RNA Regulons and the RNA-Protein Interaction Network

Total Page:16

File Type:pdf, Size:1020Kb

RNA Regulons and the RNA-Protein Interaction Network BioMol Concepts, Vol. 3 (2012), pp. 403–414 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmc-2012-0016 Review RNA regulons and the RNA-protein interaction network Jochen Imig 1, a , Alexander Kanitz 1, a and Introduction Andr é P. Gerber 1,2, * In 1961, Fran ç ois Jacob and Jacques Monod described 1 Institute of Pharmaceutical Sciences , Department of the fi rst gene regulatory system in E. coli – the bacterial Chemistry and Applied Biosciences, ETH Zurich, lac operon (1) . An operon refers to a single, polycistronic CH-8093 Zurich , Switzerland transcriptional unit composed of a cluster of functionally 2 Department of Microbial and Cellular Sciences , Faculty and/or structurally related genes that are under the control of Health and Medical Sciences, University of Surrey, of a single regulatory unit that can be activated or repressed Guildford GU2 7XH , UK by a trans -acting factor. The operon concept was revolution- * Corresponding author ary as it implied that transcriptional units might bear infor- e-mail: [email protected] mation for the coordinate expression of functionally related proteins. Such an integrative architecture enables prokaryotes to quickly coordinate gene expression in response to environ- Abstract mental stimuli. However, DNA operons limit the fl exibility to regulate the expression of genes individually and would The development of genome-wide analysis tools has prompted therefore be detrimental to the regulation of genes that have global investigation of the gene expression program, reveal- multiple functions. ing highly coordinated control mechanisms that ensure proper DNA operons, which lead to the production of polycis- spatiotemporal activity of a cell ’ s macromolecular compo- tronic transcripts, predominantly occur in prokaryotes (2) . In nents. With respect to the regulation of RNA transcripts, the contrast, most eukaryotic genes are monocistronic, with their concept of RNA regulons, which – by analogy with DNA own promoter and transcription terminators at the 5 ′ - and regulons in bacteria – refers to the coordinated control of 3 ′ -ends, respectively. So, how is the coordinated expression functionally related RNA molecules, has emerged as a unify- of functionally related genes achieved in eukaryotes ? The ing theory that describes the logic of regulatory RNA-protein answer is certainly complex because such coordination is seen interactions in eukaryotes. Hundreds of RNA-binding pro- at all stages of gene expression, from chromatin structure and teins and small non-coding RNAs, such as microRNAs, bind transcription through to RNA processing, localization and to distinct elements in target RNAs, thereby exerting specifi c decay to the synthesis of proteins and their post-translational and concerted control over posttranscriptional events. In this modifi cations. Regarding the fi rst steps in the control of gene review, we discuss recent reports committed to systematically expression, one of the earliest possibilities for coordination is explore the RNA-protein interaction network and outline some provided by the chromatin structure of the genome. The struc- of the principles and recurring features of RNA regulons: the ture can be separated roughly into heterochromatin, which coordination of functionally related mRNAs through RNA- is transcriptionally silent, and euchromatin, which governs binding proteins or non-coding RNAs, the modular structure access to transcription factors through the density of pack- of its components, and the dynamic rewiring of RNA-protein aged structural proteins, such as the histones. Continuing from interactions upon exposure to internal or external stimuli. We this, the physical linkage of genes allows for co-expression, also summarize evidence for robust combinatorial control exemplifi ed by the homeobox genes, which form a sequential of mRNAs, which could determine the ultimate fate of each cluster on the chromosome to facilitate a developmental cas- mRNA molecule in a cell. Finally, the compilation and inte- cade (3) . Ultimately, the transcription of genes is coordinated gration of global protein-RNA interaction data has yielded by a host of cell and tissue-specifi c transcription factors (TFs) fi rst insights