The Aesthetics and Fractal Dimension of Electric Sheep
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fractal 3D Magic Free
FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction. -
Transformations in Sirigu Wall Painting and Fractal Art
TRANSFORMATIONS IN SIRIGU WALL PAINTING AND FRACTAL ART SIMULATIONS By Michael Nyarkoh, BFA, MFA (Painting) A Thesis Submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Faculty of Fine Art, College of Art and Social Sciences © September 2009, Department of Painting and Sculpture DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text. Michael Nyarkoh (PG9130006) .................................... .......................... (Student’s Name and ID Number) Signature Date Certified by: Dr. Prof. Richmond Teye Ackam ................................. .......................... (Supervisor’s Name) Signature Date Certified by: K. B. Kissiedu .............................. ........................ (Head of Department) Signature Date CHAPTER ONE INTRODUCTION Background to the study Traditional wall painting is an old art practiced in many different parts of the world. This art form has existed since pre-historic times according to (Skira, 1950) and (Kissick, 1993). In Africa, cave paintings exist in many countries such as “Egypt, Algeria, Libya, Zimbabwe and South Africa”, (Wilcox, 1984). Traditional wall painting mostly by women can be found in many parts of Africa including Ghana, Southern Africa and Nigeria. These paintings are done mostly to enhance the appearance of the buildings and also serve other purposes as well. “Wall painting has been practiced in Northern Ghana for centuries after the collapse of the Songhai Empire,” (Ross and Cole, 1977). -
An Introduction to Apophysis © Clive Haynes MMXX
Apophysis Fractal Generator An Introduction Clive Haynes Fractal ‘Flames’ The type of fractals generated are known as ‘Flame Fractals’ and for the curious, I append a note about their structure, gleaned from the internet, at the end of this piece. Please don’t ask me to explain it! Where to download Apophysis: go to https://sourceforge.net/projects/apophysis/ Sorry Mac users but it’s only available for Windows. To see examples of fractal images I’ve generated using Apophysis, I’ve made an Issuu e-book and here’s the URL. https://issuu.com/fotopix/docs/ordering_kaos Getting Started There’s not a defined ‘follow this method workflow’ for generating interesting fractals. It’s really a matter of considerable experimentation and the accumulation of a knowledge-base about general principles: what the numerous presets tend to do and what various options allow. Infinite combinations of variables ensure there’s also a huge serendipity factor. I’ve included a few screen-grabs to help you. The screen-grabs are detailed and you may need to enlarge them for better viewing. Once Apophysis has loaded, it will provide a Random Batch of fractal patterns. Some will be appealing whilst many others will be less favourable. To generate another set, go to File > Random Batch (shortcut Ctrl+B). Screen-grab 1 Choose a fractal pattern from the batch and it will appear in the main window (Screen-grab 1). Depending upon the complexity of the fractal and the processing power of your computer, there will be a ‘wait time’ every time you change a parameter. -
Annotated List of References Tobias Keip, I7801986 Presentation Method: Poster
Personal Inquiry – Annotated list of references Tobias Keip, i7801986 Presentation Method: Poster Poster Section 1: What is Chaos? In this section I am introducing the topic. I am describing different types of chaos and how individual perception affects our sense for chaos or chaotic systems. I am also going to define the terminology. I support my ideas with a lot of examples, like chaos in our daily life, then I am going to do a transition to simple mathematical chaotic systems. Larry Bradley. (2010). Chaos and Fractals. Available: www.stsci.edu/~lbradley/seminar/. Last accessed 13 May 2010. This website delivered me with a very good introduction into the topic as there are a lot of books and interesting web-pages in the “References”-Sektion. Gleick, James. Chaos: Making a New Science. Penguin Books, 1987. The book gave me a very general introduction into the topic. Harald Lesch. (2003-2007). alpha-Centauri . Available: www.br-online.de/br- alpha/alpha-centauri/alpha-centauri-harald-lesch-videothek-ID1207836664586.xml. Last accessed 13. May 2010. A web-page with German video-documentations delivered a lot of vivid examples about chaos for my poster. Poster Section 2: Laplace's Demon and the Butterfly Effect In this part I describe the idea of the so called Laplace's Demon and the theory of cause-and-effect chains. I work with a lot of examples, especially the famous weather forecast example. Also too I introduce the mathematical concept of a dynamic system. Jeremy S. Heyl (August 11, 2008). The Double Pendulum Fractal. British Columbia, Canada. -
