The Molecular Genetic Architecture of Attention Deficit Hyperactivity Disorder

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Genetic Architecture of Attention Deficit Hyperactivity Disorder Molecular Psychiatry (2015) 20, 289–297 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp EXPERT REVIEW The molecular genetic architecture of attention deficit hyperactivity disorder Z Hawi1, TDR Cummins1, J Tong1, B Johnson1, R Lau1, W Samarrai2 and MA Bellgrove1 Attention deficit hyperactivity disorder (ADHD) is a common childhood behavioral condition which affects 2–10% of school age children worldwide. Although the underlying molecular mechanism for the disorder is poorly understood, familial, twin and adoption studies suggest a strong genetic component. Here we provide a state-of-the-art review of the molecular genetics of ADHD incorporating evidence from candidate gene and linkage designs, as well as genome-wide association (GWA) studies of common single-nucleotide polymorphisms (SNPs) and rare copy number variations (CNVs). Bioinformatic methods such as functional enrichment analysis and protein–protein network analysis are used to highlight biological processes of likely relevance to the aetiology of ADHD. Candidate gene associations of minor effect size have been replicated across a number of genes including SLC6A3, DRD5, DRD4, SLC6A4, LPHN3, SNAP-25, HTR1B, NOS1 and GIT1. Although case-control SNP-GWAS have had limited success in identifying common genetic variants for ADHD that surpass critical significance thresholds, quantitative trait designs suggest promising associations with Cadherin13 and glucose–fructose oxidoreductase domain 1 genes. Further, CNVs mapped to glutamate receptor genes (GRM1, GRM5, GRM7 and GRM8) have been implicated in the aetiology of the disorder and overlap with bioinformatic predictions based on ADHD GWAS SNP data regarding enriched pathways. Although increases in sample size across multi-center cohorts will likely yield important new results, we advocate that this must occur in parallel with a shift away from categorical case-control approaches that view ADHD as a unitary construct, towards dimensional approaches that incorporate endophenotypes and statistical classification methods. Molecular Psychiatry (2015) 20, 289–297; doi:10.1038/mp.2014.183; published online 20 January 2015 INTRODUCTION endophenotypes and data-driven classification techniques, must Attention deficit hyperactivity disorder (ADHD) is the most now be used to advance the field. prevalent psychiatric condition of childhood, affecting 2–10% of school age children worldwide. Its features include extreme levels THE MOLECULAR GENETICS OF ADHD of motor activity, impulsivity and inattention. Individuals with ADHD may present with predominantly inattentive or hyperactive The last two decades of molecular genetic research in complex symptoms or, more commonly, a combination of both (ADHD- diseases including psychiatric conditions has been fuelled by the combined type). These symptoms are chronic and persist into common disease common variant (CDCV) hypothesis. The CDCV adulthood in ~ 30–60% of cases and are associated with lowered hypothesis argues that common genetic variations (allele fre- 4 academic functioning, increased risk for drug abuse and negative quency 5%) of low penetrance in the population are the major consequences for family and peer relations.1,2 Although environ- contributors to genetic susceptibility to common diseases. Although there are examples where the CDCV hypothesis has mental influences (such as low birth weight, delivery complica- proven useful for mapping genes underlying complex diseases tions, toxin exposure and food additives) have been identified, such as Crohn's disease and Alzheimer's disease,4,5 most of the genetic factors are recognised as the critical etiological compo- reported associations are of minor/modest effect size and account nent of ADHD. Large twin studies have consistently shown higher for a small proportion of the heritability of the associated disease/ monozygotic than dizygotic concordance rates with heritability trait.6 An alternative hypothesis is the common disease rare – 3 estimates ~ 75 90%. Although the genetic architecture of ADHD variant (CDRV) hypothesis which predicts that multiple rare is not known, a multi-factorial model is consistent with the high variations (⩽5% frequency) have a cumulative effect that accounts prevalence of ADHD in the general population and the high for a significant proportion of the genetic risk for common – concordance rate in monozygotic twins (68 81%) but modest risk conditions7 and that much of the genetic association signals to first-degree relatives (~20%). This article provides a state-of-the- reported under the CDCV approach actually represent