<<

SVERIGES GEOLOGISKA UNDERSOKNING

SER C NR 633 AVHANDLINGAR OCH UPPSATSER ARSBOK 62 NR 4

HANS TRALAU

BOTANICAL INVESTIGATIONS INTO THE FOSSIL FLORA OF ERIKSDAL IN FYLEDALEN, SCANIA

II. THE MIDDLE MICROFLORA

STOCKHOLM 1968

SVERIGES GEOLOGISKA UNDERSOKNING

SER C NR 633 ARSBOK 62 NR 4

HANS TRALAU

BOTANICAL INVESTIGATIONS INTO THE FOSSIL FLORA OF ERIKSDAL IN FYLEDALEN, SCANIA

Il. THE MIDDLE JURASSIC MICROFLORA

STOCKHOLM 1968 Editors: Hans Tralau and Per H. Lundegårdh

C. DAVIDSONS BOKTRYCKERI AB, VÄXJÖ 1968 BOTAN!CAL !NVEST!GAT!ONS IN ERIKSDAL 3

CONTENTS

I. Abstract ...... 4 II. Preface ...... 5 III. Introduction ...... 5 IV. Systematic description of microspores found in situ ...... 10 V. Systematic description of dispersed microspores and pollen grains 18 VI. Presurned re-bedded specimens of microspores and pollen grains . . . . 98 VII. Stratigraphical results ...... 99 VIII. Acknowledgements ...... 105 IX. References ...... 106 X. Index of genus and names ...... 126 XI. Plates I to XXVI ...... 132 4 HANS TRALAU

I. ABSTRACT

Mesozoic sediments at Eriksdal in the valley of the Fyle river, SE Scania, southern Sweden have been investigated with regard to their contents of microspores and pollen grains. The microflora found confines the age of the sediments to the Bajocian and Bathonian. The first group of pollen grains and microspores, which confines the age deter­ mination to the Bajocian and Bathonian, is widely distributed in the Liassic but has its uppermost occurrence in different stages, preferably in the Bajocian or the Bathonian, of the Middle Jurassic in Europe. These are Concavisporites subgranu­ losus, Leptolepidites major, Lycopodiacidites rugulatus, Todisporites major, Cala­ mospora mesozoica, Trilites rariverrucatus, Eucommiidites granulosus, and Chas­ matosporites apertus. The seeond group comprises species which are starting their stratigraphic dist­ ribution in Europe in sediments belonging to the Bajocian, i. e. Sestrosporites pseudoalveolatus, Spheripollenites scabratus, and Tsugaepollenites trilobatus. The third group is that of Middle Jurrasic endemics of Europe. The species known are Neoraistrickia gristhorpensis, Gleicheniidites conspiciendus, Todisporites minor, and Leptolepidites equatibossus. Sediments of Bajocian and Bathonian age are present in Eriksdal, the stratigraphic border being situated around the two upper coal seams. BOTANICAL INVESTIGATIONS IN ERIKSDAL s

II. PREFACE

The present paper is a direct continuation of previous studies of the fossil flora of Eriksdal. It aims to settie problems chiefly connected with the age of the deposits in question. However, this investigation is also a stage in the establishment of a standard pollen and spore diagram for sporomorphs, as weil as their geographic and facies distribution, in Swedish rocks. The samples were collected in 1961 but owing to various circumstances their investigation has been delayed. Save for the investigations in Liassic pollen grains and spores carried out by Nilsson (1958) there is no diagram of pre-Quaternary microspores and pollen grains in Sweden. It is being increasingly realized, however, that pollen grains and spores found in sedimentary deposits are of a considerable importance as age indicators. An advantage is their great abundance and ubi­ quity, which gives palynology a lead over several other branches of earth science regarding age determination, geographic distribution pattern as weil as facies characteristics.

III. INTRODUCTION

Along the NE side of the Vomb plain, SE Scania, Sweden, there is a stretch of mainly Jurassic sedimentary rocks. This stretch with an average width of l km extt:nds from Övedskloster in the NW through the valley of the Fyle river down towards Tosterup and possibly even to the Baltic Sea near Sand­ hammaren. The rocks are tilted and partly overturned towards the SW in con­ nection with the movements of the earth crust along a displacement sweep in a NW-SE direction. lmmediately NE of the displacement the bedrock consist of schistase day of age in practically harizontal layers. SW of the valley the almost equally horizontally placed marls of the are suspended. The layers of Jurrasic age have only outcropped at a few points The Jurassic rocks consist of sand or loose sandstone, ferriferous sandstone, often with a certain quantity of day minerals, sandy or deaner day and thin coal seams. Already before the First World War parts of the layer series had been used for local requirements, but still around 1930 only on a very moderate scale, and in such a manner that the terrain and nature still could be con- 6 HANS TRALAU sidered to have retained its original appearance. Interest in an industrial ex­ ploitation was awakened right from the discovery that certain sandstone layers had an iron content of up to 30-40 Ofo Fe (Hadding 1933, Palmqvist 1935). The investigations were for this reason concentrared in the older part of the tilted series in the NE, but in the younger part in the SW there was also to be found, inter alia, a white sand or loose sandstone, which proved to consist of more than 99 °/o Si02• Between the grains of sand there is an intermediate quantity of kaolin. During the Second World War the "glass sand" became of great value to the glass industry because of the obstruction in import of raw materials. Likewise the kaolin was used in the production of fine paper. It is now above all this sand, which constitutes the raw material for the production of AB Fyleverken. Some varities of day also proved to be of industrial value. The coal seams on the other hand turned out to be of limited value as fuel. The raised coal-bearing sites of the Röddinge district in sontheastern Scania have been known from the literature since the middle of the 19th century, when Angelin (1859 and 1877) published his geological Scania. The first fossil of the region were found by Narhorst in the valley of the river Nybroån near Kurremölla. He published his finds in 1880. Later Moberg in 1882 and 1888 mentioned a richer collection of fossil plants made by himself at Kurremölla and moreover made it clear that even the ferruginous sandstone at Rödalsberg, NW of Tosterup, contains fossils. Only a few years later Moberg (1893) mentioned the poorly preserved remains, which have been described as the Munka Tågarp Flora by Möller and Halle (1913). This flora is assumed to be Rhaetic in age, and because of the composition of its plant species should be referred to the upper part of this formation, according to the point of view heJd by Möller and H alle (1913, p. 11). The Munka Tågarp Flora is represenred by three species, one of which is doubtful. The following, younger flora of Rödalsberg, still out­ side the immediate neighbourhood of Eriksdal, from rustcoloured, fairly fine grained sandstone, is likewise, according to Möller and Halle (1913, p. 19), Rhaetic or Liassic in age, being perhaps somewhat in favour of the Rhaetic. This flora contains nine species, five of which are pf questionable affinity. The following tremenclous sequence of ferriferous, partly oolithic, sands and Sandstones is characterized by a Cardium-bed, containing a rich fauna, which was dated by Moberg (1888, p. 80) as belonging to the lower part of the Middle Liassic (Lias y). The nearest following fossiliferous site is within the region of the gravel pit of AB Fyleverken at Eriksdal. lt concerns plant fossils collected by G. Ek­ ström in 1918-19 in the area around layers 117 to 122. This site yielded the following species according to Nilsson (1941, p. 5): Coniopteris hymeno- BOTANICAL INVEST!GAT!ONS IN ERIKSDAL 7

5(} 100 150 200m

Fig. l : Grave! pit of AB Fyleverken in Eriksdal, Scania, showing the exposure of mainly Middle Jurassic sediments (dotted area) after removal of the Quaternary cover in 1966. Published with kind permission of Rikets allmänna kartverk, Oct. 5th, 1966. phylloides (Brongniart) Seward, Cladophlebis (Eboracia) lobifolia (Phillips) Thomas, Otozamites bunburyanus Zingo and Hausmannia sp. The fossils have been gained chiefly from the day strata of this part of the gravel pit. Some five meters upwards, between layers 97 to about 113, there again occur deposits containing plant fossils, which might reasonably be considered identical with those layers, from which Möller and Halle (1913, 9. 21 ff) 8 HANS TRALAU described the so-called Kurremölla Flora. This flora, according to Möller and Halle (1913, p. 40), consists of the following species: Equisetites Mobergii Möll., Sphenopteris sp. (cf Dicksonia pauciloba Möll.), Cladophlebis sp. (cf Cl. lobifolia Brongn.), Clathropteris? or Dictyophyllum? sp., Laccopteris sp. l and 2 (?), Sagenopteris cf Mantelli (Dunker) Schenk, Ctenis sp., Nilssonia fallax Nath., N. sp., Desmiophyllum sp., Elatides cf curvifolia (Dunker) Nar­ horst, Elatocladus sp., Masculostrobus sp. 1-3, Carpolithus sp. l and 2. Ac­ cording to Nilsson (1941, p. 6) Ekström's collection from this horizon more­ over contains Nilssonia schaumburgensis Dunker f. fallax (Nathorst) sensu 1 Nilsson ) and fragments of Dictyophyllum or Hausmannia. The following fossiliferous sites containing plant rnaerafossils are situated samewhere between layers 96 and about 40, i. e. within about 75 m deposits. Plant macrofossils have been gained during tunnel excavations undertaken by the mining company Höganäsbolaget in 1938 and 1940-41 and have been determined by Nilsson (1941). Regretably it is completely impossible to re­ place the specimens into their original position within the series, as there are several very similar sedimentation strata within the series in question. Nils­ son's only information (1941, p . 9) is that the fossils originated from the "inner part of the tunnel". The species recorded are: Equisetites nov. spec., Marattiopsis spec., "Nathorstia" (Laccopteris?) spec., Coniopteris hymeno­ phylloides (Brongniart) Seward, Coniopteris fatungensis Sze, Hausmannia spec., Clathropteris or Dictyophyllum, Sphenopteris (Ruffordia) goepperti Dunker, Ctenis spec., Nilssonia spec. 1-3, Sagenopteris spec., Ginkgoites spec., Podozamites spec., and Carpolithus spec. 1-3. The uppermost coal seam (layer 37) is partly covered by dark day, which rendered considerable quan­ tities of plant macrofossils. These fossils have been described by Tralau (1966) and the following species list is given: Coniopteris hymenophylloides (Brongn.) Seward, cf. Eboracia lobifolia (Phillips) Thomas, Baiera gracilis Bunbury, Ginkgoites regnellii H. T., Allicospermum baiereanum H. T., A. ginkgoideum H. T., Elatocladus cf. johnstrupi (Bartholin) H. T., Conites s. p., and Pityophyllum cf lindströmi Nathorst. From the older part of the gravel pit, which constitutes the younger parts of the sediments, Nilsson gained a number of plant fossils, the exact origin of

1) Nilsson (1941, p. 7): Nilssonia fal/ax, slutligen står säkert mycket nära Nilssonia schaumburgensis och vid behandling av materialet från Fyleverkens sandtag har jag av rent praktiska skäl behandlat Nilssonia fallax som en form av N. schaumburgensis men det är nog riktigare att bibehålla fallax som självständig art och i likhet med Narhorst betrakta den som en föregångare till N. schaumburgensis. [Nilsson (1941, p. 7): Nilssonia fal/ax. finally, is most probably closely related to Nilssonia schaumburgensis and, work­ ing with the material from · Fyleverken's sand pits, I have for purely practical reasons treared Nilssonia fallax as a form of N. schaumburgensis, but it is, I think, more correct to retain fallax as an independent species and, as Nathorst does, consicler it as being a forerunner to N. schaumburgensis.] It should also be noted here that the author does not intend to give a revision of these older records. The names and determination are thus those of the previous authors. BOTANICAL INVESTIGATIONS IN ERIKSDAL 9

om 10m 20m

30m

, 56 1 8 "

BOm 90m 100m 110m 120m

"

130m 140m 150m 16 0m 170m ~ ~ ~ ~ ~~~~~~~ ~~H l~~~~~~~~ H~ 80 ., " 69 7475 " 82 " 90 93

180m 190m 200m 210m 220m

~ ~ SANDY CLAYS CLAY l LM~NITE CONGLOM . SANOSTONE SANOSTONE CHAMOSITE SANOSTONE COAL

Sequence of Jurassic strata in the grave! pit of AB Fyleverken in Eriksdal, Scania after Tralau 1966, p. 7). which are regretably unknown. However, according to observations made by the present author, these occurrences should reasonably be expected with­ in the r ange of la y ers 31 to 34. Now, if this localization hap pens to be correct, these or some of these layers contain, according to Nilsson, the fol­ lowing plant species: Coniopteris hymenophylloides (Brongniart) Seward, Onychiopsis spec. 1- 3, Nilssonia schaumburgensis (D unker) forma typica, N . schaumburgensis (Dunker) forma fallax (Nathorst) Baiera furcata (Lindley & Hutton) F. Braun, Baiera gracilis Bunbury, Ginkgoites sibirica f. pusilla 10 HANS TRALAU

(Heer) Seward, Ginkgoites spec., Elatocladus spec., Sphenolepsis sternbergiana (Dunker) Schenk, Pityophyllum spec. 1-2, Pityospermum spec., and Carpo­ lithus spec. 2. Besides the above mentioned collections there are also the Museum's spe­ r:imens, which are without any detailed information concerning their origin within the area of Eriksdal. These specimens do not represent any new species and are for this reason of limited value and shall therefore be omitted here. The sand layers mentioned above are succeeded by a tremendons layer of greenish day, which belongs to the Middle Purbeck according to Oertli, Brotzen and Bartenstein (1961). From evidence of Ostracodes present in the deposits of Denmark and NW Germany, Bruun Christensen considers the day to be Upper Kimeridgian and Lower Portlandian in age (private communication by Dr. Ole Bruun Christensen, October 12th, 1965 and Bruun Christensen in Larsen 1965). The Danish GeologicaJ Survey, moreover, has recently encountered this so called "Fyledal day" also by cores from borings drilled in Öresund between Helsingör and Hälsingborg (cf Larsen 1965). Macrofossils of plants have not been encountered in the day. For sporo­ morphic evidence see Chapter VII. A considerable hiatus in the sedimentation cyde is to be expected between the day and the sand.

