KIF14 Is a Candidate Oncogene in the 1Q Minimal Region of Genomic Gain in Multiple Cancers

Total Page:16

File Type:pdf, Size:1020Kb

KIF14 Is a Candidate Oncogene in the 1Q Minimal Region of Genomic Gain in Multiple Cancers Oncogene (2005) 24, 4741–4753 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc ORIGINAL PAPERS KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers Timothy W Corson1,2, Annie Huang3, Ming-Sound Tsao4,5,6 and Brenda L Gallie*,1,2,5,7 1Division of Cancer Informatics, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, ON, Canada M5G 2M9; 2Department of Molecular & Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; 3Labatt Brain Tumour Research Centre, Cancer Research Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; 4Division of Cellular & Molecular Biology, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, ON, Canada M5G 2M9; 5Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9; 6Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5G 1L5; 7Department of Ophthalmology, University of Toronto, Toronto, ON, Canada M5G 1X5 Gain of chromosome 1q31–1q32is seen in >50% of in retinoblastoma development is the loss of function of retinoblastoma and is common in other tumors. To define both alleles of the prototypic tumor suppressor gene, the minimal 1q region of gain, we determined genomic RB1, which encodes a key cell-cycle negative regulatory copy number by quantitative multiplex PCR of 14 transcription factor, pRB (Classon and Harlow, 2002). sequence tagged sites (STSs) spanning 1q25.3–1q41. The These initiating ‘M1’ and ‘M2’ mutations of Knudson’s most frequently gained STS at 1q32.1 (71%; 39 of 55 classic two-hit model for oncogenesis (Knudson, 1971) retinoblastoma) defined a 3.06 Mbp minimal region of are necessary for retinoblastoma initiation, but not gain between flanking markers, containing 14 genes. Of sufficient for malignancy. All retinoblastoma show these, only KIF14, a putative chromokinesin, was over- further mutational events (M3 to Mn), which perhaps expressed in various cancers by real-time RT–PCR. drive the transition to malignancy from the intermediate KIF14 mRNA was expressed in 20/22 retinoblastoma of benign retinoma (Gallie et al., 1999a; DiCiommo samples 100–1000-fold higher than in retina (t-test et al., 2000). P ¼ 0.00002); cell lines (n ¼ 10) had higher levels than Genomic aberrations may reflect M3 to Mn events. tumors (n ¼ 12) (P ¼ 0.009). KIF14 protein was over- The most prevalent karyotypic abnormality in retino- expressed in retinoblastoma tumors and breast cancer cell blastoma is gain of portions of the long arm of lines by immunoblot. KIF14 was expressed in 4/4 breast chromosome 1, seen in 21 of 27 tumors (Squire et al., cancer cell lines 31–92-fold higher than in normal breast 1985). At the higher resolution of comparative genomic tissue, in 5/5 medulloblastoma cell lines 22–79-fold higher hybridization (CGH), gain of a minimal region spanning than in fetal brain, and in 10/22 primary lung tumors 1q31 is the most common change seen in retinoblastoma 3–34-fold higher than in normal lung. Patients with lung in our study (Chen et al., 2001), and was seen tumors that overexpress KIF14 showed a trend toward cumulatively in 76/162 (47%) tumors across five decreased survival. KIF14 may thus be important in published studies (Figure 1a) (Mairal et al., 2000; Chen oncogenesis, and has promise as a prognostic indicator et al., 2001; Herzog et al., 2001; Lillington et al., 2002; and therapeutic target. van der Wal et al., 2003). Oncogene (2005) 24, 4741–4753. doi:10.1038/sj.onc.1208641; The long arm of chromosome 1 is particularly published online 9 May 2005 interesting in cancer biology, since gain of regions spanning 1q31–1q32 is reported in a wide variety of Keywords: retinoblastoma; breast cancer; lung cancer; cancers (Figure 1b). The Progenetix database of over medulloblastoma; kinesin; chromosome 1 10 000 tumor karyotypes, CGH, and array CGH profiles (Baudis and Cleary, 2001) indicates gain or amplifi- cation of this region in 43% of 414 breast cancers, 47% Introduction of 355 liver tumors, 22% of 322 cervical tumors, and 24% of 295 non-brain central nervous system tumors, Study of the rare pediatric eye cancer, retinoblastoma all of which show a pattern of 1q31–1q32 gain consistent (MIM# 180200), has revealed fundamental mechanisms with a ‘hotspot’ in this region (Baudis and Cleary, 2001) of cancer (DiCiommo et al., 2000). The initiating event (Figure 1b). Gain of 1q31–1q32 has also been seen in smaller fractions of cancers from over 60 other sites *Correspondence: BL Gallie, Division of Cancer Informatics, Room listed in the Progenetix database (Baudis and Cleary, 8-415, Ontario Cancer Institute/Princess Margaret Hospital, Univer- 2001), including 58/280 