into network structures and provided the hypoth- (e.g., homeobox proteins) that bind to specifi c DNA promoter esis that RNA regulons may, in part, constitute noise ‘ buffers ’ sequences and recruit RNA-polymerases for RNA synthesis. to handle stochasticity in cellular transcription. Hence, TFs generally activate sets of genes coding for pro- teins that are structurally or functionally related. Keywords: gene regulatory networks; non-coding RNA; As cellular mRNA transcript levels are limited indica- post-transcriptional gene regulation; protein-RNA tors of protein abundance (4 – 7) , additional layers of control interaction; RNA-binding protein. must exist to ensure coordinated protein synthesis. Moreover, the presence of the nuclear membrane in eukaryotes, which results in a spatial separation of transcription and translation, a These authors contributed equally to this work. requires structures to coordinate production and distribution 404 J. Imig et al. of the large number of mRNA molecules present in a cell as RBPs (14) . In the worm Caenorhabditis elegans and in ( ∼ 150,000 mRNA molecules in a mammalian cell). Such the fruitfl y Drosophila melanogaster approximately 2 % and post-transcriptional coordination is mediated by a plethora in humans about 5 % of the protein coding genes are anno- of RNA-binding proteins (RBPs) that dynamically associ- tated as ‘ RNA binding ’ (UniProt/ Swissprot release 2012_2). ate with specifi c subpopulations of transcripts. Additionally, However, it is likely that the number of RBPs is even higher RBPs form ribonucleoprotein particles (RNPs) with small in light of the recent discoveries of many potentially novel non-coding RNAs (ncRNAs), such as microRNAs (miR- RBPs (15, 16) . Furthermore, several of the RNA-binding NAs), that participate in complementary binding to mRNA domains, such as the RRM, underwent drastic amplifi cation targets and repress translation or promote decay of their target during animal evolution (12) , in parallel with the evolution of mRNAs. Hundreds of RBPs and ncRNAs are expressed in highly specifi c post-transcriptional processes, such as alterna- eukaryotes – most of them with unknown functions – suggest- tive splicing, allowing an increased genetic diversity from a ing an elaborate system for post-transcriptional control that limited repertoire of genes. This may have consequences for may affect virtually every mRNA in a cell. human disease: many mutations in RBP genes are linked to With the development of genomic tools, it became feasible muscular and neurodegenerative disorders, which parallels to study the extent and logic of post-transcriptional gene regu- rapid evolution of neurological functions in primates (17) ; lation on a global scale. These technologies enabled the com- an increasing number of RBPs are being linked to cancer by prehensive identifi cation of mRNAs specifi cally associated acting as oncogenes or tumor suppressors (18) ; some RBPs with RBPs and miRNAs (see below). They also enabled the coordinate the initiation and resolution of infl ammation (19) . comprehensive measurement of RNA processing events in the Messenger RNAs can also be regulated via direct physi- nucleus (e.g., alternative-splicing and polyadenylation), the cal interactions with ncRNAs. The best-characterized class systematic exploration of mRNA localization, and the global of such RNAs is the large family of microRNAs (miRNAs), determination of mRNA decay and translation rates. In sum- ∼ 22-nucleotide-long RNA molecules that negatively regu- mary, genomics tools have provided important clues about late gene expression in metazoans [reviewed in (20, 21) ]. the architecture of the post-transcriptional regulatory system. MicroRNAs are processed from larger precursors in a series of Importantly – and by analogy with prokaryotic DNA operons – steps, and they are fi nally incorporated into the RNA-induced they showed that groups of mRNAs coding for functionally silencing complex (RISC) – the main component of which related proteins are commonly regulated and/or bound to is a member of the Argonaute (Ago) protein family. ‘ Seed ’ regulatory components, such as RBPs and/or miRNAs. This sequences in the miRNA (typically seven to eight nucleotides supports a model in which functionally related messages are at the 5 ′ -terminus) guide the miRNA-loaded RISC (miRISC) dynamically controlled