Spatio-Temporal Dynamics of Soil Composition and Accumulation Rates in Mangrove Wetlands Joshua L
Total Page:16
File Type:pdf, Size:1020Kb
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-22-2017 Spatio-temporal Dynamics of Soil Composition and Accumulation Rates in Mangrove Wetlands Joshua L. Breithaupt University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Geology Commons Scholar Commons Citation Breithaupt, Joshua L., "Spatio-temporal Dynamics of Soil Composition and Accumulation Rates in Mangrove Wetlands" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6684 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Spatio-temporal Dynamics of Soil Composition and Accumulation Rates in Mangrove Wetlands by Joshua L. Breithaupt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy College of Marine Science University of South Florida Co-Major Professor: Joseph (Donny) M. Smoak, Ph.D. Co-Major Professor: Robert H. Byrne, Ph.D. Pamela Hallock Muller, Ph.D. Brad E. Rosenheim, Ph.D. Stephen E. Davis III, Ph.D. Date of Approval: March 8, 2017 Keywords: Mangroves, Accretion, Carbon Burial, Sea-Level Rise, Timescale, Everglades Copyright © 2017, Joshua L. Breithaupt Acknowledgments This research was funded by the University of South Florida College of Marine Science fellowships provided by Anne and Werner Von Rosenstiel and the St. Petersburg Downtown Partnership Endowed Fellowship in Coastal Science, and under STAR Fellowship Assistance Agreement no. F13B20216 by the U.S. Environmental Protection Agency (EPA). This manuscript has not been formally reviewed by EPA. The views expressed are solely those of the author, and EPA does not endorse any products or commercial services mentioned in this publication. Material research support was provided by the National Science Foundation under South Florida Water, Sustainability & Climate grant 1204079, the US Fish & Wildlife Service’s State Wildlife Grants Program (#F13AF00982), and NASA-JPL “Vulnerability Assessment of Mangrove Forest Regions of the Americas” [LSU subcontract #1452878]. Discussions with faculty and students in the Florida Coastal Everglades Long Term Ecological Research program (supported by the National Science Foundation under grant DEB-1237517) are gratefully acknowledged. Co-author assistance was provided by the following: Chapter 1: Joseph M. Smoak, Victor H. Rivera-Monroy, Edward Castañeda-Moya, Ryan P. Moyer, Marc Simard, & Christian J. Sanders; Chapter 2: Joseph M. Smoak, Christian J. Sanders, & Tiffany Troxler; Chapter 3: Joseph M. Smoak, Robert H. Byrne, Matthew N. Waters, Ryan P. Moyer, & Christian J. Sanders. Table of Contents List of Tables ............................................................................................................................................... iii List of Figures .............................................................................................................................................. iv Abstract ........................................................................................................................................................ vi Introduction ................................................................................................................................................... 1 Context and Objectives .................................................................................................................... 1 References ........................................................................................................................................ 3 Chapter 1: Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils ............................................................................ 7 Abstract ............................................................................................................................................ 7 1. Introduction .................................................................................................................................. 8 2. Methods ..................................................................................................................................... 10 2.1 Study area ................................................................................................................... 10 2.2 Soil gravimetric measurements ................................................................................... 12 2.3 Radiometric dating, rate calculations, & statistical comparisons ............................... 13 2.4 Modeling SOM and SIM contributions to accretion ................................................... 14 3. Results ....................................................................................................................................... 16 3.1 Gravimetric results and soil classification scheme ..................................................... 16 3.2 Radiometric results ..................................................................................................... 16 3.3 Rates of SOM, SIM, and accretion ............................................................................. 17 3.4 Model results ............................................................................................................... 18 4. Discussion .................................................................................................................................. 19 4.1 SOM and SIM are non-additive contributors to soil volume ...................................... 19 4.2 SOM drives accretion; SIM drives bulk density ......................................................... 20 4.3 Accretion and historical rates of sea-level rise ........................................................... 22 4.4 Estimating future accretion requirements compared with sea-level rise .................... 23 5. Conclusions ............................................................................................................................... 24 References ..................................................................................................................................... 25 Tables ............................................................................................................................................. 32 Figures ........................................................................................................................................... 37 Chapter 2: Spatial variability of organic carbon, calcium carbonate and nutrient burial rates spanning an estuarine gradient in the coastal Everglades ..................................................................... 43 Abstract .......................................................................................................................................... 43 1. Introduction ................................................................................................................................ 44 2. Methods ..................................................................................................................................... 46 2.1 Study Area .................................................................................................................. 46 2.2 Mangrove above-ground vegetation characterization ................................................. 47 2.3 Soil characterization and dating .................................................................................. 48 2.4 Estimating CaCO3 dissolution rates from CaCO3:TP ratios ....................................... 49 2.5 Statistical analyses ...................................................................................................... 50 3. Results ........................................................................................................................................ 50 i 3.1 Above-ground vegetation characteristics .................................................................... 50 3.2 Site soil characteristics ................................................................................................ 51 3.3 Soil fluxes ................................................................................................................... 51 3.4 CaCO3:TP and carbonate dissolution .......................................................................... 52 4. Discussion .................................................................................................................................. 53 4.1 Spatial variability of above-ground vegetation and belowground rates...................... 53 4.2 Carbon Burial Efficiency ............................................................................................ 55 4.3 Potential CaCO3 dissolution ....................................................................................... 57 4.4 Regional Carbon budget implications ......................................................................... 60 References ...................................................................................................................................... 61 Tables ............................................................................................................................................