IV. SYSTEMATIC DESCRIPTION OF MICROSPORES FOUND IN SITU

Among the macroscopic material of the Eriksdal flora two species yielded spores in situ, viz. Coniopteris hymenophylloides (cf Tralau 1966, fig. 3 and plate XXIV, fig. 3 of the present paper) and Marattia cf anglica (plate XXIV, fig. 2). Fertile pinnae of Coniopteris cf bure;ensis (plate XXIV, fig. 4) and C. tatungensis (plate XXIV, fig. 5) did not contain spores.

1. Family

Genus Marattia Swartz

Because of the fact the the fossils referred to as Marattiopsis and Angiop­ teridium "agree with this one living genus and with no other", Harris (1961, BOTANICAL INVESTIGATIONS IN ERI KSDAL 11 p. 72) assigned the fossils in question to this modern genus. Also Halle (1921 and 1938 in Halle 1938-1940, p. 624) expressed the view that the Mesozoic remains referred to Marattiopsis should reasonably be considered identical with the modern genus and the name of the fossil genus should only be used "if we object to referring a Mesozoic plant to a Recent genus".

Marattia d anglica (Thomas) Harris Plate VI, figs. 3, 4, plate XXIV, fig. 2

Thomas, p. 228, pi. XXIII, figs. 1-5, text fig. l. Couper, p. 105, pi. XV, fig. 19. Harris, p. 72, text fig. 23.

ORIGINAL MATERIAL: Palaeontological Institute, University of Lund.

GEOGRAPHIC DISTRIBUTION: England and Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Lower Deltaic (Lower Bajocian). In Eriksdal found in almost all layers between nrs 105 and 36.

DESCRIPTION: Spores oval equatorial view, often biconvex in side view, monolete, laesura sometimes obscure. Exine faintly tuberculate, about 1 to 1.5 fl thick. Length between 25 and 36 !l, breadth 20 to 32 fl.

AFFINITY: Species of the modern genus Marattia are considered to be cla­ sest related. Spores of M. hoerensis from the Lower Liassic of Greenland (Harris 1931, pl. XIII, fig. 10) are said to closely resemble M. anglica (Har­ ris 1937).

REMARKS: The fossilleaf, which supplied some spores, is inadequate for a definite species determination. It has, however, some considerable features in common with M. anglica (Thomas) Harris, the Yorshire species. For this reason I refer the present material tentatively to the British species. As I want to avoid a revision of the older material collected by Ekström and Nilsson alias Steneström, I prefer to mention the similarity with the British species only. Dispersed spores identical with those of M. anglica have been encoun­ tered in a considerable number of layers in between 105 and 36 at Eriksdal. The genus Marattia, from evidence shown in the map (fig. 3) has presum­ ably been common during the Jurassic period in Eurasia. The time of the geographical reduction of the genus to present-day tropical regions is un­ known. 12 HANS TRALAU

el RHAETIC e UPPER JURASSIC Q LOWER JURASSIC 0 LOWER CRETACEOUS e, MIOOLE JURASSIC • RECENT OCCURRENCE

Fig. 3: The distribution of Marattia anglica (Thomas) Harris (1), M. hoerensis (Schimper) Thomas (2), M. muensteri (Goeppert) Schimper (3), and other fossil species, as weil as of the Recent M. fraxinea Smith (A), M. silvatica Blume (B), and M. pellucida Presl. (C). The approximate northern limit of the present-day distribution of the genus Marattia Swartz is indicated by the broken Iine.

Occurrences of the fossil species Marattia anglica (Thomas) Harris, Marattia ( Marattiopsis) hoerensis (Schimper) Thomas, and Marattia ( Marattiopsis) muensteri (Goepp.) Schimper as weil as some other species shown on the ditribution map (fig. 3) have been recorded by Bartbolin 1892, Blank 1961, Brik 1953, Burakova 1960 a & b, 1961 a & b, 1962 a & b, Delle 1960, 1962, Harris 1961 a& b, Kawasaki 1925, 1939, Lundblad 1950, Makarewiczowna 1928, Markovitch 1961 b, Möller 1902, Oishi 1940, Prinada 1938 b, Prosvir­ jakova 1961 b & c, Raciborski 1891, 1894, Regional Stratigraphy of China 1960, Schenk 1867, Schimper 1869, Sibirjakova 1962, Sikstel 1952, 1953 a BOTANICAL INVESTIGATIONS IN ER IKSDAL 13

& c, 1960 a & b, Stanislavski 1957, Sze 1949, 1952 a, Teslenko 1962, Vakhrameev 1964, Vakhrameev and Vasina 1959, Vakhrameev and Krasilov 1961, Vasiljevskaja 1956, and Zeiller 1903.

2. Family Cyatheaceae (Dicksoniaceae incl.)

Genus Coniopteris Brongniart 26.

Coniopteris hymenophylloides (Brongniart) Seward Plate IX, fig. 2, plate XXIV, fig. 3

Thomas, pi. III, fig. 5. Edwards, p. 92, text fig. 2. Couper, p. 114, pi. XX, figs. 5, 6. Harris, p. 152, text figs. 54 A, B, C. Vakhrameev and Doludenko, p. 52, pi. III, figs. 2, 6. Tralau, p. 9, fig. 3 e.

Swedish Museum of Natural History, Stockholm,

GEOGRAPHIC DISTRIBUTION: Eurasia (and Southern Hemisphere?).

TRATIGRAPHIC OCCURRENCE: Bajocian to Callovian in Europe (cf be­ concerning Asia).

ESCRIPTION: Spores trilete, amb roundish triangular with slightly concave sides. Polar size range about 40 11, equatorial size range between 45 and 5 f.l. Laesura triradiate, almost reaching the equatorial range, bordered by mall, slightly granulared and ill-defined verges. Exine otherwise smooth, l and 2 f.1 thick.

TY: Because of the shape of the sori Wilson and Yates (1953, p. 936- referred this species to the subfamily Thyrsopterideae of the Dicksonia­ , a point of view, which has also been confirmed and accepted by Harris (1961, p. 140-141). 14 HANS TRALAU

REMARKS: The present material has been obtained from fertile pilmules and the species determination is therefore identical with that of the maero­ fossils (cf also Tralau 1966, p. 11, fig. 3 e). Comparable dispersed spores are those called Cyathidites minor Couper and similar ones of the cyathaceous or dicksoniaceous families, as for instance Eboracia sp. and Dicksonia sp. There is also a similarity with Triplanosporites Pflug and Deltoispora

LOWER JURASSIC Fig. 4: The distribution of ConiofJteris hymenophylloides during the Lower Jurassic.

Miner, according to the view heJd by Potonie (1962, p. 115-116). Unfortu­ nately this fact limits the stratigraphic value of the true dispersed spores of Coniopteris hymenophylloides, which species is of remarkable stratigraphic importance for the Mesozoic of Europe. As clearly implied in figs. 4-6 C. hymenophylloides is a typical fossil of the Middle Jurassic of Europe, i. e. its stratigraphic distribution seems to be confined to the Bajocian, Bathonian, BOTANICAL !NVESTIGATIONS IN ERIKSDAL 15 and Callovian. Only once have European fossils of definitely Upper Jurassic age been attributed to this species. Seward and Baneraft (1913) referred poor sterile fern remains from Kimeridgian deposits of Sutherland, Scotland to C. hymenophylloides. The figures given by the authors are hardly convincing and sporangia and spores have not been found. This occurrence is not in­ cluded in the list of specimens belonging to C. hymenophylloides given by

MIDDLE JURASSIC Fig. 5: The distribution of Coniopteris hymenophylloides during the Middle Jurassic.

Harris (1961, p. 152-153) either. Hence the Upper Jurassic occurrence of C. hymenophylloides in Europe should be considered unproved. This may be evidence enough to assume this species to be most characteristic of the Middle Jurassic of Europe. Different features are, on the other hand, to be realized in Asia (see figs. 4-6). Here C. hymenophylloides is widely distributed during the Liassic with 16 HANS TRALAU its westernmost occurrence in the Caucasian region and throqghout the con­ tinent to Japan in the East. In Middle Jurassic time the species likewise occurs all over Asia. It appears likely, according to evidence obtained from the distribution maps shown here, that G. hymenophylloides migrated west­ ward from its Asiatic distribution areas to Europe during Upper Liassic or lowermost Middle Jurassic time. In Europe then, the species becomes common

UPPER JURASSIC Fig. 6: The distribution of Coniopteris hymenophylloides during the Upper Jurassic. and widespread. A remarkable reduction of its frequency and also distribu­ tion area took place at the end of the Middle Jurassic. The main distribution of the species during the Upper Jurassic occurs again in Asia. The geographi­ cal reduction of C. hymenophylloides as well as that of the genus Coniop­ teris continued during the Lower Cretaceous, confining the presence of Co­ niopteris to eastern- and southernmost parts of Asia (see fig. 7). Records, on BOT ANICAL INVEST!GA T!ONS IN ERIKSDAL 17 which the distribution maps are based, have been gained from the following authors: Aksarin 1955, 1957, Bojakova and Vladimirovitch 1961, Bose 1959, 1960 a & b, Bose and Dev 1959, 1960, 1961, Brik 1935, 1937, 1952, 1953, Brongniart 1829, Burakova 1960 a & b, 1961 a & b, 1962 a & b, Delle 1959 a & b, 1960, Gekker 1948, Genkina 1959, 1960, 1961, Golova 1948, 1954, Harris 1961, Jacob 1938, Jacob and Shukla 1955, Kapiza and Koshman 1961,

LOWER CRETACEOUS Fig. 7: The distribution of Coniopteris hymenophylloides and closely related species during the Lower Cretaceous.

Kilpper 1964, Kiritchkova 1962, Kovaltchuk 1961, Krasser 1912, 1920, 1922, Kusitchkina, Repman and Sikstel 1959, Lebedev 1950, 1955 a, b & c, 1956, 1958 a & b, 1959, 1963, Lesnikova 1915, Lee 1954, 1955, 1956, Markovitch 1961, Markovitch and Faddeeva 1960, Nejburg 1929, 1931, 1936, Nikiforova 1957, Oishi 1940, Orlovskaja 1958 a & b, 1961, Pomeranzeva 1961, Prinada 18 HANS TRALAU

1938, 1941, 1962, Prinada and Turutanova-Ketova 1962, Prosvirjakova 1961 a, b & c, Regional Strathigraphy of China 1960, Riotenberg and Faddeeva 1961, Romanova 1961, Sahni 1936, Seward 1900, Shtempel 1959 a & b, 1960, Shtempel and Verbioskaja 1958, Sikstel 1952, 1953 a & b, Skoblo 1961, Stockmans and Mathieu 1941, Sze 1959, Teixeira 1948, Teslenko 1959, 1961 a & b, 1962, Thomas 1911, Tralau 1966, Vasiljevskaja 1956, 1958, 1959 a, b, c & d, Vasiljevskaja and Pavlov 1963, Vakhrameev 1958, 1962, Vakh­ rameev and Vasina 1959, Vakhrameev and Doludenko 1961, Vakhrameev and Krasilov 1961, and Vladimirovitch 1959 a & b. Some other, doubtful, records have been omitted here. In Eriksdal sterile remains of C. hymenophylloides occur in all fossiliferous layers of the sequence in question. Fertile pinnules have been gathered in some of them, but spores in situ have only been described from specimens obtained from layer 36 by Tralau (1966). For dispersed spore similar spores of C. hymenophylloides see below under genus Cyathidites.