Abstracts to the 15Th Annual International Conference, Denver, CO
Dedicated to the development of nonlinear science worldwide since 1991 Abstracts to the 15th Annual International Conference, Denver, CO 2005 Society for Chaos Theory in Psychology & Life Sciences 2005 CONFERENCE SOCIETY FOR CHAOS THEORY IN PSYCHOLOGY & LIFE SCIENCES August 4-6, University of Denver, Denver, CO PROGRAM ABSTRACTS* Listed Alphabetically by First Author Where Chaos Dissolves Susan Aaron, University of Toronto Nonlinearity functions in a world view where boundaries are defined by such terms autopoiesis as a continual exchange between organism and environment. Persons and their environment, and indeed their engagement with a world are thus defined by this interchange in the world. Thus a worldview is created where boundaries are often the cultural norm. Nonlinear as a broad and nonmathematical concern relates to patterns, or social even perceptual constructions that are relatively loose or non- structured comparatively within this relationship. One can apply the concept of chaos to return us to order as an opposite of it. I am suggesting that perhaps we may never lose order or have a methodology in the world that exists more dynamically than the separation of individual and environment. We are actively engaged as a world participant but apply certain constructs to divide up the actions of a world, to what end and at what loss? I propose a discussion and a demonstration of art, technology and ecology and communication in relation to space that considers the need or not need of formation of boundaries relative to the individual’s actions in the world. Here space is a cultural label rather than a guaranteed entity. -
Herramientas Para Construir Mundos Vida Artificial I
HERRAMIENTAS PARA CONSTRUIR MUNDOS VIDA ARTIFICIAL I Á E G B s un libro de texto sobre temas que explico habitualmente en las asignaturas Vida Artificial y Computación Evolutiva, de la carrera Ingeniería de Iistemas; compilado de una manera personal, pues lo Eoriento a explicar herramientas conocidas de matemáticas y computación que sirven para crear complejidad, y añado experiencias propias y de mis estudiantes. Las herramientas que se explican en el libro son: Realimentación: al conectar las salidas de un sistema para que afecten a sus propias entradas se producen bucles de realimentación que cambian por completo el comportamiento del sistema. Fractales: son objetos matemáticos de muy alta complejidad aparente, pero cuyo algoritmo subyacente es muy simple. Caos: sistemas dinámicos cuyo algoritmo es determinista y perfectamen- te conocido pero que, a pesar de ello, su comportamiento futuro no se puede predecir. Leyes de potencias: sistemas que producen eventos con una distribución de probabilidad de cola gruesa, donde típicamente un 20% de los eventos contribuyen en un 80% al fenómeno bajo estudio. Estos cuatro conceptos (realimentaciones, fractales, caos y leyes de po- tencia) están fuertemente asociados entre sí, y son los generadores básicos de complejidad. Algoritmos evolutivos: si un sistema alcanza la complejidad suficiente (usando las herramientas anteriores) para ser capaz de sacar copias de sí mismo, entonces es inevitable que también aparezca la evolución. Teoría de juegos: solo se da una introducción suficiente para entender que la cooperación entre individuos puede emerger incluso cuando las inte- racciones entre ellos se dan en términos competitivos. Autómatas celulares: cuando hay una población de individuos similares que cooperan entre sí comunicándose localmente, en- tonces emergen fenómenos a nivel social, que son mucho más complejos todavía, como la capacidad de cómputo universal y la capacidad de autocopia. -
