a press and in- alcoholic drink for all to stalled it in rented space enjoy. Until approxi- in the corner of a local mately seventy years saw mill. He received ago, cider was what is power for his press from now referred to as “hard the saw mill’s line shaft.
    [Show full text]
  • GRAS Notice (GRN) No. 719, Orange Pomace
    GRAS Notice (GRN) No. 719 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm SAFETY EVALUATION DOSSIER SUPPORTING A GENERALLY RECOGNIZED AS SAFE (GRAS) CONCLUSION FOR ORANGE POMACE SUBMITTED BY: PepsiCo, Inc. 700 Anderson Hill Road Purchase, NY 10577 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park, MD 20740-3835 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Andrey Nikiforov, Ph.D. Toxicology Regulatory Services, Inc. 154 Hansen Road, Suite 201 Charlottesville, VA 22911 July 3, 2017 Table of Contents Part 1. SIGNED STATEMENTS AND CERTIFICATION ...........................................................1 A. Name and Address of Notifier .............................................................................................1 B. Name of GRAS Substance ...................................................................................................1 C. Intended Use and Consumer Exposure ................................................................................1 D. Basis for GRAS Conclusion ................................................................................................2 E. Availability of Information ..................................................................................................3 Part 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT.................................................................................................4
    [Show full text]
  • Grape Pomace Valorization: a Systematic Review and Meta-Analysis
    foods Review Grape Pomace Valorization: A Systematic Review and Meta-Analysis Bojan Antoni´c 1 , Simona Janˇcíková 1 , Dani Dordevi´c 1,2,* and Bohuslava Tremlová 1 1 Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; [email protected] (B.A.); [email protected] (S.J.); [email protected] (B.T.) 2 Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia * Correspondence: [email protected] Received: 2 October 2020; Accepted: 5 November 2020; Published: 7 November 2020 Abstract: This systematic review aimed to collect data and analyze the possible use of grape pomace, a winemaking industry byproduct, in the production of fortified foods. The English articles found in Web of Science, Scopus, and Google Scholar, from January 2006 until May 2020, were used for the conduction of overview tables and meta-analysis. The systematic review emphasized the two main issues concerning grape pomace application to other food products: (i) grape pomace contains high amounts of health promoting compounds; and (ii) the use of grape pomace is influencing the waste management. The grape pomace has been used in the fortification of plant origin food, meat, fish, and dairy products, mainly due to higher polyphenols and dietary fiber contents. The fortification was declared as successful in all studied food types. The change of color, caused by polyphenolic compounds, was mainly observed as an adverse effect of the fortification. Higher levels of fortification also caused notable undesirable changes in texture.
    [Show full text]
  • Notes on Composting Grape Pomace Fritz Westover Viticulture Research-Extension Associate [email protected]
    Notes on Composting Grape Pomace Fritz Westover Viticulture Research-Extension Associate [email protected] Wine producers in the state of Virginia have shown increasing interest in producing compost from wine grape pomace, which can then be applied to vineyard soils as a nutrient rich soil conditioner. The notes below have been compiled to provide a quick reference guide for farm wineries initiating small or large scale composting operations. • pomace is high in N>K>Ca [N-P-K-Ca = 2.0-0.5-2.0-2.0] • pomace is about 8% seeds, 10% stems, 25% skins, 57% pulp • in general 1 ton of harvested grapes produces 100lbs of stems and 160 to 240 lbs of pomace (more simply, 3 tons grapes is about equal to 1 ton of total pomace) • returns ½ to 1/3 of nutrients and OM removed from crop • 1:1 ratio, pomace:manure bedding (straw + manure) provides 2/3 to 100% annual nutrient needs of