Energy Sources for Propulsion To, and for Distributed Use On, Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nasa Tm X-1864 *
NASA TECHNICAL. • £HP2fKit NASA TM X-1864 * ... MEMORANDUM oo fe *' > ;ff f- •* '• . ;.*• f PROPULSION • FOR *MANN1D E30PLORATION-k '* *Of THE SOEAE " • » £ Moedkel • - " *' ' ' y Lem$ Research Center Cleveland, Qbt® NATIONAL AERONAUTICS AND SFACE ADMINISTRATION • WASHINGTON, D. €, * AUCUST 1969 NASA TM X-1864 PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM By W. E. Moeckel Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and. Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 ABSTRACT What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. The first portion of this report relates planetary round-trip times to the performance parameters of two types of propulsion systems: type I is specific-impulse limited (with high thrust), and type n is specific-mass limited (with low thrust). The second part of the report discusses advanced propulsion concepts of both types and evaluates their limitations. The discussion includes nuclear-fission . rockets (solid, liquid, and gaseous core), nuclear-pulse propulsion, nuclear-electric rockets, and thermonuclear-fusion rockets. Particular attention is given to the last of these, because it is less familiar than the others. A general conclusion is that the more advanced systems, if they prove feasible, will reduce trip time to the near planets by factors of 3 to 5, and will make several outer planets accessible to manned exploration. PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM* byW. E. Moeckel Lewis Research Center SUMMARY What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. -
Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber
Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber G. Romanelli Master of Science Thesis Space Systems Engineering PULSED FUSION SPACE PROPULSION: COMPUTATIONAL IDEAL MAGNETO-HYDRO DYNAMICS OFA MAGNETIC FLUX COMPRESSION REACTION CHAMBER by Gherardo ROMANELLI to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday February 26, 2016 at 10:00 AM. Student number: 4299876 Thesis committee: Dr. A. Cervone, TU Delft, supervisor Prof. Dr. E. K. A. Gill, TU Delft Dr. Ir. E. Mooij, TU Delft Prof. A. Mignone, Politecnico di Torino An electronic version of this thesis is available at http://repository.tudelft.nl/. To boldly go where no one has gone before. James T. Kirk ACKNOWLEDGEMENTS First of all I would like to thank my supervisor Dr. A. Cervone who has always sup- ported me despite my “quite exotic” interests. He left me completely autonomous in shaping my thesis project, and still, was always there every time I needed help. Then, I would of course like to thank Prof. A. Mignone who decided to give his contribute to this seemingly crazy project of mine. His advice arrived just in time to give an happy ending to this story. Il ringraziamento più grande, però, va di certo alla mia famiglia. Alla mia mamma e a mio babbo, perché hanno sempre avuto fiducia in me e non hanno mai chiesto ragioni o spiegazioni alle mie scelte. Ai miei nonni, perché se di punto in bianco, un giorno di novembre ho deciso di intraprendere questa lunga strada verso l’Olanda, l’ho potuto fare anche per merito loro. -
MULTIPHYSICS DESIGN and SIMULATION of a TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET a Thesis by BRAD APPEL Submitted to the Office O
MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2012 Major Subject: Nuclear Engineering Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket Copyright 2012 Brad Appel ii MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Karen Vierow Committee Members, Shannon Bragg-Sitton Paul Cizmas Head of Department, Yassin Hassan August 2012 Major Subject: Nuclear Engineering iii iii ABSTRACT Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket. (August 2012) Brad Appel, B.S., Purdue University Chair of Advisory Committee: Dr. Karen Vierow The goal of this research is to apply modern methods of analysis to the design of a tungsten-cermet Nuclear Thermal Rocket (NTR) core. An NTR is one of the most viable propulsion options for enabling piloted deep-space exploration. Concerns over fuel safety have sparked interest in an NTR core based on tungsten-cermet fuel. This work investigates the capability of modern CFD and neutronics codes to design a cermet NTR, and makes specific recommendations for the configuration of channels in the core. First, the best CFD practices available from the commercial package Star-CCM+ are determined by comparing different modeling options with a hot-hydrogen flow experiment. -