by trans -acting factors that interact complexes towards partially complementary sequences in via cis -acting elements in the RNA, forming so-called RNA 3 ′ -untranslated regions (3 ′ -UTRs) of target mRNAs and regulons (8, 9) . thereby inhibit translation or promote mRNA decay. Almost This review summarizes concepts and features of RNA 2000 miRNAs have been discovered in human cells so far regulons and how their effectors are controlled. We mainly (22) , with an increasing number of them linked to important focus on cytoplasmic events that govern the coordination of the localization, translation, and decay of mRNA molecules. physiological and developmental processes and diseases (23) . We highlight recent studies and observations that support and further extend the RNA regulon model, describing features Ribonomics – global methods for the identifi cation of a highly complex post-transcriptional gene regulatory of RNA-protein
Recommended publications
  • Systematic Analysis of Posttranscriptional Gene Expression Adam R
    Advanced Review Systematic analysis of posttranscriptional gene expression Adam R. Morris,1 Neelanjan Mukherjee1 and Jack D. Keene1∗ Recent systems studies of gene expression have begun to dissect the layers of regulation that underlie the eukaryotic transcriptome, the combined consequence of transcriptional and posttranscriptional events. Among the regulatory layers of the transcriptome are those of the ribonome, a highly dynamic environment of ribonucleoproteins in which RNA-binding proteins (RBPs), noncoding regulatory RNAs (ncRNAs) and messenger RNAs (mRNAs) interact. While multiple mRNAs are coordinated together in groups within the ribonome of a eukaryotic cell, eachindividualtypeofmRNAconsistsofmultiplecopies,eachofwhichhas an opportunity to be a member of more than one modular group termed a posttranscriptional RNA operon or regulon (PTRO). The mRNAs associated with each PTRO encode functionally related proteins and are coordinated at the levels of RNA stability and translation by the actions of the specific RBPs and noncoding regulatory RNAs. This article examines the methods that led to the elucidation of PTROs and the coordinating mechanisms that appear to regulate the RNA components of PTROs. Moreover, the article considers the characteristics of the dynamic systems that drive PTROs and how mRNA components are bound collectively in physical ‘states’ to respond to cellular perturbations and diseases. In conclusion, these studies have challenged the extent to which cellular mRNA abundance can inform investigators of the functional
    [Show full text]
  • Integrated Analyses of Translatome and Proteome Identify the Rules of Translation Selectivity in RPS14-Deficient Cells
    ARTICLE Red Cell Biology and its Disorders Integrated analyses of translatome and Ferrata Storti Foundation proteome identify the rules of translation selectivity in RPS14-deficient cells Ismael Boussaid,1 Salomé Le Goff,1,2,* Célia Floquet,1,* Emilie-Fleur Gautier,1,3 Anna Raimbault,1 Pierre-Julien Viailly,4 Dina Al Dulaimi,1 Barbara Burroni,5 Isabelle Dusanter-Fourt,1 Isabelle Hatin,6 Patrick Mayeux,1,2,3,# Bertrand Cosson7,# and Michaela Fontenay1,2,3,4,8 Haematologica 2021 1 Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris; Volume 106(3):746-758 2Laboratoire d’Excellence du Globule Rouge GR-Ex, Université de Paris, Paris; 3Proteomic Platform 3P5, Université de Paris, Paris; 4Centre Henri-Becquerel, Institut de Recherche et d’Innovation Biomedicale de Haute Normandie, INSERM U1245, Rouen; 5Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris - Cochin, Service de Pathologie, Paris; 6Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex; 7Université de Paris, Epigenetics and Cell Fate, CNRS UMR 7216, Paris and 8Assistance Publique- Hôpitaux de Paris, Centre-Université de Paris - Hôpital Cochin, Service d’Hématologie Biologique, Paris, France *SLG and CF contributed equally to this work. #PM and BC contributed equally as co-senior authors. ABSTRACT n ribosomopathies, the Diamond-Blackfan anemia (DBA) or 5q- syn- drome, ribosomal protein (RP) genes are affected by mutation or deletion, Iresulting in bone marrow erythroid hypoplasia. Unbalanced production of ribosomal subunits leading to a limited ribosome cellular content regu- lates translation at the expense of the master erythroid transcription factor GATA1.
