198 6Apj. . .309. .7 32J the Astrophysical Journal, 309:732-736

Total Page:16

File Type:pdf, Size:1020Kb

198 6Apj. . .309. .7 32J the Astrophysical Journal, 309:732-736 32J .7 The Astrophysical Journal, 309:732-736,1986 October 15 kf 1986. The American Astronomical Society. All rights reserved. Printed in U.S.A. .309. 6ApJ. 198 RV TAURI STARS AS POST-ASYMPTOTIG GIANT BRANCH OBJECTS M.Jura Department of Astronomy, University of California, Los Angeles Received 1986 February 5 ; accepted 1986 April 8 ABSTRACT RV Tau stars are rare, luminous pulsators of spectral types F, G, and K. Analysis of the IRAS data shows that the mass-loss rates from RV Tau stars have apparently significantly decreased during the past ~500 yr -5 -1 from about 10 M0 yr , depending upon the metallicity of the stars and the grain emissivity at 60 /mi. It seems likely that these stars have just evolved from the phase of rapid mass loss, characteristic of the last stages of the asymptotic giant branch (AGB). The birthrate of RV Tau stars in the solar neighborhood is very roughly 6 x 10"4 kpc-3 yr-1, about a tenth of the birthrate of all planetary nebulae, and this is consistent with the view that we are witnessing the subset of stars undergoing post-AGB evolution that are low mass and at least in some cases of low metallicity. Most RV Tau stars will probably become planetary nebulae; others, however, may evolve sufficiently slowly that their envelopes will dissipate before being photoionized. Subject headings: infrared: sources — stars: evolution — stars: mass loss — stars: RV Tauri — stars : stellar statistics I. INTRODUCTION and a small bolometric correction, then, from equation (1), 3 The evolution of stars from the asymptotic giant branch again, L ~ 10 L0. Finally, from the correlation between (AGB) to the white dwarf phase is still not well understood (see, molecular outflow velocity and luminosity for OH/IR stars for example, Iben and Renzini 1983). One diagnostic of AGB (Jones, Hyland, and Gatley 1983; Jura 1984a), the outflow stars is that in their very late stages, they undergo extensive velocity inferred from observations of OH—of about 10 km s~1 for RV Tau (Fix and Claussen 1984)—is consistent with a mass loss which results in substantial circumstellar envelopes 3 that are most profitably studied in the radio and infrared (see, luminosity of ~ 10 L0. These stars therefore seem to have the for example, Olofsson 1985). With the IRAS survey, it is pos- effective temperatures and luminosities of the less massive sible to perform systematic studies of circumstellar dust and post-AGB stars (Gingold 1974; Iben and Renzini 1983; Schon- therefore identify both candidate AGB stars and stars that berner 1983). have just evolved out of the AGB phase and still retain some Gehrz (1972) and Lloyd Evans (1985) found that RV Tau circumstellar material. It has long been thought that RV Tau stars quite often have circumstellar dust because they display stars are highly evolved objects, and here we use the IRAS significant amounts of infrared radiation. Here, we suggest that fluxes to constrain their evolutionary histories. most of the dust is not being currently ejected. Some stars, such as the Egg nebula (CRL 2688) or CRL 618 The basic argument of this paper comes from using the well- have previously been identified as post-AGB preplanetary known properties of circumstellar dust shells (see, for example, nebula stars (Zuckerman et al 1976), and models have been Sopka et al 1985). In the IRAS bandpasses, cool dust mainly proposed to describe their evolution (see Kwok 1982). Very contributes to the 