Considerations for Small Wind Systems in Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

Considerations for Small Wind Systems in Wyoming Page 4 April 2009 UW College of Agriculture Considerations for small wind systems in Wyoming By Lindsay Taylor one acre, siting a wind turbine in by all lenders. Wind energy is a familiar a place with unobstructed wind Example of wind All of these economic con- technology to many Wyoming flow may be difficult. Typically, a turbine sizing: siderations will vary by situation residents. 100- to 160-foot tower is needed but are factors in the feasibility There was a time wind was for unobstructed and maximum of small wind use on the ranch 750 kW-h average the most common form of potential wind access. Placing a or residence. There are several turbine too low or behind trees monthly use Web calculators available to help energy used at the farmstead. × 12 months = and buildings is like putting solar determine payback periods for Windmills were used to pump 9,000 kW-h annual use panels in the shade. these projects. The U.S. Depart- water and run the first of many w Sizing of the system is the (9,000 kW-h) ÷ ment of Energy’s Wind Power- electrical appliances to come main factor in determining 8,760 h/year) = 1.03 kW ing America Web site has a free into a home. upfront costs. For most grid- payback calculator program While today’s technologies tied systems – those producing (1.03 kW) ÷ available on the “Small Wind are more efficient and utilize .20 capacity factor = electricity that flows onto the Economic Model” link, which electrical rather than mechanical 5.14 power grid – having a turbine can be found at www.windpow- energy, the concept is very much that produces more electricity In this case a 5-kW eringamerica.gov/small_wind. the same and can still be used than is needed by the farm or turbine would asp. on a farm or at a rural residence residence is not cost effective. be a sufficient-sized Renewable energy use and to offset our growing electricity To determine individual needs, tower development is a popular topic needs and rising costs. the number of kW-h used in one in news and government policy. Residential wind energy, year is divided by the number of Whether people are interested termed “small wind,” is wind hours in a year, 8,760, and then in it for economics, energy electricity generation of less than comparable if the upfront costs ity prices are generally quite low divided by the capacity factor for can be recouped in electricity and therefore often not worth the independence, environmental 10 kilowatts (kW). The average the site. The number of kW-h can concerns, or other reasons, there American home uses about 20 savings before the end of the upfront cost of installing a small be found on old electricity bills. useable life of the equipment. wind system. A good rule of are many benefits to considering kilowatt hours (kW-h) per day. The capacity factor of the site de- renewable energy sources for Residential scale wind develop- The four factors that will deter- thumb for this is if someone has pends on the wind resource. This mine this are the wind resource, a greater than $150 per month ranch or residential use. In many ment is much different than the number is the percentage of time average monthly electricity average cost of electricity. cases, it may be worthwhile for commercial wind development the wind blows hard enough costs, state and federal policies, landowners to at least consider projects seen throughout the State, Federal Policies for the turbine to produce at and financing. utilizing the wind resource that state. Turbines are much smaller, maximum capacity. For most State and federal policies just might be Wyoming’s next as they are typically generating small applications, this number Wind Resource are a consideration because they source of energy generation. electricity for only one home is between 15 and 25 percent. Most of Wyoming has a high may decrease the upfront cost Lindsay Taylor is a University of rather than a region and they are Currently, small wind turbines enough average annual wind of the project and can dictate Wyoming Cooperative Extension much less invasive on both land cost anywhere from $2,000 to speed to consider wind genera- the availability of net metering. Service area educator in and scenery. tion. A general rule of thumb is Federal and state governments $7,000 per installed kW. northeast Wyoming. She can be Residential-sized turbines greater than 10 mph. For a better have several grant programs, Important Considerations reached at (307) 682-7281 can be used to supplement exist- look at the map of Wyoming’s rebates, and other incentives or [email protected]. ing electricity use or in a hybrid The two most important wind resource shown below, to aide in installing renewable system designed to power a considerations are the wind re- please see www.windpowerin- energy projects. home