<<

198 6ApJ. . .309. .7 32J 3 The AstrophysicalJournal,309:732-736,1986October15 kf 1986.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. (AGB) tothewhitedwarfphaseisstillnotwellunderstood(see, for example,IbenandRenzini1983).OnediagnosticofAGB isthatintheirverylatestages,theyundergoextensive for example,Olofsson1985).WiththeIRASsurvey,itispos- that aremostprofitablystudiedintheradioandinfrared(see, mass losswhichresultsinsubstantialcircumstellarenvelopes fluxes toconstraintheirevolutionaryhistories. circumstellar material.IthaslongbeenthoughtthatRVTau have justevolvedoutoftheAGBphaseandstillretainsome therefore identifybothcandidateAGBstarsandthat sible toperformsystematicstudiesofcircumstellardustand proposed todescribetheirevolution(seeKwok1982).Very stars arehighlyevolvedobjects,andhereweusetheIRAS nebula stars(Zuckermanetal1976),andmodelshavebeen have previouslybeenidentifiedaspost-AGBpreplanetary material havealsobeenidentifiedsuchasNGC7027(seeJura AGB objectsbystudyingthepropertiesofRVTaustars. young planetarynebulaewithsomeresidualmolecular discuss theevolutionarystatusofthesestarsandin§V, we develop someinsightintothestars’histories.In§IV we we presentdetailedmodelsforthecircumstellarenvelopes to Gingold andEggen(1986)onindependentgrounds.In§ III, present ourconclusions. the RVTaustarsareprobablypost-AGBobjects,ashave G, andK.Fromtheiroptical classification,theyestimatethat posed that sistent withthisresult,Barnes andDupuy(1975)havepro- RV Taustars;theyareluminouspulsatorsofspectralclass F, 19846). Here,weaimtoincreaseourunderstandingofpost- M ^—3magwhichindicates aluminosityof~10L©.Con- where Pistheperiodindays. Withatypicalperiodof75days v The evolutionofstarsfromtheasymptoticgiantbranch Some stars,suchastheEggnebula(CRL2688)orCRL618 The structureofthispaperisasfollows.In§II,wearguethat Preston etal(1963)havedescribedthebasicproperties of -51 4-31 from about10Myr,dependinguponthemetallicityofstarsandgrainemissivityat60/mi.It with theviewthatwearewitnessingsubsetofstarsundergoingpost-AGBevolutionlowmass seems likelythatthesestarshavejustevolvedfromthephaseofrapidmassloss,characteristiclast that themass-lossratesfromRVTaustarshaveapparentlysignificantlydecreasedduringpast~500yr and atleastinsomecasesoflowmetallicity.MostRVTaustarswillprobablybecomeplanetarynebulae; roughly 6x10"kpcyr,aboutatenthofthebirthrateallplanetarynebulae,andthisisconsistent stages oftheasymptoticgiantbranch(AGB).ThebirthrateRVTaustarsinsolarneighborhoodisvery Subject headings:infrared:sources—stars:evolutionmasslossRVTauri others, however,mayevolvesufficientlyslowlythattheirenvelopeswilldissipatebeforebeingphotoionized. 0 © American Astronomical Society • Provided by the NASA Astrophysics Data System RV Taustarsarerare,luminouspulsatorsofspectraltypesF,G,andK.AnalysistheIRASdatashows II. RVTAURISTARSASPOST-AGBOBJECTS M ==-5.3+0.021P, (1) v I. INTRODUCTION RV TAURISTARSASPOST-ASYMPTOTIGGIANTBRANCHOBJECTS stars :stellarstatistics Department ofAstronomy,UniversityCalifornia,LosAngeles Received 1986February5;acceptedApril8 ABSTRACT M.Jura 732 3 1 3 q most ofthedustisnotbeingcurrentlyejected. effective