100 gm band while warmer dust contributes young planetary nebulae with some residual molecular to the emission at 12 jam. By comparing the relative amounts of material have also been identified such as NGC 7027 (see Jura long and short wavelength emission, it is possible to estimate 19846). Here, we aim to increase our understanding of post- the density of material that is nearby to the star compared to AGB objects by studying the properties of RV Tau stars. that which is more distant, and thus determine whether the The structure of this paper is as follows. In § II, we argue that mass-loss rate is constant or changing with time. the RV Tau stars are probably post-AGB objects, as have Because Gehrz (1972) could only perform observations from Gingold and Eggen (1986) on independent grounds. In § III, the ground out to 20 jam, he had insufficient information to we present detailed models for the circumstellar envelopes to study the time history of the mass loss—he could only establish develop some insight into the stars’ histories. In § IV we the existence of circumstellar material. discuss the evolutionary status of these stars and in § V, we From the comprehensive variable star catalog of Kukarkin present our conclusions. et al (1969), we have identified 17 RV Tau stars which were detected by IRAS at 60 jam, the wavelength that is probably II. RV TAURI STARS AS POST-AGB OBJECTS most suitable for estimating the dust loss rate (see Jura 1986). The detected stars and the IRAS fluxes are listed in Table 1 ; Preston et al (1963) have described the basic properties of this list includes about 20% of all known RV Tau stars. We fit RV Tau stars; they are luminous pulsators of spectral class F, a power law to the observed fluxes such that F varies as vq, G, and K. From their optical classification, they estimate that v 3 and we list the derived values of q in Table 1. For stars which Mv ^ — 3 mag which indicates a luminosity of ~ 10 L©. Con- are detected in all four IRAS bands, we list q for the spectral sistent with this result, Barnes and Dupuy (1975) have pro- region between 12 jim and 100 /xm; otherwise we list q for the posed that M == -5.3 + 0.021P , (1) range between 12 jam and 60 jim. v Jura (1986) found that for mass-losing carbon stars, the where P is the period in days. With a typical period of 75 days average value of q is 1.54, while the power-law fits to oxygen- 732 © American Astronomical Society • Provided by the NASA Astrophysics Data System 32J .7 No. 2, 1986 RV TAURI STARS 733 .309. TABLE 1 . Av = 0 and Ay — 1 mag in order to bracket the proposed RV Tauri Stars Detected at 60 /¿m by IRÁS values for this quantity (see Baird and Cardelli 1985 and below). 6ApJ. Star 12 fim 25 60 /¿m 100 /mi Following the method described by Sopka et al (1985), we 198 TW Cam . 8.3 5.6 1.8 <1.7 0.95 can compute the temperature of carbon grains at, say, 1" from UY CMa. 3.5 2.5 0.57 <1.0 1.13 the star to give GK Car .. 2.9 2.5 0.78 <12 0.82 IW Car ... 101 96 34 13 0.97 T(l") = 123 K , Av = 0 (3a) RU Cen .. 5.4 11 5.6 2.0 0.47 SX Cen ... 6.0 3.6 1.1 <1.5 1.05 T(l") = 144 K , Av=l . (3b) SU Gem . 7.9 5.7 2.2 <12 0.79 AC Her .. 41 65 21 7.8 0.78 If we assume a constant mass-loss rate from this star, we U Mon ... 124 88 26 9.2 1.23 would derive from equation (3) of Jura (1986) and the observed CT Ori ... 6.2 5.6 1.2 <1.5 1.02 IRAS flux at 60 fim DYOri .. 12 15 4.1 <11 0.67 9 AR Pup .. 131 94 26 12 1.13 M = 5.9 x lO^v.oD^lSO/xeo) g s“1 , A = 0 (4a) R Sge 10.6 7.6 2.1 <1.7 1.01 dust v AI Seo ... 18 11 2.9 <46 1.13 M = 4.0 x 1017z; D (150/ o) g s“1 , ^1 = 1 . (4b) R Set 21 9.3 8.1 <139 0.59 dust 1() kpc Z6 F RV Tau .. 