V. SYSTEMA TIC DESCRIPTION OF DISPERSED MICROSPORES AND POLLEN GRAINS

The following taxa of microspores and pollen grains have been found in the sediments at Eriksdal:

ANTETURMA SPORITEs Potonie 1893

TuRMA TRILITES (Reinsch ex Schopf 1938) Dettmann 1963 Suprasubturma AcAVATITRILETES Dettmann 1963 Subturrna AzoNOTRILETES (Luber sens. Potonie et Kremp 1954) Dettmann 1963 Infraturma LAEVIGATI Bennie et Kidston emend. Potonie 1956

Genus Cyathidites Couper 1953 (1) 1. Cyathidites australis Couper (2) 2. Cyathidites minor Couper (3) 3. Cyathidites concavus (Bolkh.) Dettmann

(Genus Leiotriletes [Naumova 1939] Potonie et Kremp 1954) (4 ) 1. Leiotrilites cf varius Bolkh. BOTANICAL INVESTIGATIONS IN ERIKSDAL 19

Genus Stereisporites Pflug 1953 l. Stereisporites granulatus spec. nov. 2. Stereisporites cicatricosus (Rog.) Danze-Cors. et Lav. 3. Stereisporites psilatus (Ross) Pflug

Genus Dictyophyllidites (Couper 1958) Dettmann 1963 Dictyophyllidites crassexinus (Nilsson) comb. nov.

Genus Calamospora Schopf, Wilson et Bentall 1944 Calamospora mesozoica Couper

Genus Todisporites Couper 1958 l. Todisporites major Couper 2. Todisporites minor Couper 3. Todisporites cladothecoides spec. nov. 4. Todisporites granulatus spec. nov.

Infraturma TRICRASSATI Dettmann 1963

Genus Gleicheniidites (Ross 1949) Krutsch 1959 l. Gleicheniidites senonicus Ross 2. Gleicheniidites conspiciendus (Bolkh.) W. Kr.

Genus Sestrosporites Dettmann 1963 l. Sestrosporites pseudoalveolatus (Couper) Dettmann 2. Sestrosporites a c u tus spe c. nov.

Infraturma APrcuLATI Bennie et Kidston emend. Potonie 1956

Genus Leptolepidites Couper 1958 l. Leptolepidites rotundus spec. nov. 2. Leptolepidites major Couper 3. Leptolepidites equatibossus (Couper) comb. nov.

Genus Osmundacidites Couper 1953 l. Osmundacidites wellmanii Couper 2. Osmundacidites spec. [Osmundopsis cf sturi (Raciborski) Harris] 20 HANS TRALAU

Genus Baculatisporites Thomson et Pflug 1953 (23) l. Baculatisporites comaumensis (Cookson) Potonie

Genus Concavisporites Pflug 1953 (24) l. Concavisporites sub granulasus Couper (25) 2. Concavisporites granulasus spec. nov.

Genus Uvaesporites Döring 1965 (26) l. Uvaesporites argenteaeformis (Bolkh.) Schulz (27) 2. Uvaesporites cerebralis spec. nov.

Genus Trifetes Cookson ex Couper 1953 (28) l. Trilites rariverrucatus (Danze-Corsin et Laveine) comb. nov.

Infraturma MuRORNATI Potonie et Kremp

Genus Lycopodiacidites Couper 1953 (29) l. Lycopodiacidites rugulatus (Couper) Schulz (30) 2. Lycopodiacidites infragranulatus Mädler

Genus Lycopodiumsporites Thiergart ex Delc. et Sprum. 1955 (31) l. Lycopodiumsporites paniculatoides spec. nov. (32) 2. Lycopodiumsporites scamcus spec. nov. (33) 3. Lycopodiumsporites clavatoides Couper (34) 4. Lycopodiumsporites pseudophyllanthus spec. nov. (35) 5. Lycopodiumsporites annotinaides spec. nov. (36) 6. Lycopodiumsporites reticulumsporites (Rouse) Dettmann (37) 7. Lycopodiumsporites semimuris Danze-Corsin et Laveine (38) 8. Lycopodiumsporites densus spec. nov.

Genus Neoraistrickia Potonie (39) l. Neoraistrickia gristhorpensis (Couper) Tralau (40) 2. Neoraistrickia truncata (Cookson) Potonie (41) 3. Neoraistrickia samuelssoni Tralau

Genus Foveotriletes van der Hammen ex Potonie 1956 (42) l. Foveotrilites scanicus spec. nov.

Genus Ischyosporites Balme 1957 (43) l. Ischyosporites granulasus spec. nov. BOTANICAL INVESTIGATIONS IN ERIKSDAL 21

Genus Cantignisparites Dettroann 1963 Cantignisparites prablematicus (Couper) Döring

Subturrna ZoNOTRILETES Waltz 1935 Infraturma CINGULATI Potonie et Klaus 1954

Genus Densaisparites Weyland et Krieger 1953 l. Densaisparites velatus Weyland et Krieger Densaisparites scanicus spec. nov. Densaisparites erassus spec. nov.

Genus Palycingulatisparites (Sim. et Kedv.) Playf. et Dettm. l. Palycingulatisparites triangularis (Bolkh.) Playf. et Dettm.

TuRMA MoNOLETEs Ibrahim 1933 Subturrna AzoNOMONOLETES Luber 1935 Infraturma PsiLAMONOLETI van der Hammen 1955

Genus Manalites Cookson ex Potonie (49) l. Manalites cauperi spec. nov.

Genus Marattisparites Couper 1958 Marattisparites scabratus Couper

Infraturma Faveaearnati infrat. nov.

Genus Faveasparis Krutzsch 1959 (51) l. Faveasparis irregularis spec. nov.

TuRMA HILATES Dettroann 1963

Genus Captaspara Dettmann 1963 l. Captaspara aequalis spec. nov. 2. Captaspara perfarata spec. nov. 22 HANS TRALAU

ANTETURMA PoLLENITEs Potonie 1931

TuRMA SACCITES Erdtrnan 1947 Subturrna MoNOSACCITES (Chitaley 1951) Potonie et Krernp 1954 Infraturma SACCIZONATI Bhardwaj 1957

Genus Tsugaepollenites (Potonie et Venitz 1934) Potonie 1958 (54) 1. Tsugaepollenites mesozoicus Couper (55) 2. Tsugaepollenites dampieri (Balrne) Dettrnann (56) 3. Tsugaepallenites dubius (Couper) Dettrnann (57) 4. Tsugaepollenites tri/abatus (Balrne) Dettrnann (58 ) 5. Tsugaepallenites minus spec. nov. (59) 6. Tsugaepallenites turbatus (Balrne) cornb. nov. (60) 7. Tsugaepollenites dettmannae (Drugg) cornb. nov.

Subturrna DISACCITES Cookson 1947

Genus Alisparites (Daugherty 1941) Nilsson 1958 (61 ) 1. Alisparites rabustus T. Nilsson

Genus Brachysaccus Mädler 1964 (62) 1. Brachysaccus micrasaccus (Couper) Mädler

Genus Pityasparites (Seward 1914) Manurn 1960 (63) 1. Pityosporites scaurus (T. Nilsson) Schulz

Genus Pratapinus Bolkhovitina 1956 (64) 1. Pratapinus scanicus T. Nilsson

Genus Caytanipallenites Couper 1958 (65 ) 1. Caytanipollenites pallidus (Reissinger) Couper

TuRMA ALETEs Ibrahirn 1933 Subturrna AzoNALETES (Luber 1935) Potonie et Krernp 1954

Genus Araucariacites Cookson ex Couper 1953 (66 ) 1. Araucariacites australis Cookson BOTANICAL INVESTIGAT!ONS IN ERIKSDAL 23

Genus Spheripollenites Couper 1958 1. Spheripollenites scabratus Couper 2. Spheripollenites subgranulatus Couper 3. Spheripollenites psilatus Couper

Genus Perinopollenites Couper Perinopollenites elatoides Couper

TuRMA PucATES (Naumova 1939) Potonie 1960 Subturrna MoNOCOLPATES Iversen et Troels-Smith 1950

Genus Clavatipollenites Couper Clavatipollenites hughesii Couper

Genus Chasmatosporites T. Nilsson 1. Chasmatosporites apertus (Rogalska) T. Nilsson 2. Chasmatosporites hians T. Nilsson

Genus Ginkgocycadophytus Samoilovitch 1953 Ginkgocycadophytus nitidus (Balme) De Jersey

Genus Monosulcites Cookson ex Couper 1953 Monosulcites cotidianus (T. Nilsson) comb. nov.

Subturma PRAECOLPATES Potonie et Kremp 1954

Genus Eucommiidites Erdtman 1948 1. Eucommiidites troedssonii Erdtman 2. Eucommiidites granulasus Schulz

TuRMA PoROSES (Naumova 1939) Potonie 1960 Subturrna MoNOPORINES Naumova 1939

Genus Classopal/is (Pflug 1953) Pocock et Jansonius 1961 Classopollis classoides (Pflug) Pocok et Jansonius

In the following descriptive text the form genera of Anteturrna Sporites and Anteturma Pollenites are arranged in alphabetical order respectively. 24 HANS TRALAU

Genus Baculatisporites Thomson et Pflug

1953: Thomson and Pflug, p. 56.

The spores of this genus are similar to those of Osmundacidites but are distinct in having bactda and not granula. Comparable spores are found in the Osmundaceae, i. e. in Osmunda cinnamomea L. and O. bromerifolia Capeland (cf Mary E. Dettmann 1963, Nakamura and Shibasaki 1959), To­ dea, and Leptopteris (Cookson 1953).

Baculatisporites comaumensis (Cookson) Potonie Plate VIII, figs. l, 2, plate XIV, fig. 2

1953: Cookson, p. 470, pl. II, fig. 27, 28 (Trilites comaumensis). 1956: Potonie, p. 23. 1967: Playford and Cornelius, p. 90, pl. I, fig. 3.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 47/16 (plate VIII, fig. 1), 53/12 (plate VIII, fig. 2), Swedish Museum of Natural History, Stockholm, slide Eriksdal 56/7 (plate XIV, fig . 2).

GEOGRAPIC DISTRIBUTION: Eurasia, Australia.

STRA TIGRAPHIC DISTRIBUTION: Known from sediments Europe (Klaus 1960).

DESCRIPTION: Microspore trilete with circular amb. Laesura straight, reaching 3/4 of spore radius. Exine about l fl thick, baculate. Bacula 1.0 to 1.5 fl Iong and 1.0 to 1.5 !-l in diameter and l to 3 fl apart. Equatorial dia­ meter 45 to 57 fl.

AFFINITY: As mentioned above.

REMARKS: This species is common throughout the Upper Mesozoic of Australia (Balme 1957, Cookson and Dettmann 1958 b, 1959 a, Dettmann 1959, 1963, Playford and Cornelius 1967). In Europe it was previously known only from Upper Triassic layers (Klaus 1960). BOTANICAL INVESTIGATIONS IN ERIKSDAL 25

Genus Calamospora Schopf, Wilson et Bentall

Schopf, Wilson, and Bentall, p. 51, text fig. l.

This genus includes chiefly Palaeozoic microspores. Mesozoic spores com­ parable in every respect have been found in Liassic and Middle Jurassic sediments of England (see below). In Eriksdal the genus is present, although it is not frequent.

Calamospora mesozoica Couper

1958: Couper, p. 132, pi. XV, figs. 3, 4.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Liassic to Middle Jurassic.

DESCRIPTION: Microspore trilete, laesura straight, covering 1/3 to 1/2 of radius of spore. Laesura not always distinct. Amb circular in the original state. Exine smooth, almost never exceeding 0.5 11- in thickness. Equatorial diameter 28 to 42 fl,.

AFFINITY: Probable calamarian affinity has been suggesred for the Palaeo­ zoic occurrences (Schopf, Wilson, and Bentall 1944). Couper (1958) men­ tioned that "it is noteworthy that equisetalean fossils (Neocalamites nathorsti Erdtman) with some morphological features comparable to the Palaeozoic calamarians are known from the Lower Deltaic Series of Yorkshire (Harris 1946, p. 649-654)". Neoca/amites is not known from Eriksdal with certainty. However, Pityophyllum cf lindströmi Nathorst (cf plate XXVI, fig. 4 and Tralau 1966, p. 31) could for example be detached of Neocalamites. The only reliable equisetalean remains are those of Equisetites (d plate XXIV, fig. 1).