lung tumors and 13/94 medullo- sity Health Network, 610 University Avenue, Toronto, Ontario, blastomas and primitive neuroectodermal tumors Canada M5G2M9; E-mail: [email protected] Received 4 January 2005; revised 15 February 2005; accepted 17 (PNETs) (Figure 1b). Interestingly, chromosomal band February 2005; published online 9 May 2005 1E4 in the mouse genome, syntenic to 1q31, is gained in KIF14 is a 1q candidate oncogene in multiple cancers TW Corson et al 4742 Figure 1 Genomic gain at 1q31–1q32 is prominent in retinoblastoma and other cancers. (a) Gain of the long arm of chromosome 1, or even the entire chromosome, has been observed in five CGH studies of retinoblastoma. Numbers below figure indicate references: (1) Chen et al. (2001); (2) Herzog et al. (2001); (3) Mairal et al. (2000); (4) Lillington et al. (2002); (5) van der Wal et al. (2003). Vertical bars to the right of the chromosome ideogram indicate region of gain in an individual tumor; bars to the left indicate loss. Cumulatively, 83/ 162 (51%) tumors show gain of part or all of 1q, with a minimal common region of gain at 1q31–1q32 (gray boxed region) in 47%. (b) Gain at 1q31–1q32 is common in cancers at numerous sites. Fraction showing gain at 1q31–1q32 (black bars) of total tumors (white bars) at each cancer site with >10% 1q31–1q32 gain is shown. Tumor sites that display a ‘hotspot’ for gain at 1q31–1q32 are in boldface. The Progenetix database (Baudis and Cleary, 2001) was mined for gain and/or amplification at 1q31 and 1q32 for all tumor sites, with the exception of retina, where data came from our analysis of the five extant CGH studies in (a). Average percentage gain plus amplification across the region was calculated and plotted as a fraction of total tumors for each site. NHL, non-Hodgkin’s lymphoma; NOS, not otherwise specified several murine tumors, including lung adenocarcinoma compared to appropriate normal tissues. Patients whose (Sargent et al., 2002), mammary adenocarcinoma (Le primary lung cancers overexpress KIF14 tend to have Roy et al., 1993), teratocarcinomas (van Berlo et al., shorter survival. 1990), neuroblastomas (Hackett et al., 2003), and pancreatic tumors (Schreiner et al., 2003). The prevalence of 1q31 gain in the collective CGH Results and cytogenetic data suggests that one or more genes in this region are important in the genesis and/or develop- QM-PCR analysis of 1q gain in retinoblastoma ment of cancer. To test this hypothesis in the context of retinoblastoma and breast cancer, we analysed 1q To profile the genomic gain around 1q31 in retinoblast- genomic gain in 55 retinoblastoma tumors and 12 breast oma at a higher resolution than that achieved by CGH, cancer cell lines by quantitative multiplex (QM)–PCR. we scanned the region using QM-PCR in 55 retino- We identified a 3.06 Mbp minimal region of gain at blastoma tumors. An initial screen with five sequence 1q31.3–1q32.1, and found that one gene in this region, tagged sites (STSs), spaced evenly across 26.3 Mbp KIF14, an uncharacterized kinesin potentially involved spanning 1q25.3–1q41, identified a hotspot of gain, the in chromosome segregation, is highly expressed in STS SHGC-85288 at 1q31.3 (Figure 2a), gained in 62% retinoblastoma tumors, breast cancer and medulloblas- of tumors. In a second round of QM-PCR, we narrowed toma cell lines, and some lung primary tumors, the 13.2 Mbp hotspot to 3.06 Mbp centered on marker Oncogene KIF14 is a 1q candidate oncogene in multiple cancers TW Corson et al 4743 Figure 2 Minimal region of gain at 1q31.3–1q32.1 identified by QM-PCR. (a) Summary of QM-PCR analysis of copy number gains in 55 retinoblastoma. Proportion of tumors showing gain (copy number X mean of normals þ 3 s.d.) of each of 14 STSs (names indicated) spanning 1q25.3–1q41 is shown. SHGC-154194 at 1q32.1 is the hotspot STS (black), gained in 39/55 (71%) tumors. This hotspot defines a 1.03 Mbp minimal region of gain between flanking markers SHGC-133026 and SHGC-3266. A broader, 3.06 Mbp region of gain (indicated above figure) is defined by the next most commonly gained markers, SHGC-85288 and SHGC-76118, on either side of SHGC-154194. The approximate location of KIF14 is shown. (b, c) Detailed depiction of 1q gain in (b) retinoblastoma tumors and (c) breast cancer cell lines, as determined by QM-PCR. Each row is an individual tumor or cell line, while each column represents an STS along 1q (centromeric to telomeric, left to right). Black cells indicate gain and white cells indicate 2-copy. Previously published 1q CGH findings for each retinoblastoma tumor (Chen et al., 2001) or 1q cytogenetic data (available at www.atcc.org) for each breast cancer cell line, where known, are indicated to the right of the figure SHGC-154194, gained in 71% of retinoblastoma. A (Figure 2a).