    [Show full text]
  • Comparative Transcriptome and Translatome Analysis in Contrasting
    Li et al. BMC Genomics 2018, 19(Suppl 10):935 https://doi.org/10.1186/s12864-018-5279-4 RESEARCH Open Access Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress Yong-Fang Li1,2*†, Yun Zheng3†, Lakshminarayana R. Vemireddy2, Sanjib Kumar Panda2, Smitha Jose2, Alok Ranjan2, Piyalee Panda2, Ganesan Govindan2, Junxia Cui1,KangningWei1, Mahmoud W. Yaish4, Gnanambal Charmaine Naidoo5 and Ramanjulu Sunkar2* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Soil salinity is one of the primary causes of yield decline in rice. Pokkali (Pok) is a highly salt-tolerant landrace, whereas IR29 is a salt-sensitive but widely cultivated genotype. Comparative analysis of these genotypes may offer a better understanding of the salinity tolerance mechanisms in rice. Although most stress-responsive genes are regulated at the transcriptional level, in many cases, changes at the transcriptional level are not always accompanied with the changes in protein abundance, which suggests that the transcriptome needstobestudiedinconjunctionwiththeproteometolink the phenotype of stress tolerance or sensitivity. Published reports have largely underscored the importance of transcriptional regulation during salt stress in these genotypes, but the regulation at the translational level has been rarely studied. Using RNA-Seq, we simultaneously analyzed the transcriptome and translatome from control and salt-exposed
    [Show full text]
  • The Global View of Translation
    International Journal of Molecular Sciences Review Translatomics: The Global View of Translation Jing Zhao 1, Bo Qin 2, Rainer Nikolay 2 , Christian M. T. Spahn 2 and Gong Zhang 1,* 1 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; [email protected] 2 Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; [email protected] (B.Q.); [email protected] (R.N.); [email protected] (C.M.T.S.) * Correspondence: [email protected]; Tel.: +86-20-8522-1790 Received: 6 November 2018; Accepted: 2 January 2019; Published: 8 January 2019 Abstract: In all kingdoms of life, proteins are synthesized by ribosomes in a process referred to as translation. The amplitude of translational regulation exceeds the sum of transcription, mRNA degradation and protein degradation. Therefore, it is essential to investigate translation in a global scale. Like the other “omics”-methods, translatomics investigates the totality of the components in the translation process, including but not limited to translating mRNAs, ribosomes, tRNAs, regulatory RNAs and nascent polypeptide chains. Technical advances in recent years have brought breakthroughs in the investigation of these components at global scale, both for their composition and dynamics. These methods have been applied in a rapidly increasing number of studies to reveal multifaceted aspects of translation control. The process of translation is not restricted to the conversion of mRNA coding sequences into polypeptide chains, it also controls the composition of the proteome in a delicate and responsive way.
    [Show full text]
  • Role of the RNA-Binding Protein Hur in Colon Carcinogenesis
    Oncogene (2003) 22, 7146–7154 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Role of the RNA-binding protein HuR in colon carcinogenesis Isabel Lo´ pez de Silanes1, Jinshui Fan1, Xiaoling Yang1, Alan B. Zonderman2, Olga Potapova3, Ellen S. Pizer4, and Myriam Gorospe*,1 1Laboratory of Cellular and Molecular Biology, and 2Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; 3Preclinical Research and Translational Medicine, SUGEN, Inc., San Francisco, CA 94080, USA; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA Immunohistochemical analysis of paired tumor and such as cyclin A and cyclin B1, proliferation-associated normal tissue specimens revealed that the expression and genes such as c-fos and c-myc, as well as other factors cytoplasmic abundance of the RNA-binding protein HuR that influence tumor cell growth like the vascular increased with malignancy, particularly in colon carcino- endothelial growth factor, cyclooxygenase-2, tumor mas. Interventions to modulate HuR expression in human necrosis factor (TNF)-a, and several interleukin (Levine RKOcolon cancer cells altered gene expression profiles et al., 1993; Antic and Keene, 1997; Levy et al., 1998; and identified b-catenin mRNA as a novel HuR target. Peng et al., 1998; Wang et al., 2000a; Dixon et al., 2001). Subcutaneous injection of HuR-overexpressing RKOcells HuR enhanced the stability of the cyclin A and cyclin B1 into nude mice produced significantly larger tumors than mRNAs during the S phase of the cell division cycle, an those arising from control populations; conversely, RKO effect that was linked to cell cycle progression and cell cells expressing reduced HuR through small interference proliferation (Wang et al., 2000a).