Spores of this species occur sporadically in the Eriksdal sedi­ ments but are mostly distorted because of the delicate exine. 26 HANS TRALAU

Genus Concavisporites Pflug 1953: Pflug, p. 49.

This genus includes sporomorphic remains of apparently very different ori­ gin. A dicksoniaceous, cyatheaceous, schizeaceous, or also gleicheniaceous affinity has been suggested for various fossil species referred to this genus.

Concavisporites subgranulosus Couper Plate X, fig. 2.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 58/2.

GEOGRAPHIC DISTRIBUTION: Great Britain and Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Lower and Middle Jurassic.

DESCRIPTION: Spores trilete, biconvex or nearly so in polar and triangular in equatorial view. Sides more or less concave. Laesura reaching to equator. Exine of proximal and distal regions minutely granulated. Exine 1.0 to 2.5 f-l thick. Granules mostly less than 0.5 fl. Size range between 31 and 40 f-l .

AFFINITY: Concerning this subject no suggestion is made.

REMARKS: Spores of this species occur frequently throughout the sequence of sediments in Eriksdal. Compared with the British fossils of this species the present ones are, as a rule, somewhat smaller. The stratigraphic value of this species seems to be significant by its presence in sediments belonging to the Lower and Middle Jurassic. The species has so far not been found in layers belonging to the Upper Jurassic.

Concavisporites granufosus spec. nov. Plate X, fig. 3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slid e Eriksdal 57l 5.

GEOGRAPHIC DISTRIBUTION: Eriksdal, Höllviken, Scania, Southern Swe­ den. BOTANICAL JNVESTIGATIONS IN ERIKSDAL 27

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic of Eriksdal and in se­ diments referred to Wealden of Höllviken.

DIAGNOSIS: Spores trilete, biconvex in polar and roundish triangular in equatorial view. Sides are concave or slightly concave. Laesurae are reaching down to the equator and are often provided with narrow commissures. Ba­ cula, about 1.0 f-i in diameter and 1.0 to 2.0 f-i high, are covering the distal and proximal surfaces. Size range of equatorial diameter between 32 and 38 f-i .

AFFINITY: The spores are of unknown affinity.

REMARKS: This species is not too frequent but occurs throughout the se­ quence investigated at Eriksdal. It differs considerably from Concavisporites subgranulosus by its big granula.

Genus Contignisporites Dettmann

1963: Dettmann, p. 73 .

A detailed generic diagnosis has been given recently by Mary E. Dettmann of this preferably Mesozoic genus.

Contignisporites problematicus (Couper) Döring Plate V, figs. 1-3.

Couper, p. 146, pi. XXIV, figs. 11-13 (Cingulatisporites problematicus) . Nilsson, p. 43, pi. II, figs. 15-17 (Corrugatisporites scanicus). Levet-Carette, p. 112, pi. XVIII, figs. 24-27, pi. XIX, figs. l, 2 (Cingulatis­ porites problematicus). 1965: Döring, p. 51, pi. XVIII, figs . 6- 8. 1967: Schulz, p. 569, pi. VI, figs. l, 2.

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slides Eriksdal 52/9 (pl. V, fig. 1), 49/10 (pl. V, figs . 2, 3).

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: From Upper Triassic to Callovian in eastern Germany, Liassic in France, Middle Bajocian to Lower Cretaceous in England, Liassic and Middle Jurassic in southern Sweden. 28 HANS TRALAU

DESCRIPTION: Microspore trilete, laesura straight, reaching to inner mar­ gin of cingulum. Amb triangular with convex sides. Distal face and equato­ rial region with broad ridges, 3 to 6 f-l in diameter, which are anastomising in some specimens. Equatorial diameter 32 to 52 f-l.

AFFINITY: The affinity of this species is uncertain, although schizeaceous and dicksoniaceous origin has been considered (cf Nilsson 1958, p. 44).

REMARKS: This species is fairly frequent in Eriksdal and has previously been found in two places in Scania, i. e. Sandåkra and Höör.

Genus Captaspara Dettmann

1963: Dettmann, p. 88.

The genus Captaspara has been instituted by Mary E. Dettmann to include inaperturate or hilate, tetrahedral dispersed microspores. The genus con­ stitutes a part of Caaksonites of Pocock (1962). According to M . E. Dett­ mann (1963, p. 88) "Polar features comparable to those of Captaspora, Caaksanites, and Aequitriradites are shown by certain modern hepatic spores which germinate by means of a rupture in, and after a breakdown of, their polar (distal) exine (see Duthie and Garside 1936, Fulford 1956, Udar 1957). Moreover, many of the modern spores borne by the Sphaerocarpaceae, Ricci­ aceae, and Riellaceae are hilate, and some of these are morphologically simi­ lar to Captaspara. In particular, the spores of Geothallus tuberasus Camp­ bell resemble the dispersed spores herein assigned to Captaspara striata sp. nov., and it is tempting to infer a related origin of the fossil spores".

Captaspara aequalis spec. nov. Plate XV, fig. 2.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 45 A/2.

GEOGRAPHIC DISTRIBUTION: Scania, Southern Sweden. This species has been observed in the Middle Jurassic sediments of Eriksdal as weil as in sediments from Höllviken referred to Wealden, which, however, here are considered to belong to the Middle Jurassic.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic. BOTANICAL JNVESTIGAT!ONS IN ERIKSDAL 29

Spores inaperturate or hilate, circular in equatorial and bi­ convex in polar view. Exine 5.0 to 8.0 f-i thick, homogenous or/and partly with faint radial striation, which is visible in particular around the equato­ rial region. Exine of one pole (distal poole?) thin, but never exceeding 3 fl,, sometimes radially or irregularly fractured and folded and hence apparently forming a hilum after the breakdown of the exineous tissue. The hilate area is generally round or ovoid in shape and 40 to 48 f-i in diameter. The equa­ torial diameter of the whole spore is between 60 and 95 f-L

AFFINITY: Among fossil dispersed spores the present species resembles Cop­ tospara striata Dettmann from Mesozoic deposits of Australia. It differs, however, by a thicker exine and by the lack of a granulared polar area, as weil as by the absence of "narrow, sinuous, radially elongated elements to­ wards periphery" but otherwise also shows a strong tendency of radial or irregular fracturing of the polar area. In accordance with the view held by Mary E. Dettmann the dosest Recent affinity is suggested to be within the Hepaticae.

Although the differences are slight between the present species and Captaspara striata of Australia, it is considered specifically distinct be­ cause of the facts mentioned above. Other species of Captaspara are more different, as for instance C. sp. A (Dettmann 1963, p. 89), in which the exine is verrucate, although the thickness of the exine is approximating that of the present species. C. aequalis spec. nov. is only sporadically occuring in the sequence of Eriksdal and Höllviken and has so far not yet been obtained from other Jurassic sediments.

Captaspara perfarata spec. nov. Plate XIV, fig. 3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/3.

GEOGRAPHIC DISTRIBUTION: Eriksdal and Höllviken I and II, Scania, Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic of Eriksdal and in part of the sediments from Höllviken, which originally were referred to the Wealden, but are by the present author considered to belong to the Middle J~ras~ic. 30 HANS TRALAU

DIAGNOSIS: Spores inaperturate or hilate, circular to subovoid in equato­ rial and biconvex in polar view. Exine in equatorial region 3 to 5 fl thick, perforate. Canals intruding into 3/4 of exine from surface layer. Canals ab­ sent from one, possibly the distal pole, the exine of which is faint, about 1 to 2 !l thick. This polar region is suggested to form a hilum, which now and again is fractured or folded after breakdown of the sclerine. This hilate polar region shows a general diameter of about 25 to 30 fl and is round or subvoid in shape and thus following the general shape of the spore. The equatorial diameter r anges between 35 and 7 4 ,u.

AFFINITY: No exact living counterpart is known to the present author. However, this fossil spore belongs to the genus Coptospora Dettmann, which is in accordance with the designation of the genus in question. The dosest relationship is assumed to be within the Hepaticae.

REMARKS: This species occurs sporadically throughout the sediments in­ vestigated at Eriksdal. lt also occurs - somewhat more frequent - in the "Wealden" sequence of Höllviken I and II, although these specimens are as a rule smaller than those of Eriksdal. The size of the Höllvikens specimens as far as is known, never exceecls 50 !l (according to Mahin 1968 and Vida! 1968).

Genus Cyathidites Couper

1953: Couper, p. 27, pi. II, fig. 11. 1958: Couper, p. 138, pi. XX, figs. 8-10.

The genus Cyathidites has been established for dispersed spores, which most obviously belong to several different genera, as pointed out by Couper (1958) and certainly contain various species of Coniopteris, Eboracia, Dicksonia, and has, perhaps, even included sporomorphic remains of Dictyophyllum. The systematic position of the present genus is suggested to be in the fern family Dicksoniaceae or Cyatheaceae. Russian authors, on the other hand, have shown that spores, generally attributed to Cyathidites are comparable to some of the spores founcl in the recent genus Lygodium Swartz, and accordingly these authors include these dispersed fossil spores within this recent genus (d Lygodiumsporites adriennes Potonie et Gellerich in Bolkhovitina 1961, pi. XXXI, fig. 3 a, 3 b, Lygo"dium asper (Bolkhovitina) Bolkhovitina 1959, pi. X, fig. 4, Bolkhovitina 1961, pi. XXVII, fig. 2, 3, pi. XXXIV, fig. 2 a-2 d, 2 g, pi. XLI, fig. 4 and others). BOTANICAL INVESTIGATIONS IN ERIKSDAL 31

Cyathidites australis Couper Plate IX, fig. 1.

Couper, p. 27, pi. II, fig. 11. Couper, p. 138, pi. XX, fig. 8. Dettmann, p. 22, pi. I, figs. 1-3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 45 A/1.

GEOGRAPHIC DISTRIBUTION: Northern and Southern Hemisphere.

STRATIGRAPHIC DISTRIBUTION: Jurassic to Lower Cretaceous. In Eriks­ dal through the entire series.

DESCRIPTION: Spores trilete, roundish triangular in polar view with more or less marked, concave sides. Equatorial size range between 60 and 90 p. Laesura triradiate, reaching almost to equator, without definite verges. Exine smooth, from 1 to 3 p thick.

: The present specimen (pi. IX, fig. 1) is strikingly similar to the spores of Coniopteris margaretae Harris (Harris 1961, p. 165, fig. 58 E), which have been found in situ, from specimens of the Cloughton quinqueloba Bed, Yorkshire (Compared specimens: British Museum (NH), V 32264). Smal­ ler specimens of the series of Eriksdal, on the other hand, compare fairly weil with big specimens of Dicksonia kendalli Harris (Harris 1961, p. 180, fig. 66), as well as with some bigger in situ spores of Coniopteris simplex Lindi. et Hutt. (Harris 1961, p. 145, fig. 50 C, D), C. hymenophylloides (Brongniart) Seward (see above), and Dicksonia mariopteris Wilson et Yates. (Compared specimens: British Museum (NH), V 31079). Conseguently the present form species is expected to cover spore remains of several different natural species, thus reducing the stratigraphic value of the remains under consideration.

Cyathidites minor Couper Plate X, fig. 8.

Couper, p. 28, pi. II, fig. 13. Couper, p. 139, pi. XX, figs. 9, 10. Dettmann, p. 22, pi. I, figs. 6-9.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 41a/3. 32 HANS TRALAU

GEOGRAPHIC DISTRIBUTIO~·.J: Nothem and Southern Hemisphere.

STRATIGRAPHIC DISTRIBUTON: Jurassic to Lower Cretaceous. Eriksdal throughout the entire series.

DESCRIPTION: Spores trilete, roundish triangular in polar view, with slightly concave sides. Equatorial size range between 30 and 60 p. Lessura triradiate, reaching to the equator, without definite verges. Exine smooth, between l and 2 p thick.

AFFINITY: The specimen pictured here shows a striking resemblance to spores in situ of Eboracia lobifolia (Compared specimens: British Museum (NH), V 31092 a, cf also Harris 1961, p. 175, fig. B, C) . This fact is quite in accordance with the occurrence of macrofossils of the species in question (Tralau 1966, p. 12, fig. 4). However, there are several other fern species producing similar or identical spores, as for instance different species of Dicksonia, Coniopteris, (see above) as well as Aspidites thomasi Harris (Harris 1961, p. 185, figs . G, H, compared specimens: British Museum (NH), v 32262).