diluted risk art review of the molecular genetics of ADHD. Findings from signals of rare, highly penetrant causal variants.8 candidate gene and genome-wide association studies (GWAS) are Earlier psychiatric genetic association studies pursued the CDCV integrated using bioinformatics and complex network analysis. hypothesis with a candidate gene approach (pre-specified gene Whereas the vast majority of genetic studies have treated ADHD of interest), using a single or limited number of genetic markers, as a unitary construct, we argue that a shift towards hetero- to examine the relationship between a gene and a disease geneity reduction, including the use of empirically derived condition. Advances in microarray technologies (high throughput 1School of Psychological Sciences, Monash University, Melbourne, VIC, Australia and 2New York City College of Technology, City University of New York, New York, NY, USA. Correspondence: Dr Z Hawi, School of Psychological Sciences, Monash University, Building 17, Clayton Campus, Wellington Road, Melbourne,VIC 3800, Australia. E-mail: [email protected] Received 18 April 2014; revised 14 November 2014; accepted 19 November 2014; published online 20 January 2015 Attention deficit hyperactivity disorder Z Hawi et al 290 Table 1. Candidate genes showing replicated evidence of association with ADHD Gene Associated variant Location Biological function References SLC6A3 40 bp VNTR 3′ UTR Regulator of extracellular dopamine and mediates the reuptake of Cook et al.91a; Gizer dopamine from the synapse. et al.92b DRD4 48 bp VNTR Exon GPCR activated by the neurotransmitter dopamine. La Hoste et al.93a; Gizer et al.92b DRD5 148 bp 5ʹ flanking Transduces extracellular signals in the form of dopamine into several Daly et al.94a; dinucleotide intracellular responses, including effects on adenylate cyclase, Ca2+ Gizer et al.92b repeats levels and K+ conductance. SLC6A4 40 bp indel 5ʹ flanking A member of a transporter family that is Na+ and Cl dependent. Manor et al.95a; Mediates the reuptake of serotonin from synapses. Gizer et al.92b HTR1B rs6296 Exon1 GPCR for serotonin. A prime target for antidepressant drugs and Hawi et al.96a; psychoactive substances Gizer et al.92b SNAP25 rs3746544 3ʹ UTR Plasma membrane protein essential for synaptic vesicle fusion and Brophy et al.97a; neurotransmitter release Gizer et al.92b SLC9A9 Inversion Region A member of large solute carrier family 9. Acts in electroneutral de Silva et al.98a; breakpoints 3p14—q21 exchange of hydrogen/sodium ions across membranes. Lasky-Su et al.21c; Mick et al.23c LPHN3 Haplotype Exon 4–19 Encodes a member of the latrophilin subfamily of GPCR. May act in Arcos-Burgos encompassing signal transduction and cell adhesion. et al.99a; Ribases exons et al.100d GIT1 rs550818 Intron GPCR kinase. Thought to be involved in vesicle trafficking, cell Won et al.101a adhesion and increasing the speed of cell migration. Overexpression of GIT1 is known to regulate the beta2-adrenergic receptor. NOS1 180–210 bp CA Exon Mediates several biological processes including neurotransmission Reif et al.102a; repeat and is reported to associate with neurodegenerative conditions. Franke et al.103c Abbreviations: ADHD, attention deficit hyperactivity disorder; GPCR, G-protein-coupled receptors; GWAS, genome wide association studies; UTR, untranslated region; VNTR, variable number tandem repeat. aFirst reported by. bMeta-analysis article. cGWAS finding. dAssociation in large sample or validation using animal model. genotyping) have now provided a powerful tool to investigate DAT1 VNTR influences neurocognitive measures in both ADHD genome-wide differences between patients and controls in and non-clinical samples.17,18 hypothesis-free designs. Like many candidate gene studies, the GWAS approach uses single-nucleotide polymorphisms (SNPs) to pursue the CDCV hypothesis. In contrast, the common disease rare GWAS IN ADHD variant approach has been interrogated at genome-wide level SNP-GWAS using copy number of variations (CNV) and only a limited number In childhood ADHD, four case-control GWAS19–22, two family- of single-nucleotide variant analyses have been performed across based GWAS23,24 and a quantitative trait loci GWAS25 have been 9,10 all psychiatric disorders. performed. One ADHD case-control GWAS has been performed in adults, while a further quantitative trait loci GWAS has been performed in a population-based cohort of adolescents and GENETIC ASSOCIATION STUDIES OF ADHD IN THE PRE-GWAS 26,27 ERA adults. In addition, a meta-analysis has been performed on the child studies28 however, neither the childhood or adult GWAS nor Dysregulation in biogenic neurotransmission has traditionally the subsequent meta-analysis have yielded genome-wide sig- been implicated in the aetiology of ADHD. The clinical effective- nificance (P ⩽ 5×10− 8). In contrast, a family-based association ness of stimulant medications (such as