or farm without tying into source and economic feasibility. gamerica.gov/wind_maps.asp. A listing of Wyoming-specif- the existing power grid. Each of These two factors are directly Without actual data collection ic incentives can be found at the these uses has its own benefits, related because the better the from a specific site, determin- “Database of State Incentives for drawbacks, and considerations. wind resource the more electric- ing the true wind resource is Renewables and Efficiency” at ity can be generated by the wind difficult; however, this map is Small Wind Turbines turbine and the more quickly the a way to get a fair idea of a A small wind turbine tied turbine can return its upfront site’s potential. If a site-specific http://www. into the utility power grid can costs to the owner. study is desired, the Wyoming dsireusa.org/. Net metering is be practical for people who live There are many advantages Business Council offers an an- a mandated policy in Wyoming. in a rural residential location of using wind power to supple- emometer loan program. An This means utilities are required near an existing power line. To ment electricity needs, ranging anemometer placed on site for to net meter their customers be a feasible option, the basic from self-sufficiency to envi- a year will provide specific wind producing small amounts of requirements are more than ronmental benefit to providing speed data that can be useful in renewable energies. Therefore, one acre of land in a place with energy with little or no water a decision to purchase or site a electric bills would reflect only no restrictions on tall towers, requirement; however, most peo- wind turbine. The annual energy the difference between what is a known amount of electricity ple will not embrace the technol- output (AEO) of a wind turbine is used by the customer and what is used, substantial wind, and eco- ogy unless it is cost competitive equal to 0.01328 (a constant) × produced. The specific terms of nomic feasibility. If the property with existing sources of power. rotor diameter2 × wind speed3 these agreements vary by utility to be powered sits on less than Wind energy is economically so small increases in wind speed and are on file with the Wyoming translate to big gains in energy Public Service Commission. output. For more information on Financing the Wyoming Anemometer Loan The final consideration in Program, contact Tom Fuller at economic feasibility is financing (307) 777-2804. options. If a turbine is financed, Monthly Electricity Costs the interest will be a cost that Average monthly electricity needs to be considered in the costs are another important con- payback period. Grants and sideration and one that makes cost-share programs are pos- residential wind turbines less sible ways to decrease the feasible in Wyoming than the amount of a project financed. wind resource would predict. Financing a wind turbine The more money spent on elec- as a part of new home tricity, the more quickly on-site construction can greatly production of electricity will pay decrease the payback for itself. In Wyoming, electric- period but is not allowed .
Recommended publications
  • CHAPTER 7 Design and Development of Small Wind Turbines
    CHAPTER 7 Design and development of small wind turbines Lawrence Staudt Center for Renewable Energy, Dundalk Institute of Technology, Ireland. For the purposes of this chapter, “small” wind turbines will be defi ned as those with a power rating of 50 kW or less (approximately 15 m rotor diameter). Small electricity-generating wind turbines have been in existence since the early 1900s, having been particularly popular for providing power for dwellings not yet con- nected to national electricity grids. These turbines largely disappeared as rural electrifi cation took place, and have primarily been used for remote power until recently. The oil crisis of the 1970s led to a resurgence in small wind technology, including the new concept of grid-connected small wind technology. There are few small wind turbine manufacturers with a track record spanning more than a decade. This can be attributed to diffi cult market conditions and nascent technol- ogy. However, the technology is becoming more mature, energy prices are rising and public awareness of renewable energy is increasing. There are now many small wind turbine companies around the world who are addressing the growing market for both grid-connected and remote power applications. The design fea- tures of small wind turbines, while similar to large wind turbines, often differ in signifi cant ways. 1 Small wind technology Technological approaches taken for the various components of a small wind turbine will be examined: the rotor, the drivetrain, the electrical systems and the tower. Of course wind turbines must be designed as a system, and so rotor design affects drivetrain design which affects control system design, etc.