vineyard • pomace alone composts’ slowly – low pH (3.5 to 3.8) • compost microbes prefer a pH of 6.2 to become active (pH >6 desired) • lime or other feedstocks must be added to the pomace in order to increase pH • pomace has C:N ratio appropriate for composting (1:17 to 1:30) • feedstock added to pomace should also have C:N ratio appropriate for composting (1:20 to 1:30) • high lignin in seeds (17to 35%) limits decomposition in unturned piles • wet piles (>60% moisture) may continue to ferment, produce acetic acid = poor quality (check for off odors in pile or other clues of anaerobic activity) • 1-5 tons per acre annually is considered maintenance application • frequent turning
    [Show full text]
  • Total and Sustainable Valorisation of Olive Pomace Using a Fractionation Approach
    applied sciences Article Total and Sustainable Valorisation of Olive Pomace Using a Fractionation Approach Tânia B. Ribeiro 1,2 , Ana L. Oliveira 1, Cristina Costa 2, João Nunes 1, António A. Vicente 3 and Manuela Pintado 1,* 1 CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; [email protected] or [email protected] (T.B.R.); [email protected] (A.L.O.); [email protected] (J.N.) 2 Centre Bio R&D Unit, Association BLC3-Technology and Innovation Campus, Rua Nossa Senhora da Conceição, 2, Lagares, 3405-155 Oliveira do Hospital, Portugal; [email protected] 3 Centro de Engenharia Biológica, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-22-55-800-44 Received: 14 August 2020; Accepted: 23 September 2020; Published: 28 September 2020 Abstract: Olive pomace management represents a great concern to the olive oil industry. This work focused on the development of a “zero waste” strategy for olive pomace based on a fractionation approach resulting in the obtention of different value-added fractions. The physicochemical composition of edible fractions obtained (liquid and pulp) was analysed. The potential use as a solid biofuel of the non-edible fraction (stones) was evaluated. High amounts of hydroxytyrosol (513.61–625.76 mg/100 g dry weight) were present in the liquid fraction. Pulp fraction was demonstrated to be a good source of fibre (53–59% dry weight) with considerable antioxidant activity both from free and bound phenolics.
    [Show full text]
  • Wine Contamination with Ochratoxins: a Review
    beverages Review ReviewWine Contamination with Ochratoxins: A Review Wine Contamination with Ochratoxins: A Review Jessica Gil-Serna 1,* ID , Covadonga Vázquez 1, María Teresa González-Jaén 2 ID and JessicaBelén Gil-Serna Patiño 1 ID1,*, Covadonga Vázquez 1, María Teresa González-Jaén 2 and Belén Patiño 1 1 1DepartmentDepartment of Microbiology of Microbiology III, III,Faculty Faculty of Biolo of Biology,gy, University University Complutense Complutense of Madrid, of Madrid, Jose Antonio NovaisJose 12, Antonio 28040 NovaisMadrid, 12, Spain; 28040 [email protected] Madrid, Spain; (C.V.); [email protected] [email protected] (C.V.); (B.P.) [email protected] (B.P.) 2 2DepartmentDepartment of Genetics, of Genetics, Faculty Faculty of Biology, of Biology, Univer Universitysity Complutense Complutense of Madrid, of Madrid, Jose Jose Antonio Antonio Novais Novais 12, 12, 2804028040 Madrid, Madrid, Spain; Spain; [email protected] [email protected] * *Correspondence:Correspondence: jgilsern [email protected];@ucm.es; Tel.: Tel.: +34-91-394-4969 +34-91-394-4969 Received:Received: 31 31October October 2017; 2017; Accepted: Accepted: 29 29December December 2017; 2017; Published: Published: 29 15January January 2018 2018 Abstract:Abstract: OchratoxinOchratoxin A A (OTA) isis thethe main main mycotoxin mycotoxin occurring occurring inwine. in wine. This This review review article article is focused is focusedon the on distribution the distribution of this of toxin this andtoxin its and producing-fungi its producing-fungi in grape in grape berries, berries, as well as aswell on as the on fate theof fateOTA of duringOTA during winemaking winemaking procedures. procedures. Due to itsDue toxic to its properties, toxic properties, OTA levels OTA in winelevels are in regulated wine arein regulateddifferent in countries; different therefore, countries; it is therefore, necessary toit applyis necessary control andto apply detoxification control methodsand detoxification that are also methodsdiscussed that in are this also revision.