Cyathidites concavus (Bolkhovitina) Dettmann Plate IX, fig. 3.

1953: Bolkhovitina, p. 46, pi. VI, fig. 7 (Stenozonotriletes concavus). 1963: Dettmann, p. 24, pi. I, figs. 17-19.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/6.

GEOGRAPHIC DISTRIBUTION: Eurasia, Australia.

STRATIGRAPHIC DISTRIBUTION: In Aptian sediments of the Moscow area and in Upper Mesozoic strata of Australia.

DESCRIPTION: Microspore trilete, laesura straight, almost extending to equator. Proximal face strongly convex. Exine 1.5 to 2.5 p thick, smooth or faintly scabrate, in particular around the laesura. Equatorial diameter 35 to 46 p. BOTANICAL !NVESTIGAT!ONS IN ERIKSDAL 33

AFFINITY: No recent affinity is known to the present author. Among fossil spores found in situ those of Aspidites thomasi Harris are similar (Harris 1961, p. 185, figs. 68: G, H ).

REMARKS: This species has only been found in layers 47 to 55 in the sedi­ ments of Eriksdal.

Genus Densoisporites (Weyl. et Krieger) Dettmann

Weyland and Krieger, p. 12. Dettmann, p. 83.

The genus Densoisporites was created by Weyland and Krieger (1953) to include trilete microspores with a cingulum, which is markedly wrinkled on the outside and laminated on the inner. The genus was restated by Potonie (1956) and Krutzsch (1959) and thoroughly redescribed and emended by Mary E. Dettmann (1963). For further details see the later author's publi­ cation. Krasnova (i n Samoilovitch et al. 1961) attributed this genus to Sela­ ginella. This view, however, is not very convincing and hence has not been adopted by other authors. Otherwise lycopodiaceous affinity has frequently been discussed concerning this genus (cf Dettmann 1963, p. 84). Similar spo­ res are also found in Pilularia globu/ifera (see plate XII, fig. 2).

Densoisporites velatus Weyland et Krieger Plate XVIII, fig. 4.

Weyland and Krieger, p. 12, p!. 4, figs. 12-14. Couper, p. 145, p!. 23, figs. 6- 9 (D. perinatus). Cookson and Dettmann, p. 107, p!. 18, fig. l (Dictyosporites camplex pr. part e). Krasnova in Samoilovitch and others, p. 35, p!. 7, figs. 5-6 (Selaginella velata). Dettmann, p. 84, p!. XIX, figs. 4-8. Levet-Carette, p. 105, p!. VI, fig. 7. Levet-Carette, p. 160, p!. XV, fig. 10. Schulz, p. 581, p!. XII, fig. 2.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2. 34 HANS TRALAU

GEOGRAPHIC DISTRIBUTION: Eurasia, North America, and Australia.

STRATIGRAPHIC DISTRIBUTION: Lower Liassic to Upper Cretaceous.

DESCRIPTION: Microspores trilete, biconvex, circular to roundish-triangu­ lar in equatorial view. Laesura mostly 3/4 of radius, consisting of distinct marginal membraneous commissures. Sclerine consisting of a thin and smooth inner layer and a proximally attached, scabrate perine, which in the equato­ rial region in particular is closely folded. The inner layer never exceeds 1 Il­ in thickness. Oroamented with three proximal, chiefly elliptical papillae, which are 2 to 4 11- in diameter. The outer coat is between 2 and 5 11- thick, the thickest parts being those of the equatorial region. The size range of the equatorial diameter is between 45 and 62 11- with perine and between 35 and 56 11- without.

AFFINITY: Potonie (1956, p. 59) compared this species with Selaginella hallei (Britta Lundblad 1950) and the modern species S. scandens Spring. This comparison, however, is considered unconvincing. Dettmann (1963, p. 85) suggesred similarity with Selaginellites polaris "except for its con­ siderably thicker sculptine".

REMARKS: The present material is similar in size to that of other Mesozoic deposits, except for the type material from Senonian strata of Germany, which is smaller.

Densoisporites scanicus spec. nov. Plate XII, fig. 1.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIS DISTRIBUTION: Middle Jurassic.

DIAGNOSIS: Microspore trilete with subcircular to rounded triaugular amb. Laesurae straight, length 2/3 of radius of amb. Sclerine two-layered. Inner layer homogenous, 1. O to 1.5 11- thick. Outer layer a spongeous sculptine, arranged at random and between 5 and 8 11- thick. Surface pattern scabrate. Proximal face almost unsculptured hut sometimes provided with three small circular thickenings, which are about 3 11- in thickness. Equatorial diameter 45 to 55 fl,. BOTANICAL INVESTIGATIONS IN ERIKSDAL 35

AFFINITY: Perhaps as in Densoisporites velatus. Similar features are, how­ ever, also to bef ound in microspores of modern Pilularia. The present spe­ cies differs from D. erassus by its thinner sculptine and from D. velatus by having a thicker and more homogenous sculptine. It is close to the Liassic species D. regularis Danze-Corsin et Laveine of France (Danze-Corsin and Laveine 1963, p. 7, pi. VII, fig. 5 and Levet-Carette 1963, p. 114, pi. XIX, fig. 5) . But this species is considerably larger than the present material.

REMARKS: The species is common in the sediments of Eriksdal.

Densoisporites erassus spec. nov. Plate XII, fig. 3

1964: Levet-Carette, p. 105, pi. VI, fig . 8 (cf Densoisporites?).

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide

GEOGRAPHIC DISTRIBUTION: France, southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Bajocian in France.

DIAGNOSIS: Microspores trilete with roundly triangular amb. Laesurae straight, covering 1/3 to 1/2 of amb radius. Sclerine two-layered. Inner layer homogenous, 1.5 to 3.0 fl thick. Outer layer spongeous sculptine, camposed of structures arranged at random, which are densely spaced in the inner part (about 8.0 to 10 fl thick) and wider spaced towards the surface (this part of the sculptine being 9.0 to 12 fl in thickness). Surface pattern scabrate. Proxi­ mal surface provided with low, sinuous folds and three interradial polar pa­ pillae, which are circular and about 5 fl in diameter. Equatorial diameter including sculptine 65 to 78 fl.

AFFINITY: There is no doubt that the present material is identical with that of France described by Levet-Carette (1964). This species differs from all other species known by its extremely thick sculptine. No definite recent af­ finity can be suggested, but similar spores are produced, however, by Mar­ silea, Pilularia, and Ragnellidium.

REMARKS: This species occurs in layer 56 and below this layer in Eriksdal. In France it is known only from Bajocian strata. 36 HANS TRALAU

Genus Dictyophylidites (Couper) Dettmann

According to Mary E. Dettmann (1963, p. 27) this genus includes trilete spores with triangular amb, smooth to finely grannlate exine, and with mem­ branous laesurate lips tagether with exinal thickenings about the laesura. Spores found in situ in Dictyophyllum rugosum L. et H., Phlebopteris angusti­ loba (Presl.) H. et H., Phlebopteris polypodioides Brgn., Thaumatopteris schenki Narhorst and Matonidium goepperti Ett. (cf Harris 1931, 1961, Couper 1958, Tralau 1965) are comparable with spores referable to this genus.

Dictyophyllidites erassextnus (Nilsson) comb. nov. Plate IV, fig. 3.

1958: Nilsson, p. 35, pi. I, fig. 11 (Concavisporites crassexinus).

ORIGINAL MATERIAL: Geologi ca! Survey of Sweden, Stockholm, Eriksdal 104/10.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Lower and Middle Jurassic.

DESCRIPTION: Microspore trilete, with subtriangular amb, which has con­ cave, straight or convex sides. Laesura straight, reaching to equator and en­ closed by membranous, elevated lips. Lips 3 to 4 f-l high and 2 to 5 f-l broad. Exine smooth, 1.0 to 1.5 f-l thick. Equatorial diameter 32 to 39 f-l.

AFFINITY: Similar sp o res are found in s itu in Phlebopteris polypodioides Brgn. (cf Harris 1961, p. 105, text fig. 34) and in Thaumatopteris schenki Nathorst (cf Harris 1931, p. 93, pl. XVIII, fig. 1). In Scania D. crassexinus occurs in particular in the Thaumatopteris zone at Pålsjö (Nilsson 1958, p. 35). Among dispersed spores Dictyophyllidites mortoni (De Jersey) Play­ ford et Dettmann (De Jersey 1959, 1962, Playford and Dettmann 1965), Con­ cavisporites juriensis Balme (Balme 1957), and C. toralis (Leschik) Nilsson (Nilsson 1958) are similar to the present species.

REMARKS: Spores of this species have only been encountered from the lower part of the sediments at Eriksdal. BOT ANICAL !NVEST!GATIONS IN ER!KSDAL 37

Genus Foveasporis Krutzsch

1959: Krutzsch, p. 162.

The genus includes monolete microspores with foveate exine. No recent affinity is known to the present author. Neither has any suggestion concern­ ing this matter been made by Krutzsch (1959, p. 162 ff).

Foveasporis irregularis spec. nov. Plate VI, fig. l.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/8.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic.

DIAGNOSIS: Microspore monolete, exine foveate, 3.5 to 4.0 f-l thick. Amb (distal face) subcircular to ovoid. Foveae irregularly scattered, 1.0 to 5.0 f-l in diameter. Equatorial diameter 28 to 32 X 30 to 36 f-l.

AFFINITY: No recent affinity is known. Spores of species of Adiantum have a similar foveate exine, but have a triradiate mark.

REMARKS: Spores of this species are rare in the Eriksdals sediments. Three specimens only have been observed.

Genus Foveotriletes van der Hammen ex Potonie

Ross, p. 32, pi. I, figs. 5-7 (Triletes scrobiculatus). Potonie, p. 43 (Foveotriletes scrobiculatus).

Foveotriletes scanicus spec. nov. Plate IX, fig. 6.

1958: Couper, p. 143, pi. XXII, figs. 7, 8 (Foveotriletes microreticulatus C.). 1964: Döring, p. 1099, pi. III, figs. 4-6 (Maculatisporites undulatus Dö.). 38 HANS TRALAU

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/3.

GEOGRAPHIC DISTRIBUTION: Southern Sweden (see also below).

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic. In Eriksdal layer 55.

DIAGNOSIS: Spores trilete, equatorial contour roundish triangular with often slightly concave sides. Equatorial size range about 60 fl. Laesura triradiate, reaching to the equator. Proximal surface partly and distal surface entirely covered with small pits, from 0.5 to 1.0 fl in diameter, which, tightly crowded, form an almost reticulate surface structure. Exine about 3 fl thick.

AFFINITY: The present specimen is very similar to Foveotriletes microreti­ culatus Couper, from which it differs by its smaller size. According to Cou­ per (1958, p. 143), the equatorial size range of F. microreticulatus is in between 70 and 95 f.-l, whereas F. scanicus is only about 60 fl in size. Also the exine is thinner in F. scanicus, than it is in the Yorkshire species. Another slight difference seems to be in the absence of the reticulate surface structure in the proximal part of the Yorkshire spores. However, I consicler the Sea­ nian material as being congeneric with Foveotriletes but prefer, in spite of the differences mentioned above - though with some doubt - to place the present material into a species of its own. No recent affinities are known.

REMARKS: The closely related Foveotriletes microreticulatus is a "key form" for the British Middle Jurassic, where it occurs in the Yorkshire Upper Del­ taic (Cloughton-Scalby Ness section) and in the Upper Estuarine and Great Estuarine samples (Cambridge, Stamford and Skye).

Genus Gleicheniidites Ross

1949: Ross, p. 31, plate I, figs. 3, 4. 1953: Cookson, p. 464 (Gleichenia). 1955: Delcourt and Sprumont, p. 26. 1959: Delcourt and Sprumont, p. 34. 1961: Samoilovitch et al., p. 44 (Gleichenia). 1964: Skarby, p. 59 ff, plate I-III.