    [Show full text]
  • Technological and Operational Aspects That Limit Small Wind Turbines Performance
    energies Review Technological and Operational Aspects That Limit Small Wind Turbines Performance José Luis Torres-Madroñero 1 , Joham Alvarez-Montoya 1 , Daniel Restrepo-Montoya 1 , Jorge Mario Tamayo-Avendaño 1 , César Nieto-Londoño 1,2,* and Julián Sierra-Pérez 1 1 Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; [email protected] (J.L.T.-M.); [email protected] (J.A.-M.); [email protected] (D.R.-M.); [email protected] (J.M.T.-A.); [email protected] (J.S.-P.) 2 Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia * Correspondence: [email protected] Received: 19 October 2020; Accepted: 17 November 2020; Published: 22 November 2020 Abstract: Small Wind Turbines (SWTs) are promissory for distributed generation using renewable energy sources; however, their deployment in a broad sense requires to address topics related to their cost-efficiency. This paper aims to survey recent developments about SWTs holistically, focusing on multidisciplinary aspects such as wind resource assessment, rotor aerodynamics, rotor manufacturing, control systems, and hybrid micro-grid integration. Wind resource produces inputs for the rotor’s aerodynamic design that, in turn, defines a blade shape that needs to be achieved by a manufacturing technique while ensuring structural integrity. A control system may account for the rotor’s aerodynamic performance interacting with an ever-varying wind resource. At the end, the concept of integration with other renewable source is justified, according to the inherent variability of wind generation. Several commercially available SWTs are compared to study how some of the previously mentioned aspects impact performance and Cost of Electricity (CoE).
    [Show full text]
  • Online Course Small Wind Power – Planning
    Online course Small wind power – Planning © Renewables Academy (RENAC) AG This copyrighted course is part of the series of online study programmes offered by the Renewables Academy AG. The course materials are provided exclusively for personal or curriculum and course- related purposes to enrolled students and registered users only. Any further use of this material shall require the explicit consent of the copyright and intellectual property rights holders, Renewables Academy AG. This material or parts of it may neither be reproduced nor in any way used or disclosed or passed on to third parties. Any unauthorised use or violation will be subject to private law and will be prosecuted. Berlin, 2020-03-12 Table of Contents 1 Introduction ..................................................................................................................................... 3 1.1 Learning objectives of the course ........................................................................................... 3 1.2 Introduction to the course ...................................................................................................... 3 2 Project planning .............................................................................................................................. 4 2.1 Environmental impacts............................................................................................................ 4 2.2 Social impacts .........................................................................................................................
    [Show full text]
  • IEA Wind Technology Collaboration Programme
    IEA Wind Technology Collaboration Programme 2017 Annual Report A MESSAGE FROM THE CHAIR Wind energy continued its strong forward momentum during the past term, with many countries setting records in cost reduction, deployment, and grid integration. In 2017, new records were set for hourly, daily, and annual wind–generated electricity, as well as share of energy from wind. For example, Portugal covered 110% of national consumption with wind-generated electricity during three hours while China’s wind energy production increased 26% to 305.7 TWh. In Denmark, wind achieved a 43% share of the energy mix—the largest share of any IEA Wind TCP member countries. From 2010-2017, land-based wind energy auction prices dropped an average of 25%, and levelized cost of energy (LCOE) fell by 21%. In fact, the average, globally-weighted LCOE for land-based wind was 60 USD/ MWh in 2017, second only to hydropower among renewable generation sources. As a result, new countries are adopting wind energy. Offshore wind energy costs have also significantly decreased during the last few years. In Germany and the Netherlands, offshore bids were awarded at a zero premium, while a Contract for Differences auction round in the United Kingdom included two offshore wind farms with record strike prices as low as 76 USD/MWh. On top of the previous achievements, repowering and life extension of wind farms are creating new opportunities in mature markets. However, other challenges still need to be addressed. Wind energy continues to suffer from long permitting procedures, which may hinder deployment in many countries. The rate of wind energy deployment is also uncertain after 2020 due to lack of policies; for example, only eight out of the 28 EU member states have wind power policies in place beyond 2020.