    [Show full text]
  • Concours Mondial De Bruxelles 2012 | Wine Categories Concours Mondial De Bruxelles 2012 | Spirits Categories
    Concours Mondial de Bruxelles 2012 | Wine Categories Still Rosé Wines 1.1. Grand Duchy of Luxembourg 2.10.12. Sparkling wines from Hungary 2.10.13. aromatic varieties 4.2. Dry Rosé Wines <4 gr/l of residual sugar 1.1.1. Mexico 2.10.14. Rosé Wines >4 gr/l of residual sugar 1.1.2. New Zealand 2.10.15. White sparkling wines from aromatic varieties 4.2.1. Czech Republic white wine <10gl sugar 2.10.16. Rosé sparkling wines from aromatic varieties 4.2.2. Organic rosé Wine 1.6. Czech Republic white wine > 10g/l sugar 2.10.17. Slovakia 2.10.18. Organic Sparkling Wine 4.6. Organic rosé wine <10€ 1.6.1. Slovenia 2.10.19. Organic rosé wine >10€ 1.6.2. Switzerland Valais 2.10.20. Organic sparkling wine <10€ 4.6.1. Switzerland other regions 2.10.21. Organic sparkling wine >10€ 4.6.2. White wines from Turkey 2.10.22. non-aromatic varieties 2.1. USA 2.10.23. Other Sparkling Wines 4.10. Dry white wine <4 gr/l residual sugar 2.1.1. Red Wines 3.1. Sekt 4.10.1. Semi-dry wine <4,1 - 12> gr/l residual sugar 2.1.2. Crémant from Luxembourg 4.10.2. Sweet wines <12,1 - 50> gr/l residual sugar 2.1.3. Red wines <4 gr/l residual sugar 3.1.1. Other countries 4.10.3. Sweet wines > 50 gr/l residual sugar 2.1.4. Red wines >4 gr/l residual sugar 3.1.2.
    [Show full text]
  • Recovery of Winemaking By-Products for Innovative Food Applications
    REVIEW RECOVERY OF WINEMAKING BY-PRODUCTS FOR INNOVATIVE FOOD APPLICATIONS V. LAVELLIa*, L. TORRIb, G. ZEPPAc, L. FIORId and G. SPIGNOe aDeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy bUniversity of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Bra, Italy cDISAFA, Department of Agricultural, Forestry and Food Sciences, Università degli Studi di Torino, L. go P. Braccini 2, 10095 Grugliasco, Italy dDepartment of Civil, Environmental and Mechanical Engineering, Università degli Studi di Trento, Via Mesiano 77, 38123 Trento, Italy eInstitute of Oenology and Agro-Food Engineering, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy *Corresponding author. Tel.: +39 0250319172; fax: +39 0250316632 E-mail address: [email protected] ABSTRACT Winemaking by-products are potential resources for second-generation biorefineries, i.e., biorefineries fed with biowaste to produce added-value products, particularly for the food sector. In fact, winemaking by-products are outstanding sources of oil, phenolic compounds and dietary fibre and possess numerous health benefits and multifunctional characteristics, such as antioxidant, colouring, antimicrobial and texturizing properties. The present review highlights promising developments for the conversion of winemaking by-products into novel food ingredients, as well as their use in innovative foods, focusing on the type of recovered ingredients, dosage, formulation and processing. In addition, the primary benefits of winemaking by-products to new foods are described. Keywords: by-products, dietary fibre, grape phenolics, grape seed oil, winemaking ! Ital. J. Food Sci., vol 28, 2016 - 542 1. INTRODUCTION Food supply chains have significant environmental impacts due to their use of resources and production of emissions, effluents and wastes.