Deuterium – Tritium Pulse Propulsion with Hydrogen As Propellant and the Entire Space-Craft As a Gigavolt Capacitor for Ignition
Deuterium – Tritium pulse propulsion with hydrogen as propellant and the entire space-craft as a gigavolt capacitor for ignition. By F. Winterberg University of Nevada, Reno Abstract A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus. 1. Introduction The idea to use the 80% of the neutron energy released in the DT fusion reaction for nuclear micro-bomb rocket propulsion, by surrounding the micro-explosion with a thick layer of liquid hydrogen heated up to 105 K thereby becoming part of the exhaust, was first proposed by the author in 1971 [1]. Unlike the Orion pusher plate concept, the fire ball of the fully ionized hydrogen plasma can here be reflected by a magnetic mirror. The 80% of the energy released into 14MeV neutrons cannot be reflected by a magnetic mirror for thermonuclear micro-bomb propulsion. This was the reason why for the Project Daedalus interstellar probe study of the British Interplanetary Society [2], the neutron poor deuterium-helium 3 (DHe3) reaction was chosen. -
IAF Space Propulsion Symposium 2019
IAF Space Propulsion Symposium 2019 Held at the 70th International Astronautical Congress (IAC 2019) Washington, DC, USA 21 -25 October 2019 Volume 1 of 2 ISBN: 978-1-7138-1491-7 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2019) by International Astronautical Federation All rights reserved. Printed with permission by Curran Associates, Inc. (2020) For permission requests, please contact International Astronautical Federation at the address below. International Astronautical Federation 100 Avenue de Suffren 75015 Paris France Phone: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 www.iafastro.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 PROPULSION SYSTEM (1) BLUE WHALE 1: A NEW DESIGN APPROACH FOR TURBOPUMPS AND FEED SYSTEM ELEMENTS ON SOUTH KOREAN MICRO LAUNCHERS ............................................................................ 1 Dongyoon Shin KEYNOTE: PROMETHEUS: PRECURSOR OF LOW-COST ROCKET ENGINE ......................................... 2 Jérôme Breteau ASSESSMENT OF MON-25/MMH PROPELLANT SYSTEM FOR DEEP-SPACE ENGINES ...................... 3 Huu Trinh 60 YEARS DLR LAMPOLDSHAUSEN – THE EUROPEAN RESEARCH AND TEST SITE FOR CHEMICAL SPACE PROPULSION SYSTEMS ....................................................................................... 9 Anja Frank, Marius Wilhelm, Stefan Schlechtriem FIRING TESTS OF LE-9 DEVELOPMENT ENGINE FOR H3 LAUNCH VEHICLE ................................... 24 Takenori Maeda, Takashi Tamura, Tadaoki Onga, Teiu Kobayashi, Koichi Okita DEVELOPMENT STATUS OF BOOSTER STAGE LIQUID ROCKET ENGINE OF KSLV-II PROGRAM ....................................................................................................................................................... -
Hyperspace NASA BPP Program Books 8
Advanced Space Propulsion Concepts for Interstellar Travel Gregory V. Meholic [email protected] Planets HR 8799 140 LY 11/14/08 Updated 9/25/2019 1 Presentation Objectives and Caveats ▪ Provide a high-level, “evolutionary”, information-only overview of various propulsion technology concepts that, with sufficient development (i.e. $), may lead mankind to the stars. ▪ Only candidate concepts for a vehicle’s primary interstellar propulsion system will be discussed. No attitude control No earth-to-orbit launch No traditional electric systems No sail-based systems No beamed energy ▪ None of the following will be given, assumed or implied: Recommendations on specific mission designs Developmental timelines or cost estimates ▪ Not all propulsion options will be discussed – that would be impossible! 2 Chapters 1. The Ultimate Space Mission 2. The Solar System and Beyond 3. Challenges of Human Star Flight 4. “Rocket Science” Basics 5. Conventional Mass Ejection Propulsion Systems State-of-the-Art Possible Improvements 6. Alternative Mass Ejection Systems Nuclear Fission Nuclear Fusion Matter/Antimatter Other Concepts 7. Physics-Based Concepts Definitions and Things to Remember Space-Time Warp Drives Fundamental Force Coupling Alternate Dimension / Hyperspace NASA BPP Program Books 8. Closing Information 3 Chapter 1: The Ultimate Space Mission 4 The Ultimate Space Mission For humans to travel to the stars and return to Earth within a “reasonable fraction” (around 15 years) of a human lifetime. ▪ Why venture beyond our Solar System? Because we have to - humans love to explore!!! Visit the Kuiper Belt and the Oort Cloud – Theoretical home to long-period comets Investigate the nature of the interstellar medium and its influence on the solar system (and vice versa) – Magnetic fields, low-energy galactic cosmic rays, composition, etc. -