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • CLASP2 Antibody Product Type
    PRODUCT INFORMATION Product name: CLASP2 antibody Product type: Primary antibodies Description: Rabbit polyclonal to CLASP2 Immunogen:3 synthetic peptides (human) conjugated to KLH Reacts with:Hu, Ms Tested applications:ELISA, WB and IF GENE INFORMATION Gene Symbol: CLASP2 Gene Name:cytoplasmic linker associated protein 2 Ensembl ID:ENSG00000163539 Entrez GeneID:23122 GenBank Accession number:AB014527 Swiss-Prot:O75122 Molecular weight of CLASP2: 165.9 & 108.6kDa Function:Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus- ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. Acts as a mediator of ERBB2- dependent stabilization of microtubules at the cell cortex. Expected subcellular localization:Cytoplasm › cytoskeleton. Cytoplasm › cytoskeleton › microtubule organizing center › centrosome. Chromosome › centromere › kinetochore. Cytoplasm › cytoskeleton › spindle. Golgi apparatus. Golgi apparatus › trans-Golgi network. Cell membrane. Cell projection › ruffle membrane. Note: Localizes to microtubule plus ends. Localizes to centrosomes, kinetochores and the mitotic spindle from prometaphase. Subsequently localizes to the spindle midzone from anaphase and to the midbody from telophase. In migrating cells localizes to the plus ends of microtubules within the cell body and to the entire microtubule lattice within the lamella.
    [Show full text]
  • MACF1 Regulates the Migration of Pyramidal Neurons Via Microtubule Dynamics and GSK-3 Signaling
    Developmental Biology 395 (2014) 4–18 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling Minhan Ka a, Eui-Man Jung a, Ulrich Mueller b, Woo-Yang Kim a,n a Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States b Dorris Neuroscience Center and Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, United States article info abstract Article history: Neuronal migration and subsequent differentiation play critical roles for establishing functional neural Received 5 June 2014 circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are Received in revised form poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines 13 August 2014 neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain Accepted 5 September 2014 development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 Available online 16 September 2014 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning Keywords: in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of MACF1 leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons Neuronal migration lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates Cytoskeleton GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal Microtubule GSK-3 migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.
    [Show full text]
  • ADHD) Gene Networks in Children of Both African American and European American Ancestry
    G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA.
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]
  • Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With
    CANCER GENOMICS & PROTEOMICS 18 : 531-542 (2021) doi:10.21873/cgp.20278 Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With Rearrangements of Chromosome Arms 3p and 21q IOANNIS PANAGOPOULOS 1, LUDMILA GORUNOVA 1, KRISTIN ANDERSEN 1, INGVILD LOBMAIER 2 and SVERRE HEIM 1,3 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 3Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway Abstract. Background/Aim: Benign smooth-muscle tumors, Leiomyomas are benign smooth -muscle tumors . They have leiomyomas, occur in nearly every organ but are most been described in nearly every organ but are most common common in the uterus. Whereas much is known about the in the uterus (fibroids) (1-5). genetics of uterine leiomyomas, little genetic information Much is known about the genetics , and hence the exists about leiomyomas of other organs. Here, we report pathogenesis, of uterine leiomyomas (6-9). In brief, most and discuss the genetic findings in a para-testicular uterine leiomyomas are cytogenetically characterized by the leiomyoma. Materials and Methods: Cytogenetic, array presence of one or more of the following cytogenetic comparative genomic hybridization (aCGH) RNA aberrations: t(12;14)(q15;q23–24) ; del(7)(q21.2q31.2) ; sequencing, reverse-transcription polymerase chain reaction rearrangements involving 6p21, 10q 22, and 1p ; trisomy 12 ; (RT- PCR), and Sanger sequencing analyses were performed deletions of 3q ; and changes of the X chromosome (10, 11). on a leiomyoma of the spermatic cord removed from a 61- These chromosomal aberrations rearrange and deregulate year-old man.