    [Show full text]
  • A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines
    Journal of Power and Energy Engineering, 2019, 7, 27-44 http://www.scirp.org/journal/jpee ISSN Online: 2327-5901 ISSN Print: 2327-588X A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines Palanisamy Mohan Kumar1,2*, Krishnamoorthi Sivalingam2,3, Srikanth Narasimalu3, Teik-Cheng Lim2, Seeram Ramakrishna1, He Wei4 1Department of Mechanical Engineering, National University of Singapore, Singapore City, Singapore 2School of Science and Technology, Singapore University of Social Sciences, Singapore City, Singapore 3Innovation Centre, Nanyang Technological University, Singapore City, Singapore 4Singapore Institute of Manufacturing Technology, Singapore city, Singapore How to cite this paper: Kumar, P.M., Abstract Sivalingam, K., Narasimalu, S., Lim, T.-C., Ramakrishna, S. and Wei, H. (2019) A Re- Wind energy witnessed tremendous growth in the past decade and emerged view on the Evolution of Darrieus Vertical as the most sought renewable energy source after solar energy. Though the Axis Wind Turbine: Small Wind Turbines. Horizontal Axis Wind Turbines (HAWT) is preferred for multi-megawatt Journal of Power and Energy Engineering, power generation, Vertical Axis Wind Turbines (VAWT) is as competitive as 7, 27-44. https://doi.org/10.4236/jpee.2019.74002 HAWT. The current study aims to summarize the development of VAWT, in particular, Darrieus turbine from the past to the project that is underway. The Received: March 31, 2019 reason for the technical challenges and past failures are discussed. Various Accepted: April 25, 2019 configurations of VAWT have been assessed in terms of reliability, compo- Published: April 28, 2019 nents and low wind speed performance. Innovative concepts and the feasibil- Copyright © 2019 by author(s) and ity to scale up for megawatt electricity generation, especially in offshore envi- Scientific Research Publishing Inc.
    [Show full text]
  • Small Wind Turbines
    Small Wind Turbines Harnessing the power of the wind has begun to recapture the imagination of America. Returning to a technology that was prevalent during colonial times has become an intriguing idea to many people including many residents of Montgomery County. The county, with its mix of rural, suburban, and urban areas, provides many opportunities for residents to incorporate wind power into their homes. Wind energy is an emerging technological approach to energy production that can have positive economic and environmental impacts for those committed to the cause of renewable energy. The Technology Today’s wind turbines are a far cry from the large, wooden turbines of colonial times. Modern technology has allowed wind turbines to become smaller, lighter, more durable, and much more efficient. Small wind Vertical axis wind turbine in a residential setting. turbines are defined as having an energy generation capacity of 100 kilowatts per hour (kWhrs) and less. The standard commercial ratings for a wind turbine are determined using the peak production values possible for that size turbine. Actual energy production will fluctuate due to the unpredictable nature of wind. A typical household uses roughly 950 kWhrs a month, so the energy production of a small wind turbine can create a substantial amount of cost savings. Wind turbines come in a wide range of styles and sizes. They typically have a horizontal axis or a vertical axis. The horizontal- axis wind turbine is most commonly used today. It is characterized by the propeller shape of the turbine and usually uses three blades. The vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor, is less common.
    [Show full text]
  • In the Public Interest How and Why to Permit for Small Wind Systems
    In the Public Interest How and Why to Permit for Small Wind Systems A Guide for State and Local Governments American Wind Energy Association September 2008 "We ought to have I N THE P UBLIC I NTEREST: a law that allows homeowners and H OW AND W HY TO P ERMIT small business people to put up photovoltaic FOR S MALL W IND S YSTEMS generators and small windmills and any other new sources of A Guide for State and Local Governments widely distributed generation that they can come up with." The greatest challenges to small-scale renewable energy are not - Al Gore, technical, but rather financial, political, and regulatory. Confusing, March 19, 2007 inconsistent or even absent permitting processes discourage the CNN Glenn Beck Show very people a forward-thinking community would want to enable: those with the motivation and resources to generate their own "Bad zoning not only clean electricity. scares away potential customers, but also dealers - the local Small wind turbines allow homeowners, farmers, small business small businesses that owners, and public facilities to generate their own clean, safe, distribute, install, and maintain small and reliable energy for on-site use. Though thousands of towns wind systems." and counties already do, many have not yet included small wind - Mike Bergey, systems in their zoning codes to allow their use. The reason is Bergey WindPower Co. often no more than a lack of familiarity with the technology, resulting in overabundant care to avoid setting a controversial "Planners can encourage precedent. This often renders the permitting process the single efficient energy use, diversification of energy most daunting obstacle for would-be consumers and prevents supply, and emissions the installation - and associated public benefits - of thousands reductions through their of small wind systems.