    [Show full text]
  • Managing By-Products of Vitivinicultural Origin 2018 Warning
    OIV COLLECTIVE EXPERTISE MANAGING BY-PRODUCTS OF VITIVINICULTURAL ORIGIN 2018 WARNING This document has not been submitted to the step Procedure for Examining Resolutions and cannot in any way be treated as an OIV resolution. Only resolutions adopted by the Member States of the OIV have an official character. This document has been drafted in the framework of Viticulture Commission, by the Vine Protection and Viticultural Technics group (PROTEC) and revised by other OIV Commissions. This document, drafted and developed on the initiative of the OIV, is a collective expert report. The images in this publication were taken in January 2018 at «Quinta das Faias» (Portugal), except the image on page 10: provided by António Graça. © OIV publications, 1st Edition: November 2017 ISBN 979-10-91799-90-4 OIV - International Organisation of Vine and Wine 18, rue d’Aguesseau F-75008 Paris - France www.oiv.int 2 I OIV Collective Expertise SCOPE This report is intended to discuss the use and the definition of different types of by-products in vine producing areas worldwide. Some questions of principle arise, such as: • What are the by-products and sub-products obtained from vitivinicultural practices? • What are their main applications and which ones are used in the agriculture industry? • Are all production processes generating by-products and their possible applications widely known? The following document was drafted by members of the Vine Protection and Viticultural Technics group (PROTEC) in collaboration with members of Viticulture Commission. COORDINATOR Vittorino Novello (Italy) AUTHORS António Graça (Portugal) John Corbet-Milward (UK) Hans R. Schultz (Germany) Cengiz Ozer (Turkey) Mario de la Fuente (OIV) LAYOUT Daniela Costa (OIV) Managing viticulture by-products I 3 4 I OIV Collective Expertise INDEX SCOPE 3 INDEX 5 INTRODUCTION 6 BY-PRODUCTS.
    [Show full text]
  • Vermouth/Aperitif Petillant Naturel
    VERMOUTH/APERITIF Francois Pinon Brut 55 Domaine A et P de Villaine 87 On the rocks or up? Chenin Blanc, Vouvray, 2015 Aligoté, Bouzeron, 2017 ​ ​ 2oz Luis Pato ROSE 48 Sylvain Pataille 58 ​ Brovo “Pretty” Vermouth 6 Baga, Portugal, NV Aligoté, Bourgogne, 2017 Aromatized semi-dry white wine, Washington, NV ​ ​ ​ Gramona “Imperial” Gran Reserva 18 72 Thorne & Daughters “Paper Kite” 78 Matthiason No. 3 15 Cava Grapes, Barcelona, 2013 Semillon, South Africa, 2017 Sweet Vermouth, Napa, NV ​ ​ ​ Dom. Montbourgeau 62 Calera 14 56 Carpano “Antica Formula” 6 Chardonnay, Jura, NV Chardonnay, California, 2016 ​ ​ Sweet Vermouth, Trentino, NV ​ Krug “Grand Cuvée” 375mL 99 Mac Forbes 72 ​ Scribe Vermouth 9 PN/CH/PM, Champagne, NV Chardonnay, Australia, 2017 Aromatized dry white wine, California, 2016 ​ ​ ​ Bereche & Fils Brut Reserve 126 Willamette Valley “White” 63 D’Pampe Grapefruit Vermouth 10 CH/PM/PN, Champagne, NV Chardonnay Blend, Oregon, 2017 Vermouth, California, NV ​ ​ ​ Suenen “C+C” 182 Benoit Ente 90 Valdespino “Inocente” FINO 6 Chardonnay, Champagne, NV Chardonnay, Bourgogne, 2016 ​ Palomino, Jerez, NV ​ ​ ​ Suenen “Millesime” 197 Etienne Sauzet Champ-Canet 1er Cru 295 Emilio Hidalgo “Gobernador” OLOROSO 9 CH/PN/PM, Champagne, 2010 Chardonnay, Puligny-Montrachet, 2016 ​ Palomino, Jerez, NV ​ ​ ​ Vouette & Sorbee “Blanc D’Argile” 180 Lopez de Heredia “Vina Tondonia Reserva” 95 PETILLANT NATUREL SPARKLING Chardonnay, Champagne, 2013 Viura & Malvasia, Rioja, 2005 Fat bubbles, and sometimes unfiltered styles.* ​ ​ Vouette & Sorbee “Fidele” 206 ADVENTUROUS WHITES & ROSES Gls Btl ​ Pinot Noir, Champagne, 2015 Gls Btl ​ Jean-Paul Brun “FRV100” ROSE 14 56 ​ CLASSIC WHITES & ROSES Teutonic “Candied Mushroom” 64 Gamay, Burgundy, NV ​ Flavors you know, from benchmark producers.