    [Show full text]
  • High-Throughput Loss-Of-Heterozygosity Study of Chromosome 3P in Lung Cancer Using Single-Nucleotide Polymorphism Markers
    Research Article High-throughput Loss-of-Heterozygosity Study of Chromosome 3p in Lung Cancer Using Single-Nucleotide Polymorphism Markers Amy L.S. Tai,1 William Mak,4 Phoebe K.M. Ng,4 Daniel T.T. Chua,1 Mandy Y.M. Ng,4 Li Fu,1 Kevin K.W. Chu,1 Yan Fang,5 You Qiang Song,2,4 Muhan Chen,1 Minyue Zhang,1 Pak C. Sham,3,4 and Xin-Yuan Guan1,5 Departments of 1Clinical Oncology, 2Biochemistry, and 3Psychiatry, 4Genome Research Center, The University of Hong Kong, Hong Kong, China and 5State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China Abstract candidate TSGs, such as FHIT (7), RASSF1A (8), CACNA2D2 (9), and Loss of DNA copy number at the short arm of chromosome 3 is DLC1 (10), have been widely studied. However, comparative one of the most common genetic changes in human lung genomic hybridization results showed that the loss of 3p was often involved in the whole short arm in NSCLCs (5, 11). Therefore, cancer, suggesting the existence of one or more tumor suppressor genes (TSG) at 3p. To identify most frequently the existence of some unknown TSGs at loci other than 3p21.3 and deleted regions and candidate TSGs within these regions, 3p14.2 regions is likely. a recently developed single-nucleotide polymorphism (SNP)- Conventional LOH uses limited microsatellite polymorphism mass spectrometry-genotyping (SMSG) technology was ap- markers (12), which is a time-consuming process with low- pliedto investigate the loss of heterozygosity (LOH) in 30 resolution genotyping. In addition, it is difficult to automate this primary non–small-cell lung cancers.
    [Show full text]
  • CLASP2 Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap7181b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CLASP2 Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7181b Specification CLASP2 Antibody (C-term) - Product Information Application WB, IHC-P,E Primary Accession O75122 Other Accession NP_055912 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 141064 Antigen Region 946-975 CLASP2 Antibody (C-term) - Additional Information Gene ID 23122 Western blot analysis of anti-CLASP2 Other Names Antibody (C-term) (Cat. #AP7181b) in mouse CLIP-associating protein 2, Cytoplasmic kidney tissue lysates (35ug/lane). linker-associated protein 2, Protein Orbit CLASP2(arrow) was detected using the homolog 2, hOrbit2, CLASP2, KIAA0627 purified Pab. Target/Specificity This CLASP2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 946-975 amino acids from the C-terminal region of human CLASP2. Dilution WB~~1:1000 IHC-P~~1:50~100 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This Formalin-fixed and paraffin-embedded antibody is purified through a protein A human Hepatocellular carcinoma reacted column, followed by peptide affinity with anti-CLASP2 Antibody (C-term), which purification. was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data Storage demonstrates the use of this antibody for Maintain refrigerated at 2-8°C for up to 2 immunohistochemistry; clinical relevance has weeks. For long term storage store at -20°C not been evaluated. in small aliquots to prevent freeze-thaw cycles. CLASP2 Antibody (C-term) - Background Precautions Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CLASP2 Antibody (C-term) is for research Microtubule plus-end tracking protein that use only and not for use in diagnostic or promotes the stabilization of dynamic therapeutic procedures.
    [Show full text]
  • Establishing an Osteosarcoma Associated Protein-Protein Interaction Network to Explore the Pathogenesis of Osteosarcoma Rk to Ex
    Deng et al. European Journal of Medical Research 2013, 18:57 http://www.eurjmedres.com/content/18/1/57 EUROPEAN JOURNAL OF MEDICAL RESEARCH RESEARCH Open Access Establishing an osteosarcoma associated protein-protein interaction network to explore the pathogenesis of osteosarcoma Bi-Yong Deng, Ying-Qi Hua* and Zheng-Dong Cai* Abstract Background: The aim of this study was to establish an osteosarcoma (OS) associated protein-protein interaction network and explore the pathogenesis of osteosarcoma. Methods: The gene expression profile GSE9508 was downloaded from the Gene Expression Omnibus database, including five samples of non-malignant bone (the control), seven samples for non-metastatic patients (six of which were analyzed in duplicate), and 11 samples for metastatic patients (10 of which were analyzed in duplicate). Differentially expressed genes (DEGs) between osteosarcoma and control samples were identified by packages in R with the threshold of |logFC (fold change)| > 1 and false discovery rate < 0.05. Osprey software was used to construct the interaction network of DEGs, and genes at protein-protein interaction (PPI) nodes with high degrees were identified. The Database for Annotation, Visualization and Integrated Discovery and WebGestalt software were then used to perform functional annotation and pathway enrichment analyses for PPI networks, in which P < 0.05 was considered statistically significant. Results: Compared to the control samples, the expressions of 42 and 341 genes were altered in non-metastatic OS and metastatic OS samples, respectively. A total of 15 significantly enriched functions were obtained with Gene Ontology analysis (P < 0.05). The DEGs were classified and significantly enriched in three pathways, including the tricarboxylic acid cycle, lysosome and axon guidance.