    [Show full text]
  • Selection Guidelines for Wind Energy Technologies
    energies Review Selection Guidelines for Wind Energy Technologies A. G. Olabi 1,2,*, Tabbi Wilberforce 2, Khaled Elsaid 3,* , Tareq Salameh 1, Enas Taha Sayed 4,5, Khaled Saleh Husain 1 and Mohammad Ali Abdelkareem 1,4,5,* 1 Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] (T.S.); [email protected] (K.S.H.) 2 Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK; [email protected] 3 Chemical Engineering Program, Texas A & M University at Qatar, Doha P.O. Box 23874, Qatar 4 Centre for Advanced Materials Research, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] 5 Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 615193, Egypt * Correspondence: [email protected] (A.G.O.); [email protected] (K.E.); [email protected] (M.A.A.) Abstract: The building block of all economies across the world is subject to the medium in which energy is harnessed. Renewable energy is currently one of the recommended substitutes for fossil fuels due to its environmentally friendly nature. Wind energy, which is considered as one of the promising renewable energy forms, has gained lots of attention in the last few decades due to its sustainability as well as viability. This review presents a detailed investigation into this technology as well as factors impeding its commercialization. General selection guidelines for the available wind turbine technologies are presented. Prospects of various components associated with wind energy conversion systems are thoroughly discussed with their limitations equally captured in this report.
    [Show full text]
  • Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area
    energies Article Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area Osvaldo Rodriguez-Hernandez 1,*,† , Manuel Martinez 1,† , Carlos Lopez-Villalobos 2,† , Hector Garcia 3 and Rafael Campos-Amezcua 4 1 Instituto de Energías Renovables. Universidad Nacional Autónoma de México, A.P. 34, 62580 Temixco, Mor. México, Mexico; [email protected] 2 Posgrado en Ingeniería (Energía), Universidad Nacional Autónoma de México, A.P. 34, 62580 Temixco, Mor. México, Mexico; [email protected] 3 Independent Researcher, Morelia 58120, Mich., Mexico; [email protected] 4 Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Carr. México-Pachuca km 87.5, Col. Venta Prieta, C.P. 42080, Pachuca, Hgo., Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-(777)-362-0090 (ext. 38009) † These authors contributed equally to this work. Received: 8 January 2019; Accepted: 16 February 2019; Published: 7 March 2019 Abstract: The use of small wind turbines (SWTs) is an alternative energy strategy with increasing potential for satisfying in situ electrical demands and should be studied to promote social penetration. The Valley of Mexico Metropolitan Area (VMMA) has air pollution issues that need to be addressed. This has resulted in programs for monitoring atmospheric variables, such as wind speed. By selecting and using 3 years’ worth of available data, we developed a methodology to study the technical and economic feasibility of using SWTs in the VMMA. To this end, 28 SWT models were assessed at 18 locations to estimate annual energy production. In light of certain data characteristics, an adjustment to the power production was proposed for the specific case of using SWTs.