This genus, described from Cretaceous day of Southern Sweden, was ongi­ nally considered to be monotypic. According to the view held by Annie Skar- BOTANICAL INVESTIGATIONS IN ERIKSDAL 39 by (1964, p. 61 ff), the spore genera Auritulina Maliavkina, Pyramidella Ma­ liavkina (Maliavkina 1949), Leiotriletes Naumanova (pro parte), Alsophila R. Br. (Bolkhovitina 1953), Gleichenia Smith (Bolkhovitina 1953, Cookson 1953), Concavisporites (Pflug pro parte) (Thomson and Pflug 1953), Dulosporis Pflug (pro parte), Sporopallis Pflug (pro parte) (Pflug 1953), Triremisporites D. et Sp. (Delcourt and Sprumont 1957), Cingutriletes Pierce (pro parte), Psilatriletes v. d. Hammen (pro parte), Punctatriletes Pierce (pro parte) (Pierce 1961), Fasciatisporites Sato (Sato 1961), and Neogenisporites Krutzsch (Krutzsch 1962) should all be included in the present organ genus. The stra­ tigraphic range thus extends from the Upper Triassic to, in appropriate areas, the present time. It seems reasonable to assume a close relationship between this organ genus and the recent Gleicheniaceae of the mountains of the Tropics and temperate regions of the Southern Hemisphere. It seems also very Iikely to me that the fossil material represents more than two species only, the dispersed spores, however, being indistinguishable from each other as different species. Spores of modern Gleichenia laevissima Christ. (cf Erdtman 1957, fig. 114 C) and of G. circinata Swartz (cf Cookson 1953, pl. I, fig. 7) compare weil with spores of Gleicheniidites.

Gleicheniidites senonicus Ross Plate X, figs. 6-7.

Ross, p. 31, plate I, figs. 3, 4. Grigorjeva in Samoilovitch et al., p. 44 (Gleichenia pro parte). Skarby, p. 59 ff, plate I-III. Lenk, p. 91, pi. I, fig. 11.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 52/6 (plate X, fig. 6), GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 53/8 (plate X, fig. 7).

GEOGRAPHIC DISTRIBUTION: Northern and Southern Hemisphere.

STRATIGRAPHIC DISTRIBUTION: Upper Triassic to present time (see also below REMARKS).

DESCRIPTION: Spores triangular in equatorial view, trilete. Laesura, flanked by raised commissures, reaching almost to equator. Sicles slightly concave or convex. Apices mostly sharp. Exine smooth, varying in thickness between l p in apical regions to 2 p in interapical parts. Medium size range 30 p . 40 HANS TRALAU

AFFINITY: Species of the Gleicheniaceae producing trilete spores as for in­ stance Dicranopteris linearis (Burm.) Underwood, Gleichenia bancroftii Hook., G. emarginata (Brack.) Moore, and others.

REMARKS: During Mesozoic times macro- and microfossils assigned to the Gleicheniaceae have been found, sometimes in great quantities, in all parts of the Northern and Southern Hemispheres. A remarkable decrease took place during the Upper Cretaceous and Lower Tertiary, reducing the distri­ bution area of the family considerably southward or northward respectively. In Europe macrofossils of gleichenoid remains have not been found in sedi­ ments younger than from the Eocene. It is Iikely that the Gleicheniaceae disappeared from this region during the middle of the Tertiary system. Qua­ ternary finds are almost exclusively within the present-day distribution area of the family. Grigorjeva 1961 (in Samoilovitch et al. 1961) assigned Gleiche­ niidites senonicus to the modern genus Gleichenia J. E. Smith and proposed at the same time to conserve Gleicheniidites for dispersed spores morphologi­ cally different from those of Gleicheniidites Ross.

Gleicheniidites conspiciendus (Bolkh.) W. Kr. Plate X, figs. 4, 5

1953 : Bolkhovitina, p. 54, pi. VIII, fig. 16 (Perigrinisporites conspiciendus). 1959: Krutzsch, p. 114. 1967: Tralau, p. 470, fig. 1 G.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 55/9.

GEOGRAPHIC DISTRIBUTION: Eurasia.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic in NE Germany.

DESCRIPTION: Spores trilete, amb triangular, with slightly cot1Cave sides. The laesura always reaches to the equator. Exine foveolate, about l 1-l in thickness in corners, but thickening between apices up to 3.5 f-l . Foveolae never more than 1!-l in diameter. Equatorial diameter about 35 f-l.

AFFINITY: A gleicheniaceous affinity is assumed. Similar foveolate are found in Dicranopteris. BOTANICAL INVESTIGATIONS IN ERIKSDAL 41

REMARKS: As far as is known this species is confined to the Middle Ju­ rassic in the northern parts of Central Europe, thus occuring in NE Germany in Bajocian, Bathonian, and Callovian sediments only (Döring, Krutsch, Mai, and Schulz 1966). Spores of this species are relative! y rare in the sediments of Eriksdal.

Genus Ischyosporites Balme

Balme, p. 23, pl. III, fig. 45. Dettmann, p. 63. de Jersey and Paten, p. 4.

This genus incorporates dispersed microspores with anastornasing mun m the distal parts and with valvae in the equatorial region of the spore. The proximal exine is smooth, scabrate, or finely granulate. Potonie (1960, p. 46) suggested a possible incorporation of Klukisporites Couper into the present genus, but he is Contradieted by Mädler (1964, p. 181).

Ischyosporites granufosus spec. nov. Plate III, fig. 2

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slide Eriksdal 52/11 (Type specimen) .

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRA TIGRAPHIC DISTRIBUTION: Throughout the Middle Jurassic of

Microspore trilete with triangular to subtriangular amb and rounded apices. Laesura distinct, straight and reaching to equator or nearly so. Distal and equatorial regions with anastornasing ridges, which form an irregular, foveo-reticulate sculpture with small, ovoid or sub-circular lumina. Muri between 4 and 7 f-l in width and about 3 f-l high. Lurnina 1 to 2 f-l in diameter. Proximal exine smooth, 2 to 4 f-l thick. Equatorial diameter 35 to 40 f-l.

Unknown.

REMARKS: The species is rare in the sediments investigated. 42 HANS TRALAU

Genus Leiotriletes (Naumova) Potonie et Kremp Leiotriletes cf varius Bolkh. Plate X, fig. l.

1953 : Bolkhoviti na, p. 21, pi. I, figs. 18, 19, 20.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 39/3.

GEOGRAPHIC DISTRIBUTION: Eurasia.

STRATIGRAPHIC DISTRIBUTION: Jurassic and Cretaceous.

DESCRIPTION: Microspore trilete, laesura reaching to equator. rounded triangular. Exine faintly granulate, 1.5 !l thick. Equatorial diame­ ter 35 !l·

AFFINITY: The present specimen seems to be dosest to the Russian speci­ mens described as Leiotriletes varius. L. neddenioides Krutzsch 1962, p. 32, pl. IX, figs. 1-15 from Eastern Germany is similar. According to Krutzsch (1959, p. 33, 1963, p. 32) the granulare exine might be due to "Frasspuren", which in the case of the present specimen would make it impossible to suggest any affinity whatsoever.

REMARKS: Only one specimen was found. This fact makes it the exine of the specimen has been artificially sculptured.

Genus Leptolepidites Couper

1953: Couper, p. 28, pl. II, fig. 14.

This genus includes trilete microspores with hemispherical to subhemi­ spherical verrucae. The spores have a subtriangular amb. Contrary to the generic diagnosis, Mary E. Dettmann (1963, p. 29) included which are smooth proximally. Species of the genus Limbosporites have been confused with species of this genus. In Limbosporites, however, the verrucae are irregular. (Nilsson 1958). BOTANICAL JNVESTIGATIONS IN ER!KSDAL 43

Leptolepidites rotundus spec. nov. Plate III, fig. 1.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 53/6.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Only known from layer 53 at Eriksdal.

DIAGNOSIS: Spore trilete, biconvex and with rounded-triangular to almost circular amb. Laesura inconspicuous, reaching to the equator. Exine 1.0 to 1.5 f-t thick, verrucate in proximal and distal faces. Verrucae 2 to 6 t-t high and with a basal diameter up to 10 f-t . Equatorial diameter (with sculpture included) about 42 f-t.

AFFINITY: Among fossil specimens, Leptolepidisporites major (Couper) Le­ vet-Carette of Levet-Carette (1964, pi. V, fig. 18) is similar to the present species. It differs, however, by smaller verrucae. Leptolepidites verrucatus Couper (Dettmann 1963, pi. III, figs. 6-9) is also similar but differs from the present species by having a sub-triangular amb "with straight to convex sides". Among living plants similar spores are found in Leptolepia novae­ zealanica (cf Erdtman 1957, p. 28, pi. II, figs. 14, 15), and in Alsophila chimborazensis. Mary E. Dettroann suggested cotnparison with species of the Selaginella vaginata group of Knox (1950).

Leptolepidites equatibossus (Couper) comb. nov. Plate VIII, fig. 3.

Couper, p. 148, pi. XXV, figs. 13, 14 (Trilites equatibossus). Levet-Carette, p. 95, pi. V, fig. 11 (Trilitisporites equatibossus). Tralau, p. 470, fig. l J (Trilites equatibossus).

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide

GEOGRAPHIC DISTRIBUTION: England, France, and southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic (Bajocian). In Eriks- 44 HANS TRALAU

DESCRIPTION: Spores trilete with almost circular or rounded triangula amb. Laesura covering about 2/3 of radius. The distal part has a sculpture pattern as does the proximal part in lesser extention. The eguatorial range is sculptured with more or less spherical verrucae or short, blunt pa­ pillae. Eguatorial size range about 30 fl. Exine with difficulty distinguisha (about 1 !l-?).

AFFINITY: Although they are samewhat smaller than the specimens of this species described by Couper (1958) I still consicler the English and Seanian specimens as being identical. L. equatibossus is samewhat similar to some specimens of Leptolepidites major Couper, hut "in spite of the unfortunate choice of name", no definite affinity was suggested for Leptolepidites by Couper (1958, p. 141). No recent affinity is known for Leptolepidites equati­ bossus.

REMARKS: The present species is regarded to be a "key form" for the Upper Middle Deltaic (Bajocian) Gristhorpe Beds (Yons Nab section) of Yorkshire. lt is also present in Bajocian sediments of France.

Leptolepidites major Couper

1958: Couper, p. 141, pi. XXI, figs. 7, 8. 1964: Levet-Carette, p. 97, pi. V, fig. 18 (Leptolepidites mai or). 1964: Kedves and Simoncsics, p. 30, pi. VIII, figs. 10-12 (?Clavatisporites 1967: Schulz, p. 558, pi. II, figs. 1-3.

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slide Eriksdal 55/9.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Bajocian and Barhonian m and England. Toarcian, Bajocian, and Bathonian in Germany.

DESCRIPTION: Spore trilete, with rounded-triangular amb. Laesura not al-· ways distinct. Laesura arms covering 4/5 of radius of spore. Exine sculptured with closely spaced spherical verrucae, 2-7 fl- in diameter. Exine about 1 fl­ thick. Eguatorial diameter 35 to 48 fl-.

AFFINITY: No definite affinity is suggested. For further discussion see L. rotundus. Clavatisporites ciarus (Kedves and Simoncsics 1964) has assumed to be identical with the present species by Schulz (1967). BOTAN!CAL !NVEST!GAT!ONS IN ER!KSDAL 45

: In German sediments this species is said to occur regularly Schulz 1967). In Eriksdal the species is less frequent.

Genus Lycopodiacidites Couper

Couper, plate I, figs. 9, p. 26. Potonie, p. 39. to emendation by Potonie (1956) this genus includes subcircular ~•rrr'~~"'res, which are trilete and azonate and which have verrucate to ru­ sculpture on the spore surface.

Lycopodiacidites rugulatus (Couper) Schulz Plate V, fig. 4.

Couper, p. 147, pi. XXV, figs. 7, B (Perotrilites rugulatus). Schulz, p. 573, pi. VII, figs. 15, 16. Tralau, p. 470, fig. l.

RIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm,

GRAPHIC DISTRIBUTION: England, Germany, and southern Sweden.

TIGRAPHIC DISTRIBUTION: Middle Jurassic (Bajocian in England). Eriksdal layer 41 A (see also table 1).

ESCRIPTION: Spores trilete with rounded triangular to almost circular mb. Laesurae reaching to equator. Commissures marked by weak margo. uatorial diameter between 60 and 75 f-L. Surface in proximal and distal rts provided with a rugulate to rugulo-reticulate sculpture, rugulae 2 to 3 p diameter. Exine about as thick as the rugulae, i. e. 2 to 3.5 f-L.

: No recent affinity is known for this spore.

""··.1 v11 r. l<>."··': The present specimens are identical with the Yorkshire species m the Cloughton Wyke and Yons Nab seetians of the upper Middle taic (Bajocian). As far as known at present the species is confined to this in England. In Germany it is known from even older sediment:; (Schulz 1967). 46 HANS TRALAU

Lycopodiacidites infragranulatus Mädler Plate IV, figs. 5, 6.