    [Show full text]
  • Functional Interplay Between RNA Viruses and Non-Coding RNA in Mammals
    non-coding RNA Review Functional Interplay between RNA Viruses and Non-Coding RNA in Mammals Nkerorema Djodji Damas 1,2 , Nicolas Fossat 1,2 and Troels K. H. Scheel 1,2,3,* 1 Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; [email protected] (N.D.D.); [email protected] (N.F.) 2 Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark 3 Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA * Correspondence: [email protected] Received: 4 December 2018; Accepted: 8 January 2019; Published: 14 January 2019 Abstract: Exploring virus–host interactions is key to understand mechanisms regulating the viral replicative cycle and any pathological outcomes associated with infection. Whereas interactions at the protein level are well explored, RNA interactions are less so. Novel sequencing methodologies have helped uncover the importance of RNA–protein and RNA–RNA interactions during infection. In addition to messenger RNAs (mRNAs), mammalian cells express a great number of regulatory non-coding RNAs, some of which are crucial for regulation of the immune system whereas others are utilized by viruses. It is thus becoming increasingly clear that RNA interactions play important roles for both sides in the arms race between virus and host. With the emerging field of RNA therapeutics, such interactions are promising antiviral targets. In this review, we discuss direct and indirect RNA interactions occurring between RNA viruses or retroviruses and host non-coding transcripts upon infection.
    [Show full text]
  • Genome Sequencing: Then & Now
    “Aint you got an ‘ome to go to?” Genomics Transcriptomics Proteomics Metabolomics Physiomics toxicogenomics pharmacogenomics ecotoxicopharmacogenomics phosphatome, glycome, secretome metronome, mobilome, gardenome, etc… http://omics.org/index.php/Alphabetically_ordered_list_of_omes_and_omics --A-- Alignmentome: conceived before 2003. The whole set of Bacteriome: an organelle of bacteria. (Bacteriome.org). Also Carbome: BiO center. 2003. The whole set of carbone multiple sequence and structure alignments in the totality of baterial genes and proteins. based living organisms in the universe. (Carbome.org) bioinformatics. Alignments are the most important Bacterome: The totality of (Bacterome.org) Carbomics: BiO center. 2003. (Carbomics.org) representation in bioinformatics especially for homology and Behaviorome: The totality of (Behaviorome.org) Cardiogenomics: The omics approach research of evolution study. (Alignmentome.org) Behavioromics: The omics approach research of Cardiogenome (Cardiogenomics.org) in biology Alignmentomics: conceived before 2003. The study of Behavioromics (Behavioromics.org) in biology Cellome: concept is derived from the understanding that aligning strings and sequences especially in bioinformatics. Behaviourome: The totality of (Behaviourome.org) cells as a whole can be used for therapeutic purposes. As an (Alignmentomics.org) Behaviouromics: The omics approach research of important bioresource, cells are kept for biotechnology. As Alignome: 2003 . The whole set of string alignment Behaviouromics (Behaviouromics.org) in biology a distinct group concept, cellome refers to such cells and algorithms such as FASTA, BLAST and HMMER. Bibliome: 1999. EBI (European Bioinformatics Institute). their genetic materials. (Cellome.org) (Alignome.org) The whole of biological science and technology literature. Cellomics: The study of Cellome. Cellomics is also a Alignomics: The omics approach research of Alignomics Within bibliome, each word and context is interconnected company name Cellomics, Inc.