temperaturesandluminositiesofthelessmassive of~10L.Thesestarsthereforeseemtohavethe stars quiteoftenhavecircumstellardustbecausetheydisplay berner 1983). post-AGB stars(Gingold1974;IbenandRenzini1983;Schon- s~ forRVTau(FixandClaussen1984)—isconsistentwitha velocity inferredfromobservationsofOH—ofabout10km molecular outflowvelocityandluminosityforOH/IRstars and asmallbolometriccorrection,then,fromequation(1), significant amountsofinfraredradiation.Here,wesuggestthat (Jones, Hyland,andGatley1983;Jura1984a),theoutflow again, L~10.Finally,fromthecorrelationbetween contributes tothe100gmbandwhilewarmerdust known propertiesofcircumstellardustshells(see,forexample, long andshortwavelengthemission,itispossibletoestimate 0 mass-loss rateisconstantorchangingwithtime. the densityofmaterialthatisnearbytostarcompared to theemissionat12jam.Bycomparingrelativeamountsof Sopka etal1985).IntheIRASbandpasses,cooldustmainly that whichismoredistant,andthusdeterminewhether the 0 detected byIRASat60jam,thewavelengththatisprobably et al(1969),wehaveidentified17RVTaustarswhichwere the existenceofcircumstellarmaterial. study thetimehistoryofmassloss—hecouldonlyestablish the groundoutto20jam,hehadinsufficientinformation to The detectedstarsandtheIRASfluxesarelistedinTable 1; most suitableforestimatingthedustlossrate(seeJura1986). are detectedinallfourIRAS bands,welistqforthespectral and welistthederivedvalues ofqinTable1.Forstarswhich a powerlawtotheobservedfluxessuchthatFvariesas v, this listincludesabout20%ofallknownRVTaustars.We fit region between12jimand100 /xm;otherwisewelistqforthe average valueofqis1.54,while thepower-lawfitstooxygen- range between12jamand60jim. v Gehrz (1972)andLloydEvans(1985)foundthatRVTau The basicargumentofthispapercomesfromusingthewell- Because Gehrz(1972)couldonlyperformobservationsfrom Jura (1986)foundthatfor mass-losing carbonstars,the From thecomprehensivevariablestarcatalogofKukarkin 198 6ApJ. . .309. .7 32J +1 n(35-2) No. 2,1986 maximum valueofqisonly1.41whiletheaverage0.98. rich starsare,ontheaverage,evensteeper(Hackingetal Therefore, theRVTaustarshavesignificantlyflatterinfrared spectra thandomostmass-losingredgiants. density distributionofdustgrainsandtheevmissivity infrared colorsofRVTaustarsmustresultfromanunusual drastically differentfromanyothercircumstellardustand grains asafunctionofwavelength.Unlessthearound unlike anysubstanceusuallyproposedforgrains,theunusual RV Taustarsarecomposedofanunknownmaterialwhichis 1985). Incontrast,fortheRVTaustarsshowninTable1, son, andGatley(1979),iftheemissivityvariesasv can naturallybeidentifiedastheasymptoticgiantbranch.This the mass-lossratewasgreaterinpastthanitiscurrently. q =0.98,weexpectthatthedensityvariesasr“^implying density variesasr~,thenFshouldvaryv-’".Since density distributionofdustgrainsandtheemissivity stars havejustleftsomephaseofmorerapidmasslosswhich view isconsistentwiththeirluminosities,temperatures,and, as consider ACHer,whichisoneofthebrightestRVTau stars described below,theirstatisticalpropertiesintheMilkyWay. (1985), itseemsthat and iscarbon-rich(Baird1981;Cardelli1985)sothatwe can Gehrz (1972),Prestonetal(1963),andBairdCardelli stars. apply theanalysisofJura(1986)formasslossfromcarbon In equation(2),Disthedistance tothestarinkpc.Since amount ofinterstellarreddening isuncertain,weconsiderboth v kpc The fluxdistributionintheinfrareddependsupon A reasonableinterpretationofallthesedataisthatRVTau As anexampleofobjectatime-varyingmassloss,we First, fromtime-averagingtheobservedfluxesgivenby (1969) listitasanMstarwellRVTauvariable.Weassume is anunusualMira. 60 /imbecauseitsperiodislongerthan200daysandKukarkinetal. TW Cam. GK Car.. IW Car... UY CMa. SX Cen... RU Cen.. U Mon... AC Her.. SU Gem. AI Seo... AR Pup.. DYOri .. CT Ori... V Vul.... RV Tau.. R Set R Sge III. DETAILEDMODELSFORCIRCUMSTELLARENVELOPES Note.—We excludeBICepeventhoughitwasdetectedbyIRASat © American Astronomical Society • Provided by the NASA Astrophysics Data System RV TauriStarsDetectedat60/¿mbyIRÁS 32 32 L =2.1x10D,A =l. (2b) L =1.1xÍ0Z),A =0(2a) kpc0v kpc0v 12 fim2560/¿m100/mi 101 124 131 41 21 22.5 12 18 10.6 12 2.9 8.3 6.0 3.5 7.9 5.4 6.2 a) ACHer TABLE 1 96 94 65 88 11 15 11 18 2.5 2.5 5.6 9.3 5.7 3.6 7.6 5.6 5.7 26 21 34 26 0.78 0.57 4.1 2.2 2.1 5.6 2.9 6.4 8.1 1.8 1.1 1.2 1.3 <139 <12 <12 <11 <46 <1.0 <1.7 <1.5 <1.7 <1.5 <7.0 13 12 9.2 2.0 7.8 2.5 RV TAURISTARS 0.47 0.97 0.82 0.95 0.78 0.79 0.67 0.59 1.13 1.05 1.02 1.23 1.04 1.13 1.01 1.13 1.38 1 s2-1 + 1 15 can computethetemperatureofcarbongrainsat,say,1"from below). values forthisquantity(seeBairdandCardelli1985 A =0andAy—1maginordertobrackettheproposed the startogive In equation(4),vistheoutflowvelocityinunitsof10kms~ carbon-rich redgiants(KnappandMorris1985;Zuckerman and Xóoitheopacityofdust(cmg)at60¿un.We for RVTauwhereOHhasbeendetected(FixandClaussen and Dyck1986;Zuckerman,Dyck,Claussen1986), assume thati^o=1asseemsappropriateformass-losing for simplicity,amodelwithconstantmass-lossrate would derivefromequation(3)ofJura(1986)andtheobserved IRAS fluxat60fim material, then loss stops.Ifwefurtherassumeasimplefreeexpansionofthe time, until,thestarabruptlyevolvesoffAGBandmass of aconstantmass-lossratewithtimeisnotcorrect.Assume, emission atfrequencyvisgivenby loss stopped. We definer=vtwheretisthetimeelapsedsincemass v o512x 1984). 10 where Tisthegraintemperatureatr=.Aftersomemanip- ulation, wefindthat v ,then Since weassumethattheemissivityofgrains,Xvvariesas In equation(8),/i,c,andkaretheusualconstantsx= hv/ 9 kT. Wedefinex=atr. 0 is afiniteradiustotheinnershellofdustdistribution, then 17 1 we findadifferentspectralvariation ofLsincexisafunction tion (8),Lvariesasvdescribedabove.If,however,there malized tothefluxat25pm. Though noneofthemodelsgives inner radiusofthecircumstellar envelope.Allresultsarenor- of v. the JR^S-measuredcolorsof ACHerfordifferentvaluesofthe 0 0 v0 v L =20nv-xMJ(hcv)rkTÍ'(e1)~ dx . +1 M =4.0x10z;D(150/o)gs“,^11.(4b) M =5.9xlO^v.oD^lSO/xeo)gs“,A0(4a) vduo dust1()kpcZ6F dustv Following themethoddescribedbySopkaetal(1985),we If weassumeaconstantmass-lossratefromthisstar, Because oftherelativelylowfluxat12¿mi,simplemodel Following Sopkaetal(1985),wemaywritethattheinfrared Note thatifx=0andvariesasv,thenfromequa- In Figure1weshowtheresults ofcalculationstoreproduce 0v 2 L =(47t)i(xMJ4nrv)B(T)4nrdr.