    [Show full text]
  • Genome-Wide Contribution of Common Short-Tandem Repeats to Parkinson’S Disease Genetic Risk
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.01.21259645; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Genome-wide contribution of common Short-Tandem Repeats to Parkinson’s Disease genetic risk Bernabe I. Bustos1*, Kimberley Billingsley2*, Cornelis Blauwendraat2, J. Raphael Gibbs3, Ziv Gan-Or4,5,6, Dimitri Krainc1, Andrew B. Singleton2† and Steven J. Lubbe1†. For the International Parkinson’s Disease Genomics Consortium (IPDGC). 1) Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA. 2) Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA 3) Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA. 4) The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada 5) Department of Human Genetics, McGill University, Montréal, QC, Canada 6) Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada *These authors contributed equally to this work 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.07.01.21259645; this version posted July 5, 2021.
    [Show full text]
  • The Microtubule Skeleton and the Evolution of Neuronal Complexity in Vertebrates
    Biol. Chem. 2019; 400(9): 1163–1179 Nataliya I. Trushina, Armen Y. Mulkidjanian and Roland Brandt* The microtubule skeleton and the evolution of neuronal complexity in vertebrates https://doi.org/10.1515/hsz-2019-0149 Received February 4, 2019; accepted April 17, 2019; previously Introduction published online May 22, 2019 The complexity of the nervous system permits the devel- Abstract: The evolution of a highly developed nervous opment of sophisticated behavioral repertoires, such as system is mirrored by the ability of individual neurons to language, tool use, self-awareness, symbolic thought, develop increased morphological complexity. As microtu- cultural learning and consciousness. The basis for the bules (MTs) are crucially involved in neuronal development, development of such a complexity is a high neuronal het- we tested the hypothesis that the evolution of complexity is erogeneity caused by neuronal diversification on the one driven by an increasing capacity of the MT system for regu- hand and a large interconnectivity between the individual lated molecular interactions as it may be implemented by neurons on the other hand (Muotri and Gage, 2006). In a higher number of molecular players and a greater ability addition, the brain constantly needs to adapt to func- of the individual molecules to interact. We performed bio- tional challenges of various kinds during development informatics analysis on different classes of components of and adulthood by a process called neural plasticity (Zilles, the vertebrate neuronal MT cytoskeleton. We show that the 1992). At a single cell level, neural plasticity involves number of orthologs of tubulin structure proteins, MT-bind- changes in the number or the strength of synaptic con- ing proteins and tubulin-sequestering proteins expanded tacts between individual neurons thereby changing the during vertebrate evolution.
    [Show full text]
  • Nature Supplementary Information
    SUPPLEMENTARY INFORMATION doi:10.1038/nature13679 Supplemental Section S1 – Genome sequencing and assembly ........................................ 4 1.1 Genome sequencing ........................................................................................................ 4 1.2 Genome assembly (Nleu1.0) ............................................................................................ 4 1.3 Creation of chromosomal “A Golden Path” (AGP) files ............................................... 5 1.4 Assembly quality assessment based on single-copy genes ....................................... 6 1.5 Comparison of gibbon BAC sequences to the gibbon assembly ................................ 8 1.6 Comparison to finished BACs to assess substitution and indel error rates ............ 12 1.7 Assessing large-scale rearrangements in the gibbon genome ................................. 13 Supplemental Section S2 – Next-generation sequencing datasets ................................... 15 2.1 The diversity panel: whole-genome sequences .......................................................... 15 2.2 Exome sequencing ......................................................................................................... 16 2.3 RNA sequencing ............................................................................................................. 16 Supplemental Section S3 – Analysis of gibbon duplications ............................................ 19 3.1 Segmental duplications in Nleu1.0 / nomLeu1 ...........................................................
    [Show full text]