1964: Mädler, p. 187, plate III, fig. 3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2 (plate IV, fig. 5), 49/4 (plate IV, fig. 6).

GEOGRAPHIC DISTRIBUTION: Western Germany and Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Upper Rhaetic (in Germany).

DESCRIPTION: Spores trilete with roundish triangular to subcircular amb. The laesura is distinct and always reaching down to the equator. The distal part of the spore is provided with rugulate sculpture pattern and the proxi­ mal side is almost smooth. Rugulae between 2.0 and 2.5 f.l high and granu· late. Exine thin, mostly about l ,a . Equatorial diameter between 55 and 63 f.l .

AFFINITY: Mädler (1964, p. 187) suggested lycopodiaceous affinity.

REMARKS: So far this species is known from the Upper Rhaetic only. Tht granulate structure distinguishes the species from all other ones. of L. infragranulatus are relatively frequent in Eriksdal.

Genus Lycopodiumsporites (Thiergart) D. et Spr.

1938: Thiergart, p. 293, pl. XXI, figs. 9, 10. 1955: Delcourt and Sprumont, p. 31 ff.

Delcourt and Sprumont (1955) refer azonate, trilete spores with roundish triangular shape to this genus. The distal part as weil as the equatorial regions are characterized by a reticulum with high muri. In the proximal part of the spore the reticulum is lacking as a rule. The genus Lycopodium is generally accepted as being of the dosest affinity with this fossil genus (Delcourt and Sprumont 1955, Potonie 1956 and others). But it is also recognized that the genus Lycopodiumsporites is of doubtful validity (Krutzsch 1959, Manum 1962, Delcourt, Dettmann and Hughes 1963) especially as its type species, Lycopodiumsporites agathoecus (Potonie) at present is supposed to have a foveo-reticulate exine sculpture. I also hesitate to refer the spores of Neoraistrickia (Lycopodiumsporites) gristhorpensis and similar ones even tentatively to the Lycopodiaceae, as suggested by Couper BOTANICAL INVESTIGATIONS IN ERIKSDAL 47

(1958). These and similar spores have no exact modern counterpart in this family. Moreover there is the widespread Paleozoic genus, Raistrickia, incor­ ating dispersed trilete, azonate spores which show a sculpture pattern bacula. The genus is known to include also species with additional spinulae or coni (Schopf, Wilson, and Bentall 1944) and spores in situ identical with pores of Raistrickia have been encountered from the Senften­ bergia (Pecopteris and Dactylotheca) plumosa (Artis) as is clearly implied investigations of Radforth (1938), Moore (1964), W. and R. Remy (1955, 1957). This genus is assigned to the Schizeaceae. Similar spores are also known to occur in species of Tedelea, a Palaeozoic genus (Eggert and Taylor 1966), belonging to the coenopterid fem family Zygopteridaceae on ·ch a great deal of speculation has been put forth concerning its possible ral relationship. In this genus, as weil as in Senftenbergia, the spore de­ pment goes from an early stage with smooth, thin, and unornamented re wall to an intermediate stage which shows spore walls ornamented by series of ridges. The final stage is characterized by a rnature spore with a ornamented exine showing distinct bacula. A similar series of spore is assumed to occur in Senftenbergia. Possible relationships of the Schizeaceae and Osmundaceae have been discussed by Eggert Taylor (1966). Phillips and Andrews (1965, pl. IV, figs. 10-14, pl. V, 18-22) reported Raistrickia spores in situ obtained from sporangia of ·tntlcn'or,ov;rert· sp. from the Middle of Illinois. They suggest at Anachoropteris represents a complex from which the Osmundaceae ved. For these reasons it seems to be by no means sure that Neoraistrickia ally belongs to the Lycopodiaceae or some other closely related family. Most of the fossils belonging to Lycopodiumsporites are of little use for phic purposes because of their widespread distribution during Me­ ic and Cainozoic times.

Lycopodiumsporites paniculatoides spec. nov. Plate I, fig. l.

AL MATERIAL: Swedish Museum of Natural History, Stockholm, Eriksdal 55/7 (type specimen).

GRAPHIC DISTRIBUTION: Southern Sweden.

TIGRAPHIC DISTRIBUTION: Throughout the series investigated m al. 48 HANS TRALAU

DIAGNOSIS: Spores trilete, proximal surface plano-convex, distal surface markedly convex, and roundish triangular to subcircular in equatorial view. Laesura reaching almost to equator. Exine smooth in proximal part, reti­ culate around equator and in distal part, 1.0 to 1.5 f~ thick. Lumen of reti­ culum between 4 to 8 f~ in diameter, mostly hexagonal. Muri low, never exceeding 1.5 ~' but characterized by thickenings when forking. Equatorial diameter between 27 and 32 fl.

AFFINITY: No recent affinity is known, but there is some similarity with Lycopodium paniculatum Desv., a species of South America (cf Knox 1950, p. 233, plate X, figs . 62 a, b).

REMARKS: The species is relatively frequent in the sediments investigated.

Lycopodiumsporites scanicus spec. nov. Plate I, fig. 2.

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slid e Eriksdal 53/11.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Although not frequent, this occurs throughout the series investigated.

DIAGNOSIS: Spores trilete, proximal surface flattened to plano-convex, dis­ tal surface mostly strongly convex, roundish triangular to subtriangular (al­ most circular) in equatorial view. Laesura straight, distinct, approximating equator. Exine smooth in proximal part, reticulate in distal and equatorial regions, 1 to 2.5 ~ thick. Lumen of reticulum 8 to 13 fl in diameter, hexa­ gonal to pentagonal, muri l to 1.5 ,u thick and 2 to 4 ~ high. Equatorial dia­ meter between 38 and 45 fl.

AFFINITY: The present species resembles the modern Lycopodium diapha­ num Sw. by its wide reticulum, differs, however, by its higher muri.

REMARKS: Lycopodiumsporites scanicus differs from the more frequent spe­ cies L. clavatoides by its wider reticulum and its higher muri. occurs only occasionally in the strata investigated at Eriksdal. BOTANICAL INVESTIGATIONS IN ERIKSDAL 49

Lycopodiumsporites clavatoides Couper pro parte emend. Plate I, figs. 3-5.

Couper, p. 19, pi. I, fig. 2 (Lycopodium sp.). Couper, p. 132, pi. XV, figs. 10, 11 (but not 12, 13).

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal39/4 (pl. I, fig. 3), 53/5 (pl. I, fig. 4), 43 B/6 (pl. I, fig. 5).

EOGRAPHIC DISTRIBUTION: Eurasia, Southern Hemisphere.

TRATIGRAPHIC DISTRIBUTION: Jurassic and Cretaceous. In Eriksdal e species occurs throughout the series investigated.

CRIPTION : Spores trilete, proximal surface plano-convex, distal sur­ strongly convex, roundish triangular in equatorial view. Laesurae dis­ nct, straight, length about 3/4 of spore radius. Exine smooth proximally nd reticulate distally and equatorially, lumen of reticulum 6 to 14 ,u in dia­ ' hexagonal to pentagonal, muri 1 ,u thick and 1 to 1.5 f-l high. Equatorial meter between 28 and 35 f-l .

FINITY: Modern species of Lycopodium belonging to L. fastigiatum and volubile groups (see Knox 1950) resemble this fossil species.

· T he bigger specimens of Couper (1958) differ in their general ance by relatively narrower reticulum, the muri of which also are . The present specimens refer to the smaller specimens of Couper, and t is assumed that Couper's species includes distinguishable specimens. Spores · ilar to the bigger specimens of Couper have not been encountered from eposits at Eriksdal. The Liassic specimen cf. Lycopodium annotinum L. of ogalska (1954, pi. IV, fi g. 9) is close to the present species.

Lycopodiumsporites pseudophyllanthus spec. nov. Plate I, figs. 6, 7.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 41 A/7 (pl. I, fig. 6), 53/6 (pi. I, fig. 7).

GEOGRAPHIC DISTRIBUTION: Southern Sweden. 50 HANS TRALAU

STRATIGRAPHIC DISTRIBUTION: Throughout the series of Eriksdal, though infrequent.

DIAGNOSIS: Spores trilete, roundish triangular to subcircular in equatorial view, convex disrally and proximally. Laesura distinct, about 112 to 2/3 of radius. Exine reticulate in distal and proximal parts, 1.5 to 2.5 /t thick. Re­ ticulum absent in the very rteighbourhood of the laesurae. Lumen of the re­ ticulum between 2 and 5 fl in diameter, irregular, but occasionally hexagonal or pentagonal. Muri 1.5 to 3 fl high and about 1.5 fl wide. Equatorial dia­ meter between 48 and 53 fl.

AFFINITY: T he modern southern hemisphere Lycopodium phyllanthum Hook et Arn. is very similar but identity can hardly be assumed.

REMARKS: Size, structure of reticulum, which are outstandingly characte­ ristic, and contours make the fossil species under consideration appear to be identical or almost identical with Lycopodium phyllanthum. For principal reasons, however, I hesitate to declare the Jurassic species based on dispersed spores to be identical with the modern one. But there is no other modern species known to me to be as close to Lycopodiumsporites pseudophyllanthus as Lycopodium phyllanthum. Lycopodium laterale R. Br. which produces si­ milar spores differs distinctly by having a wider reticulum, the Iurnina being 10 fl and more in diameter, and by the structure of the proximal surface, which is rugulate to subrugulate.

Lycopodiumsporites annotinaides spec. nov. Plate II, fig. l.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 47/ 15.

GEOGRAPHIC DISTRIBUTION: S0t1thern Sweden.

STRATIGRAPHIC DISTRIBUTION: In numerous strata throughout the se­ ries investigated at Eriksdal.

DIAGNOSIS: Spore trilete, almost spherical, mostly circular to subcircular or slightly ovoid in equatorial view. Laesura distinct, approaching the equa­ tor. Exine reticulate in distal and equatorial parts, reticulum is lacking around BOT ANICAL INVEST!GATIONS IN ERIKSDAL 51 the laesurae. Lumen of reticulum between 5 to 11 f.1- in diameter, hexagonal to pentagonal. Muri about 1 f.1- thick and between 1 and 2 f.1- high. Equatorial diameter between 30 and 40 f.l- .

AFFINITY: There is striking resemblance between this species and the mo­ dern Lycopodium annotinum L.

REMARKS: The size of the spore, of the reticulum, its Iurnina and muri of this fossil species earresponds perfectly well with those of Lycopodium annotinum. But I prefer not to suggest identity.

Lycopodiumsporites reticulumsporites (Rouse) Dettmann Plate II, figs. 2, 3.

Lantz, p. 923, pi. II, fig. 17 (L. clavatoides). Verbitskaya, pi. I, fig. 4 (?). Rouse, p. 309, pi. II, figs. 1, 2 (L. reticulumsporites pro p.). Pocock, p. 33, pi. I, figs. 5, 6. Verbitskaya, pi. I, fig. 4 A and B (?). Dettmann, p. 45, pi. VII, figs. 4-7.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slid e Eriksdal 45/3 (p l. II, fig. 2), 55/4 (p l. II, fig. 3) .

GEOGRAPHIC DISTRIBUTION: Northern and Southern Hemispheres.

STRATIGRAPHIC DISTRIBUTION: Barhonian in England, from probable Upper Jurassic deposits of Canada, and Mesozoic in Australia.

DESCRIPTION: Spores trilete, convex in distal and proximal parts, roun­ dish triangular to subtriangular, sometimes almost circular in equatorial view. Laesura straight, distinct, Iong, approaching equator. Exine about 1 f.1- thick, reticulate in distal and partly in proximal parts. Reticulum rather narrow. Muri about 1 f.1- high and about 1 fl wide. Lumina 1 to 5 f.1- in diameter, sur­ rounded by mostly straight muri, hexagonal or pentaganal shaped. Equatorial diameter, with projections included, between 22 and 35 f.J- .

AFFINITY: This species has some similarity with the modern L. camplana­ tum L., L. clavatum L., L. annotinum L., and, perhaps, other ones. But it is not identical with any of them. 52 HANS TRALAU

REMARKS: Lycopodium parvireticulatum and L. cf. clavatum reporred by Verbitskaya (see above) are, perhaps, identical with the present species. Also Lycopodium cf. Reissinger (1950, pl. XVII, fig. 27) may be conspecific. Lycopodiumsporites gracilis (Nilsson 1958) and Retitrilites globosus (Pierce 1961) also show some similarities.

Lycopodiumsporites semimuris Danze-Corsin et Laveine Plate II, fig. 4.