22.5 18 6.4 2.5 1.04 1 In equation (4), v10 is the outflow velocity in units of 10 km s ~ 12 5.7 1.3 <7.0 1.38 s 2 -1 V Vul .... and Xóo i the opacity of the dust (cm g ) at 60 ¿un. We Note.—We exclude BI Cep even though it was detected by IRAS at assume that i^o = 1 as seems appropriate for mass-losing 60 /im because its period is longer than 200 days and Kukarkin et al. carbon-rich red giants (Knapp and Morris 1985; Zuckerman (1969) list it as an M star as well as an RV Tau variable. We assume it and Dyck 1986; Zuckerman, Dyck, and Claussen 1986), and is an unusual Mira. for RV Tau where OH has been detected (Fix and Claussen 1984). rich stars are, on the average, even steeper (Hacking et al Because of the relatively low flux at 12 ¿mi, the simple model 1985). In contrast, for the RV Tau stars shown in Table 1, the of a constant mass-loss rate with time is not correct. Assume, maximum value of q is only 1.41 while the average value is 0.98. for simplicity, a model with a constant mass-loss rate with Therefore, the RV Tau stars have significantly flatter infrared time, until, the star abruptly evolves off the AGB and the mass spectra than do most mass-losing red giants. loss stops. If we further assume a simple free expansion of the The flux distribution in the infrared depends upon the material, then density distribution of dust grains and the evmissivity of the p = 0 r <r (5a) grains as a function of wavelength.
Recommended publications
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Spectroscopy of Variable Stars
    Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]
  • 1973Apj. . .185. .597D the Astrophysical Journal, 185:597-619
    .597D The Astrophysical Journal, 185:597-619, 1973 October 15 .185. © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1973ApJ. NEW OBSERVATIONS OF RV TAURI STARS David L. DuPuy* David Dunlap Observatory, University of Toronto, Richmond Hill, Ontario, Canada Received 1973 March 27 ABSTRACT New photoelectric and spectroscopic observations of RV Tauri stars have been obtained, and mean visual magnitudes and characteristics of the light and color curves have been derived. Most RV Tauri stars show rather irregular light curves, with successive cycles showing deviations up to several tenths of a magnitude. An analysis of the color excesses in ( F — i?) indicates the existence of reddening due to circumstellar material. Revised periods are suggested in a number of cases. Attempts were made to determine absolute magnitudes of RV Tauri stars by the following methods: (i) globular-cluster RV Tauri stars; (ii) mean secular and statistical parallaxes; (iii) the application of Wesselink’s method (which was unsuccessful); and (iv) luminosity classification spectrograms. A period-luminosity relation is evident. Absolute magnitude methods which depend on observa- tions of apparent magnitudes yield results averaging about 1.5 mag fainter than those methods based on other arguments. This difference is attributed to mostly nonselective absorption in circumstellar material and leads to visual absolute magnitudes of —5 to —6 inside the circum- stellar shells. Subject headings: circumstellar shells — luminosities — RV Tauri stars I. INTRODUCTION The class of RV Tauri stars comprises about 100 supergiant stars with unique characteristics of variability. Their light curves display two unequal minima, making uncertain which is the more physically significant period : the interval between succes- sive maxima or minima (single period), or the interval between successive deep minima (double period).