    [Show full text]
  • Integrated Analyses of Translatome and Proteome Identify the Rules of Translation Selectivity in RPS14 -Deficient Cells
    Red Cell Biology and its Disorders SUPPLEMENTARY APPENDIX Integrated analyses of translatome and proteome identify the rules of translation selectivity in RPS14 -deficient cells Ismael Boussaid, 1 Salomé Le Goff, 1,2,* Célia Floquet, 1,* Emilie-Fleur Gautier, 1,3 Anna Raimbault, 1 Pierre-Julien Viailly, 4 Dina Al Dulaimi, 1 Barbara Burroni, 5 Isabelle Dusanter-Fourt, 1 Isabelle Hatin, 6 Patrick Mayeux, 1,2,3,# Bertrand Cosson 7,# and Michaela Fontenay 1,2,3,4,8 1Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris; 2Laboratoire d’Excellence du Globule Rouge GR-Ex, Uni - versité de Paris, Paris; 3Proteomic Platform 3P5, Université de Paris, Paris; 4Centre Henri-Becquerel, Institut de Recherche et d’Innova - tion Biomedicale de Haute Normandie, INSERM U1245, Rouen; 5Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris - Cochin, Service de Pathologie, Paris; 6Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex; 7Université de Paris, Epigenetics and Cell Fate, CNRS UMR 7216, Paris and 8Assistance Publique- Hôpitaux de Paris, Centre-Université de Paris - Hôpital Cochin, Service d’Hématologie Biologique, Paris, France *SLG and CF contributed equally to this work. #PM and BC contributed equally as co-senior authors. ©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.239970 Received: October 7, 2019. Accepted: March 26, 2020. Pre-published: April 23, 2020. Correspondence: MICHAELA FONTENAY - [email protected] Supplemental Material Boussaid et al Supplemental methods Human CD34+ progenitors were purified on MidiMacs system (Miltenyi Biotech, Bergisch Gladbach, Germany) and cultured in Iscove’s modified Dulbecco medium (IMDM, Life Technologies, Grand Island, NY) supplemented with 2 mM L-glutamine, 100 U/mL penicillin/streptomycin (Life Technologies), and 15% bovine serum albumin insulin transferrin (BIT 9500) serum substitute (StemCell Technologies, Vancouver, Canada).
    [Show full text]
  • Identification and Characterization of Transcripts Regulated by Circadian
    INVESTIGATION Identification and Characterization of Transcripts Regulated by Circadian Alternative Polyadenylation in Mouse Liver Kerry L. Gendreau,*,†,1 Benjamin A. Unruh,*,†,1 Chuanli Zhou,*,† and Shihoko Kojima*,†,2 *Department of Biological Sciences, and †Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061 ORCID IDs: 0000-0001-6058-0893 (K.L.G.); 0000-0003-0458-5846 (B.A.U.); 0000-0001-9579-7830 (S.K.) ABSTRACT Dynamic control of gene expression is a hallmark of the circadian system. In mouse liver, KEYWORDS approximately 5–20% of RNAs are expressed rhythmically, and over 50% of mouse genes are rhythmically circadian rhythms expressed in at least one tissue. Recent genome-wide analyses unveiled that, in addition to rhythmic alternative transcription, various post-transcriptional mechanisms play crucial roles in driving rhythmic gene expression. polyadenylation Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism that changes the 39-ends in silico of transcripts by alternating poly(A) site usage. APA can thus result in changes in RNA processing, such as mouse liver mRNA localization, stability, translation efficiency, and sometimes even in the localization of the encoded protein. It remains unclear, however, if and how APA is regulated by the circadian clock. To address this, we used an in silico approach and demonstrated in mouse liver that 57.4% of expressed genes undergo APA and each gene has 2.53 poly(A) sites on average. Among all expressed genes, 2.9% of genes alternate their poly(A) site usage with a circadian (i.e., approximately 24 hr) period. APA transcripts use distal sites with canonical poly(A) signals (PASs) more frequently; however, circadian APA transcripts exhibit less distinct usage preference between proximal and distal sites and use proximal sites more frequently.