(6) vdu 2 p =0r.(5b) 0 àu0 T(l") =123K,A0(3a) T(l") =144K,Al.(3b) v v Jro 0A T =(r/r),(7) 0 Jxo 733 (8) 198 6ApJ. . .309. .7 32J 17_ 1 15 21 21- 734 the dustshellof300K. x(12 fim);allpointsarenormalizedat25pm.Althoughnotperfect,thebestfitisforpm)=4,whichcorrespondstoatemperature inner boundaryof perfect agreementwiththeobservations,modelx(12 making themorerealisticassumptionofasuddencessation lar shellof300K.Fromequation(3)andanassumeddistance is notverysensitivetoA. losing phaseofthisstar7x10gs(D=1);result mass loss[eq.(5)].Weinferadust-lossrateduringthemass- with theassumptionofaconstantmass-lossrate[eq.(3)]is cm fromthestar(seebelow),andmass-lossratederived km s"ofabout150years. shell, r,is5x10cm.Thisrequiresanexpansiontimeat to agraintemperaureattheinnerboundaryofcircumstel- model usedtoreproducetheIRAScolors.Wewrite lower byonlyafactorofabout1.3fromthemass-lossrate of 1kpc,wefindthattheradiusboundaryinner from theresultsinJura(1986),thenwithparameters /xm) =4matchesthedatareasonablywell.Thiscorresponds from opticalstudies,which,however,iscontaminatedbyinter- derived above,wefindthatt=0.23whichcorresponds to If wetake%=18,000cmg“atFasasimpleextrapolation stellar extinctiontowardACHer.Inthegeneraldirection of lower boundsincetheremay bemolecularandionizedgasin However ourvaluesofthe interstellar reddeningisonlya that theinterstellarcontribution toE(B—V)is0.15±0.1. seems thatE(B—V)>0.25mag (Bohlin,Savage,andDrake 21 cmdatais1.5x10(Heiles1975),andtherefore it this star,thecolumndensityofatomichydrogenderivedfrom A =025. the lineofsightaswell observedatomichydrogen.In 0 0 v kpc 0 1978), consistentwiththeestimate byBairdandCardelli(1985) v 16 Fig. 1.—PlotofIRASobservationsvs.simplemodelsforthecircumstellaremissionfromACHer.Thedifferentsetspointscorrespondto valuesof The circumstellarextinction,t,canbeestimatedfromthe Most oftheemissionat60/unisproducedbydust~10 We cannowcomparethisresultwiththereddeningderived © American Astronomical Society • Provided by the NASA Astrophysics Data System ? =xM/(47rrp).(9) dust JURA -51 4 0.44 ±0.05(BairdandCardelli1985),itseemsthatthecontri- any case,sincethetotalcolorexcesstowardthisstaris bution tothereddeningbycircumstellarmatteris the formulaforCOfluxgivenbyKnappandMorris(1985), J =1-0rotationallinegivenbyZuckermanetal.(1976) and loss ratefromACHeris2xl0Myr.Thismass-loss is then4.5x10",anorderofmagnitudesmallerthanthe as inbipolarnebulae(seeMorris1981). Given alltheuncertainties,thereisnocompellingreasonto extinction of0.25derivedfromanalysistheIRASdata. reasonable agreementwithourvalueofthecircumstellar circumstellar extinctionislessthanorequalto0.57±0.15,in E(B— F)<0.19±0.05whichimplies,forR=3,thatthetotal scaled toanappropriatelylowerabundanceofCO. rate isconsistentwiththeupperlimitofCOemissionin the typical valueforcarbonstars(Jura1986),thenthetotalmass- think thatthemasslossisdrasticallynonsphericallysymmetric 1981 ;Cardelli1985)andifweassumethatthedust-to-gasratio Jura (1986).Weusethissimplemodel,because,asshown assume thatthefluxfromthese starsissimplygivenbythe able, andbecausethebolometric correctionsaresmall,we mass-loss process. emitting materialareinsensitivetothedetailedhistoryof the model forcircumstellaremissionbySopkaetal.