Math Morphing Proximate and Evolutionary Mechanisms
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales. -
Furniture Design Inspired from Fractals
169 Rania Mosaad Saad Furniture design inspired from fractals. Dr. Rania Mosaad Saad Assistant Professor, Interior Design and Furniture Department, Faculty of Applied Arts, Helwan University, Cairo, Egypt Abstract: Keywords: Fractals are a new branch of mathematics and art. But what are they really?, How Fractals can they affect on Furniture design?, How to benefit from the formation values and Mandelbrot Set properties of fractals in Furniture Design?, these were the research problem . Julia Sets This research consists of two axis .The first axe describes the most famous fractals IFS fractals were created, studies the Fractals structure, explains the most important fractal L-system fractals properties and their reflections on furniture design. The second axe applying Fractal flame functional and aesthetic values of deferent Fractals formations in furniture design Newton fractals inspired from them to achieve the research objectives. Furniture Design The research follows the descriptive methodology to describe the fractals kinds and properties, and applied methodology in furniture design inspired from fractals. Paper received 12th July 2016, Accepted 22th September 2016 , Published 15st of October 2016 nearly identical starting positions, and have real Introduction: world applications in nature and human creations. Nature is the artist's inspiring since the beginning Some architectures and interior designers turn to of creation. Despite the different artistic trends draw inspiration from the decorative formations, across different eras- ancient and modern- and the geometric and dynamic properties of fractals in artists perception of reality, but that all of these their designs which enriched the field of trends were united in the basic inspiration (the architecture and interior design, and benefited nature). -
How the Networked Environment Saved the Screensaver
GA2008, 11th Generative Art Conference Across time and space: how the networked environment saved the screensaver N. R. Spratt, BVA School of Design, UNITEC, Auckland, New Zealand e-mail: [email protected] Abstract: Having come to represent an idle computer, the widespread adoption of broadband network systems and the ‘always online’ computer has helped reinvent the screensaver and the way it functions. This paper looks at two types of networked screensaver projects – the distributed computing network screensaver, and the more recent widget-style screensaver—and discusses the way that they use data flows to reshape the way that the applications behave and visualise themselves. Seti@home and Scott Draves’ Electric Sheep are compared with That Ltd.’s Drop Clock and Kaze to Desktop, looking at the different ways that they engage with data flows and notions of computer downtime. 1. Introduction: The screensaver was a programme initially developed to protect computer displays from screen burn when they weren’t being used. Over the last 25 years though they come to represent a type of inactivity, populating office and home computers that have been left dormant: a visualisation of idleness in a world obsessed with productivity. At a time when it was becoming increasingly obsolete due to improvements in computer display technology, the screensaver’s embrace of data networks has given it a new sense of purpose and possibility. Computer downtime has now become an opportunity for screensavers to quietly interact with data feeds: dynamically generating forms that respond to the flow of information, or in the case of the Berkeley Open Infrastructure for Network Computing (BOINC), putting millions of PCs to work collectively searching for extraterrestrial life or a cure for cancer. -
An Explanation of the Electric Sheep Distributed Screen-Saver by Scott Draves, Ph.D