Recommended publications
  • Accepted Version
    Article Genetic Control of Gonadal Sex Determination and Development STEVANT, Isabelle, NEF, Serge Abstract Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outcomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors. This review focuses on recent advances in our understanding of the genetic programs and epigenetic mechanisms that regulate gonadal sex determination and the regulation of cell fate commitment in the bipotential gonads. We rely primarily on mouse data to illuminate the complex and dynamic genetic programs controlling cell fate decision and sex-specific cell differentiation during gonadal formation and gonadal sex determination. Reference STEVANT, Isabelle, NEF, Serge. Genetic Control of Gonadal Sex Determination and Development. Trends in Genetics, 2019 PMID : 30902461 DOI : 10.1016/j.tig.2019.02.004 Available at: http://archive-ouverte.unige.ch/unige:115790 Disclaimer: layout of this document may differ from the published version. 1 / 1 Trends in Genetics Genetic control of sex determination and gonad development --Manuscript Draft-- Manuscript Number: TIGS-D-18-00173R1 Article Type: Review Keywords: sex determination; ovary; testis; lineage specification; gene expression; epigenetic regulation Corresponding Author: Serge Nef geneva, SWITZERLAND First Author: Isabelle Stévant Order of Authors: Isabelle Stévant Serge Nef Abstract: Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants
    Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050098 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants A dissertation presented by Seav Huong Ly to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts April 2018 © 2018 Seav Huong Ly All rights reserved. Dissertation Advisor: William C. Hahn Seav Huong Ly Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants Abstract The importance of oncogenic KRAS in human cancers have prompted intense efforts to target KRAS and its effectors. To anticipate the development of resistance to these strategies, we previously performed a genome-scale expression screen to identify genes that bypass KRAS oncogenic dependency. Here we test thirty-seven genes that scored over five standard deviations and find that overexpression of LIM homeobox 9 (LHX9), a transcription factor involved in embryonic development, robustly rescues the suppression of KRAS in vitro and xenograft models. Furthermore, LHX9 substantially decreases cell sensitivity to KRASG12C and MEK1/2 inhibitors in KRAS-dependent cells.
    [Show full text]
  • Kif1b Interacts with KBP to Promote Axon Elongation by Localizing a Microtubule Regulator to Growth Cones
    7014 • The Journal of Neuroscience, June 29, 2016 • 36(26):7014–7026 Development/Plasticity/Repair Kif1B Interacts with KBP to Promote Axon Elongation by Localizing a Microtubule Regulator to Growth Cones Catherine M. Drerup, XSarah Lusk, and Alex Nechiporuk Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 Delivery of proteins and organelles to the growth cone during axon extension relies on anterograde transport by kinesin motors. Though critical for neural circuit development, the mechanisms of cargo-specific anterograde transport during axon extension are only starting to be explored. Cargos of particular importance for axon outgrowth are microtubule modifiers, such as SCG10 (Stathmin-2). SCG10 is expressed solely during axon extension, localized to growth cones, and essential for axon outgrowth; however, the mechanisms of SCG10 transport and activity were still debated. Using zebrafish mutants and in vivo imaging, we identified the Kif1B motor and its interactor Kif1 binding protein (KBP) as critical for SCG10 transport to axon growth cones and complete axon extension. Axon truncation in kbpst23 mutants can be suppressed by SCG10 overexpression, confirming the direct relationship between decreased SCG10 levels and failed axon outgrowth. Live imaging revealed that the reduced levels of SCG10 in kbpst23 mutant growth cones led to altered microtubule stability, defining the mechanistic basis of axon truncation. Thus, our data reveal a novel role for the Kif1B-KBP complex in the anterograde transport of SCG10, which is necessary for proper microtubule dynamics and subsequent axon extension. Key words: axon extension; KBP; KIF1B; SCG10; stathmin Significance Statement Together, our data define the mechanistic underpinnings of failed axon outgrowth with loss of KBP or its associated motor, Kif1B.