Nuclear Pulse Propulsion: Orion and Beyond
AlAA 2000-3856 Nuclear Pulse Propulsion - Orion and Beyond G.R. Schmidt, J.A. Bunornetti and P.J. Morton NASA Marshall Space Flight Center Huntsville, Alabama 36th AIAMASMEEAWASEE Joint Propulsion Conference & Exhibit 16-19 July 2000 Huntsville, AIabam a AIAA 2000-3865 NLCLEAR PULSE PROPULSION - ORION AND BE\I*OND G.R. Schmidt,* J.A. Bonometti** and P.J. Morton+++ IWSA Marshall Space Flight Center, Huntsville, Alnbnnin 35812 A bgtract As alL\a>s. cost is a principal factor driving the need for systems with much greater performance. The race to the Moon dominated manned space However. when considering transportation of human flight during the 1960's. and culminated in Project crews over distances of billions of kilometers, safety Apollo. which placed 12 humans on the Moon. becomes an equal if not more important concern. The Unbeknownst to the public at that time, several U.S. biggest safety issues stem from the severe radiation government agencies sponsored a project that could environment of space and limitations imposed by have conceivably placed 150 people on the Moon, and human physiology and psychology. Although eventually sent crewed expeditions to Mars and the countermeasures. such as artificial graviw. could outer planets. These feats could have possibly been greatly mitigate these hazards. one of the most accomplished during the same period of time as straightforward remedies is to significantly reduce trip Apollo. and for approximately the same cost. The time by travelling at very high-energy. hyperbolic project. code-named Orion. featured an extraordinary trajectories. This will demand propulsion systems that propulsion method known as Niiclear Pulse can deliver far greater exhaust momentum per unit Pni,n:rlsioti. -
Feasibility and Performance of the Microwave Thermal Rocket Launcher
Feasibility and Performance of the Microwave Thermal Rocket Launcher Kevin L.G. Parkin, Fred E.C. Culick Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA Abstract. Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%. INTRODUCTION In the year 2003, payloads are launched into orbit the same way they were in 1963: by chemical rockets. Traditional expendable multistage rockets usually achieve payload fractions of less than 5%. As described by the rocket equation, this is due partly to the structural limits of existing materials, and partly to the limited specific impulse (Isp) of chemical propellants, which have reached a practical limit of 480 seconds. The structural economies made to preserve these minute payload fractions result in fragile rockets that are expensive to build. -
Space Exploration and Development Systems (SEEDS) 2014
SpacE Exploration and Development Systems (SEEDS) 2014 “Missions and Expeditions to Mars” Orpheus Executive Summary SEEDS Executive Summary 09/2014 Page 1 SEEDS Executive Summary 09/2014 Page 2 List of authors: Crescenzio Ruben Xavier AMENDOLA Portia BOWMAN Samuel BROCKSOPP Andrea D’OTTAVIO Alex GEE Samuel R. F. KENNEDY Antonio MAGARIELLO Adrian MORA BOLUDA Ignacio REY Alex ROSENBAUM Joachim STRENGE Aurthur Vimalachandran THOMAS JAYACHANDRAN SEEDS Executive Summary 09/2014 Page 3 SEEDS Executive Summary 09/2014 Page 4 ABSTRACT This six crew mission called Orpheus has been designed in order to fulfil some main objectives of space exploration: scientific advancements, technological progress, public outreach and international cooperation. This paper investigates the possibility of exploring the Martian system by using a manned spacecraft, the Crew Interplanetary Vehicle, (CIV) and a cargo vehicle, the Mars Automated Transfer Vehicle (MATV). The main payloads, carried by the high efficiency solar electric MATV, are a two-passenger spacecraft landing on Phobos; an orbital laboratory and a rover network for deployment to the surface of Mars. In order to cope with the constraints imposed for a human mission to deep space, the feasibility study has been performed using a human-centred design approach. The main output of the mission is the preliminary design of the CIV. Furthermore, the main parameters of the MATV as well as the orbital laboratory and the Phobos Lander were estimated. The manned spacecraft is designed to depart from LEO in 2036 using chemical propulsion. Once in Mars proximity, the main manoeuvres will be performed using nuclear thermal propulsion and a bi-propellant chemical system will perform the minor manoeuvres. -