    [Show full text]
  • Quantitative Principles of Cis-Translational Control by General Mrna Sequence Features in Eukaryotes Jingyi Jessica Li1*, Guo-Liang Chew2 and Mark Douglas Biggin3*
    UCLA UCLA Previously Published Works Title Quantitative Principles ofcis-translational control by general mRNA sequence features in eukaryotes Permalink https://escholarship.org/uc/item/4j67t50f Authors Li, Jingyi Jessica Chew, Guo-Liang Biggin, Mark Publication Date 2019-03-24 DOI 10.1101/587584 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Li et al. Genome Biology (2019) 20:162 https://doi.org/10.1186/s13059-019-1761-9 RESEARCH Open Access Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes Jingyi Jessica Li1*, Guo-Liang Chew2 and Mark Douglas Biggin3* Abstract Background: General translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood. Results: Here, we show that these sequence features specify 42–81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus,andHomo sapiens.Weestablishthatcontrolby RNA secondary structure is chiefly mediated by highly folded 25–60 nucleotide segments within mRNA 5′ regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5′ regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.
    [Show full text]
  • A Spatiotemporal Translatome of Mouse Tissue Development
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041079; this version posted April 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A spatiotemporal translatome of mouse tissue development Hongwei Wang1,2,3, Yan Wang1,2, Jiaqi Yang1,2, Nan Tang1, Huihui Li1, Mingzhe Xie1, Zhi Xie1,3 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China 2 These authors contributed equally to this work 3 Correspondence: [email protected] or [email protected] Running title: Mouse spatiotemporal translatome Keywords: mouse; development; translatome; translational regulation bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041079; this version posted April 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 Abstract The precise regulation of gene expression in mammalian tissues during development results in their functional specification. Although previous transcriptomic and proteomic analyses have provided great biological insights into tissue-specific gene expression and the physiological relevance of these tissues in development, our understanding of translational regulation in developing tissues is lacking. In this study, we performed a spatiotemporally resolved translatome analysis of six mouse tissues at the embryonic and adult stages to quantify the effects of translational regulation and identify new translational components. We quantified the spatial and temporal divergences of gene expression and detected specific changes in gene expression and pathways underlying these divergences.
    [Show full text]
  • Multifaceted Deregulation of Gene Expression and Protein Synthesis with Age
    Multifaceted deregulation of gene expression and protein synthesis with age Aleksandra S. Anisimovaa,b,c,1, Mark B. Meersona,c, Maxim V. Gerashchenkob, Ivan V. Kulakovskiya,d,e,f,2, Sergey E. Dmitrieva,c,d,2, and Vadim N. Gladyshevb,2 aBelozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; bDivision of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; cFaculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia; dEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; eVavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; and fInstitute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved May 27, 2020 (received for review January 30, 2020) Protein synthesis represents a major metabolic activity of the cell. RNA polymerase I, eIF2Be, and eEF2, decrease with age in rat However, how it is affected by aging and how this in turn impacts tissues (10). Increased promoter methylation in ribosomal RNA cell function remains largely unexplored. To address this question, genes and decreased ribosomal RNA concentration during aging herein we characterized age-related changes in both the transcrip- were also reported (11). In addition, down-regulation of trans- tome and translatome of mouse tissues over the entire life span. lation with age was confirmed in vivo in the sheep (12) as well as We showed that the transcriptome changes govern those in the in replicatively aged yeast (13).
    [Show full text]