    [Show full text]
  • POSITION: Meadmaker (FULL -TIME) – SAN DIEGO, CA Lost Cause
    POSITION: Meadmaker (FULL -TIME) – SAN DIEGO, CA Lost Cause Meadery, the world’s most awarded meadery 2019-2020, is looking for our next Meadmaker. This is a unique opportunity to join a small and rapidly growing company with a proven commitment to producing world-class beverages while getting creative with meads, wines, ciders, piquettes, jerkums, and more. We expect to continue pushing boundaries, blending categories and ignoring dogma, all in the name of making the best liquid we can possibly make. Commercial mead making experience not necessary, you’ll be learning directly from the owner and eventually taking over the production team. POSITION DESCRIPTION: This position will lead all aspects of production and report directly to the owner. General responsibilities include mead/wine must creation and handling, fermentation management, fruit pressing, product transfer and packaging, adjunct additions, barrel management, ingredient sourcing and recipe creation. You will be responsible for growing and leading a production team; at times you will also be a team of one, and responsible for every aspect of maintaining a spotlessly clean production facility including cleaning all tanks and equipment and general organization and cleanliness of facility. Additional details below: JOB RESPONSIBILITIES: • Fermentation management • Packaging line operation • Tank CIP and sanitization • Fruit press operation • Barrel preparation, filling and maintenance • Product transfer and packaging • Managing adjunct additions • Recipe creation • Maintaining
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,631,211 B2 Scholten Et Al
    USOO9631211 B2 (12) United States Patent (10) Patent No.: US 9,631,211 B2 Scholten et al. (45) Date of Patent: *Apr. 25, 2017 (54) BACTERIAL STRAIN AND FERMENTATIVE 8,883,466 B2 * 1 1/2014 Scholten .............. C12N 9/OOO6 PROCESS FOR PRODUCING SUCCNC 435/145 ACD 2007/0042481 A1 2/2007 Lee et al. 2008/0293101 A1 11/2008 Peters et al. 2009/O1378.25 A1 5/2009 Bauduin et al. (71) Applicant: BASF SE, Ludwigshafen (DE) 2009. O155869 A1 6/2009 Buelter et al. 2010, 004.4626 A1 2/2010 Fischer et al. (72) Inventors: Edzard Scholten, Mannheim (DE); 2010, O159542 A1 6, 2010 Scholten et al. Dirk Dagele, Vogtsburg (DE); Stephan 2010, O159543 A1 6, 2010 Scholten et al. Haefner, Speyer (DE); Hartwig 2010/0324258 A1 12/2010 Zelder et al. Schroder, Nussloch (DE) 2011/0300.589 A1 12/2011 Schroder et al. (73) Assignee: BASF SE, Ludwigshafen (DE) FOREIGN PATENT DOCUMENTS EP O805208 A1 5, 1997 (*) Notice: Subject to any disclaimer, the term of this EP 1842843 A1 10, 2007 patent is extended or adjusted under 35 EP 2202294 A1 6, 2010 EP 2204443 A1 T 2010 U.S.C. 154(b) by 224 days. JP 200811714 1, 2008 This patent is Subject to a terminal dis WO WO-02/00846 A1 1, 2002 claimer. WO WO-03/04O690 A2 5, 2003 WO WO-2005/052135 A1 6, 2005 WO WO-2006/034156 A2 3, 2006 (21) Appl. No.: 14/045,096 WO WO-2006/066839 A2 6, 2006 WO WO-2008/013405 A1 1, 2008 (22) Filed: Oct.
    [Show full text]