The Interpretation of Dreams: An Explanation of the Electric Sheep Distributed Screen-Saver by Scott Draves, Ph.D. DreamWorks SKG, San Francisco, USA Intro The name Electric Sheep comes from Philip K. Dick's novel Do Androids Dream of Electric Sheep. It realizes the collective dream of sleeping computers from all over the Internet. Electric Sheep is a distributed screen-saver that harnesses idle computers into a render farm with the purpose of animating and evolving artificial life-forms. The project is an attention vortex. It illustrates the process by which the longer and closer one studies some- thing, the more detail and structure appears. 1. The Client When the software is activated, the screen goes black and an animated 'sheep' appears. In parallel, the screen- saver client contacts the server and joins the distributed computation of new sheep, an idea inspired by the SETI@home project. [1] The screen-saver is a window into a visual space shared among all users. Clients render JPEG frames and upload them to the server. When all the frames are ready, the server compresses them into an MPEG anima- tion. Each animation is the phenotype of an artificial organism, an 'electric sheep.' Clients download the MPEG sheep and display them one after another in a continuous, ever-changing sequence. About once every five minutes a new sheep is born and distributed to all active clients. Each sheep is an ani- mated fractal flame. [2] Example still frames appear in Figure 1. The shape is specified by a string of 120 real numbers -- a genetic code of sorts. -
Just Titles List
High School Book List ** These books are recommended for high school students only 100 Years of Solitude, Gabriel Garcia Marquez (1410L) 1776, David McCullough (1300L) 1984, George Orwell (1090L) A Long Way Gone: Memoirs of a Boy Soldier, Ishmael Beah (920L) A Thousand Splendid Suns, Khaled Hossennii (830L) A Walk in the Woods, Bill Bryson (1210L) The Absolutely True Diary of a Part-Time Indian, Sherman AleXie (600L) The Adventures of Huck Finn, Mark Twain (980L) The Adventures and Memoirs of Sherlock, Arthur Doyle (NC1070L) Alias Grace, Margaret Atwood Alice's Adventures in Wonderland, Lewis Carroll (890L) All Creatures Great and Small, James Herriot (990L) All Quiet on the Western Front , Erich Maria Remarque (830L) Revised 6/29/20 All Souls: A Family Story from Southie, Michael Patrick McDonald All the Pretty Horses, Cormac McCarthy (940L) And the Mountains Echoed, Khaled Hosseini And Then There Were None, Agatha Christie (570L) Angela’s Ashes, Frank McCourt (1110L) Animal Farm, George Orwell (1170L) Anthem, Ayn Rand (880L) Antigone, Sophocles (1090L) Arcadia, Tom Stoppard Around the World in Eighty Days, Jules Verne (1080L) As I Lay Dying, William Faulkner (870L) Athletic Shorts, Chris Crutcher (1010L) Atlas Shrugged, Ayn Rand (1070L) Autobiography of a Face, Lucy Grealy (1200L) Bad, Jean Ferris (730L) Batman: The Dark Knight Returns, Frank Miller Between the World and Me, Ta-Nehisi Coates (1090L) Beyond Religion: Ethics for a Whole World, Dalai Lama Billy Budd, Herman Melville (1450L) Black Hawk Down, Mark Bowden (970L) Bless Me, Ultima, Rudolfo Anaya (840L) Blood Done Sign My Name, Timothy Tyson (1240L) Revised 6/29/20 The Book, M. -
On the Lecture: ”When Chaos Theory Meets Other Disciplines”
The lecture illustrates chaos with an experiment, which I first showed with Mathematica in 1994 in a class at Caltech: the two maps T (x)=4x(1−x) and S(x)=4x−4x2 do not produce the same On the lecture: ”When chaos theory meets orbit, even when done with a computer algebra system to high accuracy. One can rephrase this other disciplines” as the fact that computers do not obey the associativity law. The reason are rounding errors, Harvard February 7, 2008, Oliver Knill which happen in a different way. These rounding errors propagate in time and become of order 1 afte n steps where eλn10−17 = 1 which means we expect them after n = log(1017)/ log(2) = 57 steps. This is pretty close to what we see in the experiments. Here are some annotations about the lecture. The abstract Chaos: low dimensional maps The fact that it is difficult to understand even the simplest two dimensional maps fascinated ”The mathematics of low dimensional chaos the- me early on and I worked myself for more than a decade on the problem to show that the map ory is now over 100 years old. The subject got T (x, y)=(2x + c sin(x) − y, x) is chaotic in the sense that DT n(x, y) grows exponentially for a set a popularity boost about 30 years ago when per- of positive measure. The problem is still open. I myself have tried geometric, variational methods, sonal computers became widely available. While complex analysis and spectral methods to solve this.