    [Show full text]
  • A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)
    A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI) Item Type text; Electronic Dissertation Authors Biller, Beth Alison Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 23:58:44 Link to Item http://hdl.handle.net/10150/194542 A HIGH CONTRAST SURVEY FOR EXTRASOLAR GIANT PLANETS WITH THE SIMULTANEOUS DIFFERENTIAL IMAGER (SDI) by Beth Alison Biller A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 7 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Beth Alison Biller entitled “A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: June 29, 2007 Laird Close Date: June 29, 2007 Don McCarthy Date: June 29, 2007 John Bieging Date: June 29, 2007 Glenn Schneider Final approval and acceptance of this dissertation is contingent upon the candi- date's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • Pulsating Variable Stars and the Hertzsprung-Russell Diagram
    - !% ! $1!%" % Studying intrinsically pulsating variable stars plays a very important role in stellar evolution under- standing. The Hertzsprung-Russell diagram is a powerful tool to track which stage of stellar life is represented by a particular type of variable stars. Let's see what major pulsating variable star types are and learn about their place on the H-R diagram. This approach is very useful, as it also allows to make a decision about a variability type of a star for which the properties are known partially. The Hertzsprung-Russell diagram shows a group of stars in different stages of their evolution. It is a plot showing a relationship between luminosity (or abso- lute magnitude) and stars' surface temperature (or spectral type). The bottom scale is ranging from high-temperature blue-white stars (left side of the diagram) to low-temperature red stars (right side). The position of a star on the diagram provides information about its present stage and its mass. Stars that burn hydrogen into helium lie on the diagonal branch, the so-called main sequence. In this article intrinsically pulsating variables are covered, showing their place on the H-R diagram. Pulsating variable stars form a broad and diverse class of objects showing the changes in brightness over a wide range of periods and magnitudes. Pulsations are generally split into two types: radial and non-radial. Radial pulsations mean the entire star expands and shrinks as a whole, while non- radial ones correspond to expanding of one part of a star and shrinking the other. Since the H-R diagram represents the color-luminosity relation, it is fairly easy to identify not only the effective temperature Intrinsic variable types on the Hertzsprung–Russell and absolute magnitude of stars, but the evolutionary diagram.
    [Show full text]
  • Among the Intrinsic Variables, the RV Tauri Stars Days
    496 ASTRONOMY: PA YNE-GAPOSCHKIN AND BRENTON PROC. N. A. S. A STUDY OF THE RV TAURI VARIABLES By CECILIA PAYNE-GAPOSCHKIN AND VIRGINIA K. BRENTON HARVARD COLLEGE OBSERVATORY Communicated October 16, 1942 1. Definitions.-Among the intrinsic variables, the RV Tauri stars stand out with rather definite characteristics. Three principal criteria may be used for assigning stars to the class. (a) Successive minima differ in depth. Deep and shallow minima are conventionally called "primary" and "secondary." (b) Primary and secondary minima interchange phases at intervals. (c) The stars are variable in spectrum and in radial velocity. The spectrum is of Class F, G or K at maximum. The shortest known period is 38 days (EZ Aquilae), the longest is 146 days (R Scuti). Although the period usually assigned to these stars is that from one primary minimum to the next, a comparison with the velocity curve shows that the star undergoes a type of pulsation with one-half that period. The brighter RV Tauri stars have recently been studied on the Harvard collection of stellar photographs. Of the twenty-nine stars now assigned to the class, fourteen proved to be bright enough for intensive study. A discussion of about sixteen thousand observations of these stars has been completed,' and the present note is intended to summarize some of the physical results. 2. The Secondary Characteristics.-Many RV Tauri stars show rather marked irregularities in period, and though over a long interval a mean period can always be assigned, instantaneous elements for short intervals may require periods differing by one or two per cent.
    [Show full text]
  • Variable Stars
    VARIABLE STARS RONALD E. MICKLE Denver, Colorado 80211 ©2001 Ronald E. Mickle ABSTRACT The objective of this paper is to research the causes for variability and identify selected stars within telescope reach. In addition, individual observations of the magnitudes (Mv) of selected variable stars were made and a plan designed for more extensive work on variable stars was developed. Variable stars are stars that vary in brightness. They can range from a thousandth of a magnitude to as much as 20 magnitudes. This range of magnitudes, referred to as amplitude variation, can have periods of variability ranging from a fraction of a second to years. Algol, one of the oldest know variables, was known to ancient astronomers to vary in brightness. Today over 30,000 variable stars are known and catalogued, and thousands more are suspected. Variable stars change their brightness for several reasons. Pulsating variables swell and shrink due to internal forces, while an eclipsing binary will dim when it is eclipsed by its binary companion. (Universe 1999; The Astrophysical Journal) Today measurements of the magnitudes of variable stars are made through visual observations using the naked eye, or instruments such as a charge- coupled device (CCD). The observations made for this paper were reported to the American Association of Variable Star Observers (AAVSO) via their website. The AAVSO website lists variable star organizations in 17 countries to which observations can be reported (AAVSO). 1. IDENTIFICATION OF STAR FIELDS Observations were made from Denver, Colorado, United States. Latitude and longitude coordinates are 40ºN, 105ºW. 1.1. EYEPIECE FIELD-OF-VIEW (FOV) AAVSO charts aid in locating the target variable.