    [Show full text]
  • The Kinesin Superfamily Handbook Transporter, Creator, Destroyer
    The Kinesin Superfamily Handbook Transporter, Creator, Destroyer Edited by Claire T. Friel First edition published 2020 ISBN: 978-1-138-58956-8 (hbk) ISBN: 978-0-429-49155-9 (ebk) 4 The Kinesin-3 Family Long-Distance Transporters Nida Siddiqui and Anne Straube CC BY-NC-ND 4.0 The Kinesin Superfamily Handbook The Kinesin-3 Family 4 Long-Distance Transporters Nida Siddiqui and Anne Straube CONTENTS 4.1 Example Family Members .............................................................................. 41 4.2 Structural Information .................................................................................... 41 4.3 Functional Properties ...................................................................................... 43 4.3.1 Autoinhibition of Kinesin-3 Motors and Their Activation .................45 4.4 Physiological Roles .........................................................................................46 4.4.1 Preference for Subsets of Microtubule Tracks .................................... 47 4.5 Involvement in Disease ...................................................................................48 Acknowledgements ..................................................................................................49 References ................................................................................................................49 The Kinesin-3s are a family of cargo transporters. They typically display highly processive plus-end-directed motion, either as dimers or in teams, formed via interaction with
    [Show full text]
  • Microtubule-Associated Proteins As Targets in Cancer Chemotherapy Kumar M.R
    Review Microtubule-Associated Proteins as Targets in Cancer Chemotherapy Kumar M.R. Bhat andVijayasaradhi Setaluri Abstract Natural and synthetic compounds that disrupt microtubule dynamics are among the most successful and widely used cancer chemotherapeutic agents. However,lack of reliable markers that predict sensitivity of cancers to these agents and development of resistance remain vexing issues. There is accumulating evidence that a family of cellular proteins that are associated with and alter the dynamics of microtubules can determine sensitivity of cancer cells to microtubule- targeting agents and play a role in tumor cell resistance to these agents. This growing family of microtubule-associated proteins (MAP) includes products of oncogenes,tumor suppressors, and apoptosis regulators,suggesting that alteration of microtubule dynamics may be one of the critical events in tumorigenesis and tumor progression. The objective of this review is to integrate the knowledge on these seemingly unrelated proteins that share a common function and examine their relevance to microtubule-targeting therapies and highlight MAPs-tubulin-drug interactions as a novel avenue for new drug discovery. Based on the available evidence,we propose that rational microtubule-targeting cancer therapeutic approaches should ideally include proteomic profiling of tumor MAPs before administration of microtubule-stabilizing/destabilizing agents preferentially in combination with agents that modulate the expression of relevant MAPs. Dynamic instability is an essential
    [Show full text]
  • 76F0c47cb71e753c0f29618f48ed
    International Journal of Molecular Sciences Review Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy Lin Jiang, Jialiang Liang , Wei Huang, Zhichao Wu, Christian Paul and Yigang Wang * Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA; [email protected] (L.J.); [email protected] (J.L.); [email protected] (W.H.); [email protected] (Z.W.); [email protected] (C.P.) * Correspondence: [email protected]; Tel.: +1-513-558-5798 Received: 30 September 2020; Accepted: 15 October 2020; Published: 16 October 2020 Abstract: Limited adult cardiac cell proliferation after cardiovascular disease, such as heart failure, hampers regeneration, resulting in a major loss of cardiomyocytes (CMs) at the site of injury. Recent studies in cellular reprogramming approaches have provided the opportunity to improve upon previous techniques used to regenerate damaged heart. Using these approaches, new CMs can be regenerated from differentiation of iPSCs (similar to embryonic stem cells), the direct reprogramming of fibroblasts [induced cardiomyocytes (iCMs)], or induced cardiac progenitors. Although these CMs have been shown to functionally repair infarcted heart, advancements in technology are still in the early stages of development in research laboratories. In this review, reprogramming-based approaches for generating CMs are briefly introduced and reviewed, and the challenges (including low efficiency, functional maturity, and safety issues) that hinder further translation of these approaches into a clinical setting are discussed. The creative and combined optimal methods to address these challenges are also summarized, with optimism that further investigation into tissue engineering, cardiac development signaling, and epigenetic mechanisms will help to establish methods that improve cell-reprogramming approaches for heart regeneration.
    [Show full text]