(1985) and Tau stars,andinTable2,welistourderivedratesbasedupon stars forwhichthedataareavailable, weassumethevaluesof time-averaged valueofvFat F,theusualvisualfilter.For above forACHer,ourderivedmass-lossratesthe60 pm o the IRASobservationsof60pmfluxandsimplified v We arealsointerestedinthemass-lossratesfromotherRV If weassumeametallicityof0.1thesolarvalue(Baird Because detailedphotometry atallwavelengthsisnotavail- b) SimplifiedMass-LossEstimates Vol. 309 198 6ApJ. . .309. .7 32J _1 are not + 1,5 2_ 1 1 51 17- 1 16 No. 2,1986 we assumeA=1mag.Wetaketheabsoluteluminosityand . insensitive tothismodelwheretheemissivityofgrains is straightforwardtoshowthatthederivedmass-lossratesare analysis byJura(1986)formasslossfromcarbon-richstars.It although someofthesestarsareoxygenrich,weusethe assume anoutflowvelocityofthegas10kms.Finally, E(B—V) givenbyDawson(1979)andthatA=3E(B—V). Mdust especiallysensitivetothedistancesandabsolute rates scaleonlylinearlywiththedistancesothatourvaluesof b =2?7thatis10kpcfromtheSun.Thederivedmass-loss therefore derivedistancesfromequation(1),andinallcases,we amount ofextinctionseemstobemuchtoosmallforastarat derived distanceforGKCarisprobablytoolargebecausethe rates scaleinverselyas%,theemissivityat60fim.Herewe varies asv,insteadof,forexample,.Allthemass-loss For thetwostarswhereDawsondoesnotestimateE(B—V), whichisoftenuncertainforthesestars. and inagreementwiththosegivenbyDawson.However,our which 0.5ofallthe60/anradiationisemitted(seeSopkaet al. Her, thenthetypicaltotalmass-lossratefromthesestars is the metallicityofallthesestarsisrelativelylow(Wahlgren assume thatXeo=150cmg(seeJura1986). is 10kms“,thegrainsthat emitmostoftheradiationat60 correlated withPasexpected fromeq.(1).]Iftheoutflowspeed luminosity increasesforthesestars,thevalueofrisanti- emitting regionsandbecausetheperioddecreasesas the about 10“Myr“.Thisratedependsinverselyupon the scatter butaretypicallynear3x10gs.Ifweassume that the star.Inthiscase,current massloss,whichpresumably envelope variesasr“,where risthedistancemeasuredfrom /an wereejectedfromthestar about 500yrago. [Note thatstarswithlargerluminositieshave60 /an v 1985) andthatthedust-to-gasratioissameasof AC v 1985). Acharacteristicvalueofthisquantityis1.5x10 cm. 60 1/2 0 The distancesthatwederiveinTable2aremostlyplausible The mass-lossratesinTable2showsomerelativelysmall In Table2,wealsolistr(60/un),thecomputedradius in Above, wesuggestedthatthe densityinthecircumstellar 1/2 © American Astronomical Society • Provided by the NASA Astrophysics Data System extrapolated byassumingthatB—V=1mag. V Vul.... AI Seo... RV Tau.. R Sge AR Pup.. DYOri .. R Set..... CT Ori... U Mon... SU Gem. GK Car.. TW Cam. SX Cen... RU Cen.. IW Car... UY CMa. a b EstimatedasthemeanofphotographicmagnitudesgiveninKukarkinetal.(1969)and Note.—Magnitudes andextinctionsarefromDawson(1979)exceptforthefootnotedentries. Assumedvalue. Star a a a (mag) a a a 10.1 11.9 10.0 11.1 10.0 12.2 10.7