    [Show full text]
  • Draft Guidelines for Consideration of Bats in Wind Farm Projects – Revision 2014
    Doc.EUROBATS.MoP7.13.Annex Draft Guidelines for consideration of bats in wind farm projects – revision 2014 Notes: - Comments may be sent to Luisa Rodrigues ([email protected]; [email protected]) - Additional data on studies (annex 1) and mortality (annex 2) may still be incorporated. - Sentences/words highlighted in yellow are still missing or need to will be revised after 7MoP. - Suren will check if all references are referred in the text, and uniform the references - Suren will highlight in the text all terms that are included in the Glossary - Authors: Luísa Rodrigues (Portugal), Lothar Bach (Germany), Marie-Jo Dubourg-Savage (SFEPM, France), Branko Karapandža (Serbia), Dina Kovač (Croatia), Thierry Kervyn (Belgium), Jasja Dekker (BatLife Europe, The Netherlands), Andrzej Kepel (Poland), Petra Bach (Germany), Jan Collins (BCT, United Kingdom), Christine Harbusch (NABU, Germany), Kirsty Park (Stirling University, United Kingdom), Branko Micevski (FYR Macedonia), Jeroen Minderman (Stirling University, United Kingdom) Foreword Comment [LR1]: At the end we need to 1 Introduction discuss the level of detail of the index 2 General aspects of the planning process 2.1 Site selection phase 2.2 Construction phase 2.3 Operation phase 2.4 Decommissioning phase 3 Carrying out impact assessments Goals of the impact assessment in relation to bats (EXTRA BOX - Collision risk level for European bat species) 3.1 Pre-survey assessment Collation and review of existing information 3.2 Survey 3.2.1 Survey design 3.2.2 Survey methods 3.2.2.1
    [Show full text]
  • 20.12.14 ACC Minutes
    Ardross Community Council Minutes of Management Meeting 14th December 2020 Held via Zoom Peter Allen (Chair), John Edmondson (Secretary), Alison Gordon (Treasurer), Bill Robins (Vice- Chair), Willie Beattie, Ruaridh Waugh and Bruce Marshall. Cllr Maxine Smith. Kelly Falkiner, Sandra Cunliffe, Jane Smith, Ian Duncan, Gunta Freidenelde, James McTaggart, Calvert and Margaret Stinton. Meeting opened at 8.00pm 09:49 1. Their were apologies from George MacKay. Cllr Mike Finlayson. And Richard Smith. 2. The minutes of the November Management Meeting and the October Public Meeting on the 19th October were proposed by Bruce Marshall and seconded by Peter Allen. 3. The Secretary had distributed the notes from the EnergieKontor meeting, previously and we had heard nothing back from them regarding the index linking of the fund. The Chair informed the Community Council that he had had a telephone conversation with the Chair of the Edderton Community Council Michael Brown regarding the Community Benefit for the Strathrory Wind Farm. Michael explained to Peter that Edderton CC would not be attending any roundtable meetings held by EnergieKontor and that he thought the Ardross CC should be doing the same. Michael thought that it was better to hold one to one meetings. Edderton CC thought that the preferred transport route would be via Edderton and so all the turbines would be coming through their CC area. Michael thought that Ardross and Edderton CC’s should be the main beneficiaries of the Community Benefit and that this was unlikely to be agreed at at a roundtable meeting with the “pack of wolves” made up of all the other CC’s invited to the roundtable meeting.
    [Show full text]
  • Benchmarking U.S. Small Wind Costs with the Distributed Wind Taxonomy
    PNNL-26900 Benchmarking U.S. Small Wind Costs With the Distributed Wind Taxonomy September 2017 AC Orrell EA Poehlman Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Benchmarking U.S. Small Wind Costs With the Distributed Wind Taxonomy September 2017 AC Orrell EA Poehlman Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary Small wind turbines (i.e., up through 100 kW) make up a large percentage of domestic distributed wind projects and U.S. manufacturers accounted for nearly all U.S. domestic small wind sales in 2016. Despite this market share, small wind struggles to be cost competitive with other distributed generation technologies. Where solar photovoltaic systems and large-scale wind turbines have made significant progress in reducing costs, small wind has not. The objective of this report is to benchmark costs for small wind projects installed in the United States using a distributed wind taxonomy. Consequently, this report is a starting point to help expand the U.S. distributed wind market by informing potential areas for small wind cost-reduction opportunities and providing a benchmark to track future small wind cost-reduction progress. To benchmark small wind costs, this report uses a dataset with cost information from 70 projects using 10 turbine models in 16 states across the United States representing 1.5 MW in rated capacity. Projects are categorized as residential (those using turbines up through 20 kW) and commercial (those using turbines 21 kW to 100 kW). Residential systems account for 57 of the 70 projects; the remaining 13 are commercial systems.
    [Show full text]