    [Show full text]
  • Basic Astronomy Labs
    Astronomy Laboratory Exercise 31 The Magnitude Scale On a dark, clear night far from city lights, the unaided human eye can see on the order of five thousand stars. Some stars are bright, others are barely visible, and still others fall somewhere in between. A telescope reveals hundreds of thousands of stars that are too dim for the unaided eye to see. Most stars appear white to the unaided eye, whose cells for detecting color require more light. But the telescope reveals that stars come in a wide palette of colors. This lab explores the modern magnitude scale as a means of describing the brightness, the distance, and the color of a star. The earliest recorded brightness scale was developed by Hipparchus, a natural philosopher of the second century BCE. He ranked stars into six magnitudes according to brightness. The brightest stars were first magnitude, the second brightest stars were second magnitude, and so on until the dimmest stars he could see, which were sixth magnitude. Modern measurements show that the difference between first and sixth magnitude represents a brightness ratio of 100. That is, a first magnitude star is about 100 times brighter than a sixth magnitude star. Thus, each magnitude is 100115 (or about 2. 512) times brighter than the next larger, integral magnitude. Hipparchus' scale only allows integral magnitudes and does not allow for stars outside this range. With the invention of the telescope, it became obvious that a scale was needed to describe dimmer stars. Also, the scale should be able to describe brighter objects, such as some planets, the Moon, and the Sun.
    [Show full text]
  • A Catalog of Variable Stars Based on the New Name List
    ISSN 1063-7729, Astronomy Reports, 2009, Vol. 53, No. 11, pp. 1013–1019. c Pleiades Publishing, Ltd., 2009. Original Russian Text c E.V. Kazarovets, N.N. Samus’, O.V. Durlevich, N.N. Kireeva, E.N. Pastukhova, G. Pojmanski, 2009, published in Astronomicheski˘ı Zhurnal, 2009, Vol. 86, No. 11, pp. 1088–1094. A Catalog of Variable Stars Based on the New Name List E. V. Kazarovets1, N.N.Samus’1, 2*, O.V.Durlevich2, N. N. Kireeva1, E.N.Pastukhova1,andG.Pojmanski3 1Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya ul. 48, Moscow, 119017 Russia 2Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119992 Russia 3Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, Warsaw, 00-478 Poland Received April 30, 2009; in final form, June 25, 2009 Abstract—We present a new electronic version of the General Catalog of Variable Stars (GCVS) based on thenewIAUnamelistofconfirmed variable stars. The catalog contains 1270 stars, most of them contained earlier in the New Catalog of Suspected Variable Stars or its supplement. A number of recent studies— including those by authors of the catalog, who investigated many stars using data from modern automatic surveys, determined light-curve elements for periodic stars, and plotted numerous light curves—have made it possible to move these stars to the GCVS. Among the catalog objects, 24 stars are novae or other unusual variable stars that acquired their GCVS names out of the usual order, upon communication from the Bureau of Astronomical Telegrams of the International Astronomical Union. We present the GCVS names, coordinates, classifications (in two forms: the GCVS system and a new, proposed system), brightness- variation limits, and light-curve elements for the catalog stars, as well as bibliographic references and remarks when necessary.
    [Show full text]