(NTR) Artificial Gravity Mars Transfer Vehicle Concepts
AIAA-2014-3623 Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts Stanley K. Borowski1, David R. McCurdy2 and Thomas W. Packard2 NASA Glenn Research Center, Cleveland, OH, 44135 A variety of countermeasures have been developed to address the debilitating physiological effects of “zero-gravity” (0-g) experienced by cosmonauts and astronauts during their ~0.5 – 1.2 year long stays in LEO. Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to ~2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced “bimodal” nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of ~900 s – twice that of today’s best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical “ISS-type” habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. -
Two-Stage-To-Orbit Transporting System Combining Microwave Rocket and Microwave Thermal Rocket for Small Satellite Launch
Trans. JSASS Aerospace Tech. Japan Vol. 14, No. ists30, pp. Pb_99-Pb_103, 2016 Two-Stage-to-Orbit Transporting System Combining Microwave Rocket and Microwave Thermal Rocket for Small Satellite Launch By Kaoru KAKINUMA,1) Masafumi FUKUNARI,1) Toshikazu YAMAGUCHI,1) Yusuke NAKAMURA,1) Hiroyuki KOIZUMI,1) Kimiya KOMURASAKI1) and Kevin PARKIN2) 1) The University of Tokyo, Kashiwa, Chiba, Japan 2) Carnegie Mellon University, Silicon Valley Campus, California, USA (Received August 1st, 2015) This paper proposes a two-stage-to-orbit launch system comprised of a Microwave Rocket 1st stage and a Microwave Thermal Rocket 2nd stage. The air-breathing 1st stage improves payload fraction relative to a single-stage-to-orbit system and carries the 2nd stage above the atmosphere and into range of its beam director. For the 1st stage task, a Microwave Rocket is superior to an unmanned aerial vehicle because it is simpler, faster, and reaches higher altitude at higher speed. In addition, we present a new trajectory that eliminates power beaming at low elevation angles and improves system performance. This combination of factors reduces the propellant needed in the 2nd stage, which in turn increases payload fraction by a remarkable factor of 3 times. Key Words: Beamed Energy Propulsion, Gyrotron, Microwave, Wireless Power Transfer Nomenclature problems of this approach have been pointed out, the most critical one is the cost. The launch cost remains around $ 10,000 A : cross sectional area per kilogram of payload, and a breakthrough of further cost CD : drag coefficient reduction cannot be detected with the chemical rocket at present. D : drag The specific impulse of conventional chemical rockets is about m : rocket mass 450 s at maximum, resulting in low payload fraction of about p : pressure 3 %. -
A Propulsion Oriented Study of Mission Modes for Manned Mars Landing
NASA TECHNICAL I N.1S4 TM X-53265 MEMORANDUM June 29, 196: A PROPULSION ORIENTED STUDY OF MISSION MODES FOR MANNED MARS LANDING By G. R. WOODCOCK Future Projects Office NASA George C. Mdrshall Spdce Flight Center, Huntsuille, A labama TECH LIBRARY KAFB, NM A PROPULSION ORIENTED STUDY OF MISSION MODES FOR MANNED MARS LANDING G. R. Woodcock George C. Marshall Space Flight Center Huntsville, Alabama ABSTRACT Results are given of a systems analysis of manned Mars landing missions for a variety of mission modes, including chemical, nuclear, and electric propulsion, and aerodynamic braking. Consistent ground rules and assumptions were used. The baseline mission requires 450 days for execution and places 4 men on the surface of Mars for 20 days. Advanced missions are discussed. Each mission was analyzed assuming first Saturn V, and then a large reusable Post-Saturn ve hicle to be available, in order to provide a comparison. A cost advantage was found for the reusable Post-Saturn for all but very minimal planetary programs. Of the available technologies, the graphite nuclear rocket was found generally preferable to other systems for mission propulsion. Advanced nuclear propul sion, such as ORION, was found fo have great potential for advanced missions. NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER TECHNICAL MEMORANDUM X-53265 June 29, 1965 A PROPULSION ORIENTED STUDY OF MISSION MODES FOR MANNED MARS LANDING BY G. R. Woodcock FUTURE PROJECTS OFFICE -11111111i1 I 11111III I1111 I Ill Ill Ill1 I II I1 I I TABLE OF CONTENTS Page SUMMARY ........................................... 1 INTRODUCTION........