1963: Danze-Corsin and Laveine, pi. VI, figs. 15 a, b. 1964: Levet-Carette, pi. V, fi g. 33, p. 102.

ORIGINAL MATERIAL: Gological Survey of Sweden, Stockholm, slide Eriksdal 43 B/8.

GEOGRAPHIC DISTRIBUTION: France and southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Occurs in Li assic sediments in France.

DESCRIPTION: Spores trilete, with roundish triangular to subcircular amb. Distal part is provided with imperfect reticulum; in the proximal part bacula and spinae occur. Muri of distal side l f-l thick and between 2.0 and 3.0 f-l high. Equatorial diameter 28 to 32 f-l.

AFFINITY: A lycopodiaceous affinity has been assumed by Danze-Corsin and Laveine (1963) and Levet-Caretre (1964).

REMARKS: So far this species has not been found in the Liassic sediments of Scania although it seems to be characteristic of the Liassic of France.

Lycopodiumsporites densus spec. nov. Plate IV, fig. 4.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2 (Type specimen).

GEOGRAPHIC DISTRIBUTION: Southern Sweden. BOTANICAL INVESTIGATIONS IN ERIKSDAL 53

STRA TIGRAPHIC DISTRIBUTION: This species occurs throughout the series investigated in Eriksdal.

DIAGNOSIS: Microspore trilete, with subcircular amb. Laesura short, co­ vering about 1/2 of radius. Surface of spore in distal and proximal faces rugulo-reticulate. Muri never higher than 1 /k, mostly about 1 Ii wide. Exine thin, 0.5 t-t. Equatorial diameter between 28 and 32 t-t.

AFFINITY: Unknown.

Genus Marattisporites Couper

1958: Couper, p. 133.

Monolete microspores with finely granular to scabrate exine are included within this genus. The spores are identical with those found in situ in sy­ nangia of Marattia (pl. XXIV, fig. 2, for microspores see plate VI, figs. 3, 4).

Marattisporites scabratus Couper

1958: Couper, p. 132, p!. XV, figs. 20-23.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Lower Jurassic to Lower Cretaceous.

DESCRIPTION: Microspore monolete with oval amb. Laesura often in­ distinct. Exine scabrate, 1.0 to 1.5 Ii thick. Dimensions 28 to 37 Ii X 22 to 33 Ii X 22 to 35 fk.

AFFINITY: See above.

Spores of this species occur frequently throughout the Eriksdal sequence. 54 HANS TRALAU

Genus Monolites Cookson ex Potonie

1956: Potonie, p. 77.

Monolites couperi spec. nov. Plate XVI, fig. 2.

1958: Couper, p. 149, pi. XXV, fig. 18 (Monolites spp.).

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 56/2.

GEOGRAPHIC DISTRIBUTION: England and S Sweden.

STRA TIGRAPHIC DISTRIBUTION: Middle Jurassic.

DIAGNOSIS: Microspore monolete, laesura covering the whole length of the spore. Exine smooth, 1.0 to 2.5 fl thick. Length 56 to 74 fl, breadth 35 to 47 fl.

AFFINITY: Unknown.

REMARKS: Couper (1958) recognized four specimens of this species in Middle Jurassic samples of England. There is little doubt that the British specimens are identical with those of Eriksdal. The frequency of this micro­ spore species is very low in Eriksdal. Ten specimens only have been observed.

Genus Neoraistrickia Potonie

1956: Potonie, p. 34. 1960: Potonie, p. 44.

This genus was instituted by Potonie (1956) to include trilete, azonate spores with a sculpture pattern camposed of bacula. Similar spores are included in the Palaeozoic genus Raistrickia (see above) . Among Mesozoic spores Ane­ miidites (Ross 1949, p. 32, pi. I, figs. 17, 18) show similar baculate projec­ tions, which, however, are described as spines. A comparable morphology is also found in part of the material of Mesozoic spores described as Cepulina (Maljavkina 1949, p. 73). It is possible that part of the Jurassic spores of BOTANICAL INVESTIGATIONS IN ERIKSDAL 55

Cepulina are identical with Neoraistrickia. Lycopodiumsporites gristhorpen­ sis Couper also belongs without any doubt to this genus (see above). Although this genus has no exact living counterpart there are spores similar to Neoraistrickia. Spores attributable to Neoraistrickia are thus found in Lycopodium densum La Billard (d Couper 1958, Samoilovitch et al. 1961) as well as in Selaginella biformis and S. stolonifera groups (d Knox 1950). For further discussion see Lycopodiumsporites.

Neoraistrickia truncata (Cookson) Potonie

Cookson, p. 471, pi. II, fig. 36 (Trilites truncatus). Potonie, p. 34. Balme, p. 18, pi. I, figs. 21, 22 (Baculatisporites truncatus). Krutzsch, p. 162 (Reticulatisporites ? truncatus). Prosvirjakova, Pocock, p. 33, pi. I, fig. 9. Dettmann, p. 36, pi. V, figs. 4, 5.

GEOGRAPHIC DISTRIBUTION: Eurasia, Austrtalia.

STRATIGRAPHIC DISTRIBUTION: Liassic to Lower Cretaceous in Europe. Upper Jurassic to Lower Cretaceous in Australia. In numerous strata at Eriksdal between layers nr 105 and 36.

DESCRIPTION: Spores trilete with roundish triangular amb. Laesura reach­ ing almost to equator, surrounded by ridges. Exine 1.5 to 2.0 !l in distal face, proximal face generally almost unsculptered. Bacula spaced 3 to 7 !l apart, 1.5 to 4.5 ft high and 1 to 1.5 ft in diameter. Equatorial diameter 28 to 40 f-l.

AFFINITY: Perhaps as in N. gristhorpensis.

REMARKS: The species is frequent in the sediments investigated.

Neoraistrickia gristhorpensis (Couper) Tralau Plate II, figs. 5, 6.

Couper, p. 133, pi. XV, figs. 14-16 (Lycopodiumsporites gristhorpensis). Tralau, p. 470, fig. l. 56 HANS TRALAU

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slide Eriksdal 43 B/8 (plate II, fig. 4), 43 B/9 (plate II, fig. 5).

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic (see also table 3).

DESCRIPTION: Spores trilete with roundish triangular amb. Laesura reach­ ing to equator. Exine 1.5 to 2.0 f-t thick, baculate in distal and proximal face. Bact1la spaced 3 to 8 ,u apart, 2.0 to 4.5 f-t high and 2.0 to 3.5 f-t in diameter. Equatorial diameter 30 to 41 f-t.

AFFINITY: According to Couper (1958, p. 133) the "nearest living counter­ part" of this species is to be found in Lycopodium dens~on La Billard and in Knox's (1 950) Selaginella biformis group.

REMARKS: The species is frequent in the sediments of Eriksdal. It is distin­ guishable from N. truncata by the size and arrangement of the bacula. N. truncata also has a wider distribution in Mesozoic sediments in Europe.

Neoraistrickia samuelssoni Tralau Plate II, fig. 7.

1967: Tralau, p. 470, text figs. l A, B.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4.

GEOGRAPHIC DISTRIBUTION: Eriksdal, Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: This species has only been encountered in layer nr. 55.

DIAGNOSIS: Spores trilete, equatorial contour rounded triangular. Laesura reaching to or almost to equator. Exine l to 2 f-t thick, ornamented with bact1la in distal and equatorial regions. Bacula reduced or absent in proximal parts. Distal bacula spaced 3 to 6 ~-t apart, 2.5 to 5 ~-t in diameter, 2 to 4 f-t high. Size range between 35 to 40 f-t in equatorial diameter.

AFFINITY: See N. truncata.

REMARKS: The species is infrequent m Eriksdal. lt 1s not readily dis­ tinguished from N. gristhorpensis. BOTAN!CAL INVESTIGATIONS IN ERIKSDAL 57

Genus Osmundacidites Couper

[1931: Harris, p. 48 (Osmundopsis).] Couper, p. 20 (Osmundacidites). Couper, p. 134. Krutzsch, p. 138 (Baculatisporites p. p.). Klaus, p. 127 (Conosmundacidites).

The genus OsmundotJsis (Harris) refers to fertile and sterile leaves, sporangia, and spores. The genus Osmundacidites Couper (Couper 1953) refers to dis­ persed spores with predominantly granulare exine. The spores to be described here agree in all known characters with spores of Osmundopsis. I cannot see any reason to doubt their osmundaceous affinity. Macrofossils belonging to this family have not been encountered from the deposits at Eriksdal. The Osmundaceae commonly occur in Mesozoic fossiliferous sediments. The family includes three recent genera, i. e. Todea, now confined to the southern Hemisphere, as weil as Leptopteris, and the ubiquitous genus Os­ munda. The former two genera have their fossil counter parts in the genus Todites, which in the Middle Jurassic flora of Yorkshire consists of three main species groups, according to Harris (1961, p. 76). Osmunda-like fossils are also common in Mesozoic deposits around the world. Among the modern species of this family there is a remarkable uniformity of very characteristic spores, as pointed out by Knox (1 938) and Harris (1955). This fact renders the classification of fossil spores possible in the Osmundaceae. However, no recent species is known to have smooth to subgranular spores as for example the fossil Jurassic species Todites goep­ pertianus (Miinster) Krasser (Harris 1931, pl. XI, fig. 3), T. (Cladotheca) undans (Lindi. et Hutt.) Halle (Halle 1921, pl. II, figs . 9-12), and Harris (1961, text figs . 26 C, D), T . princeps (Presl.) Gothan (Harris 1948, text fig. 3 B, Harris 1961, text fig. 31 B and T. williamsoni (Brongn.) Seward (Nathorst 1908, pl. I, fig. 7, Thomas 1911, pl. III, figs . 8, 9, Harris 1961, text fig. 29 C) . The spores mentioned above have all been found in situ. Unfortunately dispersed smooth osmundaceous spores are not readily classi­ fied into specific order. Only by bimodal size frequency are these spores se­ parated (Couper 1958), thus giving shape to two species, Todisporites major and T . minor. Both fossil species occur in the fossiliferous layers at Eriksdal. From evidence outlined above, however, it is perfectly clear that these two fossil species can hardly be assumed to represent two natural units on the level of species. But it is possible that these dispersed spores might come from more than two natural species. If so, and in any case, the current situation is insufficient with regard to dispersed osmundaceous spores with smooth sur­ face. 58 HANS TRALAU

Osmundacidites wellmanii Couper Plate VII, figs. 2, 3.

1953: Couper, p. 20, pi. I, fig. 5 (Osmundacidites wellmanii). 1958 : Couper, p. 134, pi. XVI, figs. 4, 5. 1959: Krutzsch, p. 142 (Baculatisporites wellmanii). 1962: Pocock, p. 35, pi. I, fig. 15. 1963: Dettmann, p. 33, pi. III, figs. 19-21, text figs. 4 g, h. 1967: Playford & Cornelius, p. 90, pi. I, figs. 1-2. 1967: Drugg, p. 38, pi. VI, fig. 26.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, Eriksdal 45 A/10 (plate VII, fig. 2), 53/11 (plate VII, fig. 3).

GEOGRAPHIC DISTRIBUTION: England, southern Sweden, New Zealand, Australia.

STRATIGRAPHIC DISTRIBUTION: Lower Jurassic to Lower Cretaceous in Europe. In Eriksdal throughout the series.

DESCRIPTION: Speres trilete, laesura rather Iong, reaching almost to equa­ tor. Speres in weil preserved state circular in polar view. Exine about l f-l thick, densely granular (granular-papillate). Equatorial diameter between 35 and 50 f-l .

AFFINITY: Osmundaceous affinity is assumed. There is a noteworthy simi­ larity with the speres of Todites hartzi from the Liassic of Greenland (Harris 1931, pl. x, fig. 3).

REMARKS: This species, which is not uncommon in the Middle Jurassic deposit at Eriksdal, differs from all other related species by its much denser granular sculpture of the exine. It has all features in common with the British and New Zealand specimens. As defined by Couper (cf above) O. wellmanii affords "a good example of the broadness of spore species cam­ pared with most plant macrofossil species. They are comparable with the spore of the Greenland Liassic species Osmundopsis plectrophora Harris and Todites hartzi Harris, and with the spores of Todites undans from the Yorkshire J urassic. At the same time they are indistinguisha bl e from, and are thus assigned to the spore species O. wellmanii described by the writer from the Jurassic and Lower Cretaceous of New Zealand". I prefer to give a doser definition of this species, thus excluding the To­ dites undans type of spore, which has a definitely smoother exine (cf Harris 1961, p. 83, text fig. 26 C, D). BOTAN!CAL INVESTIGATIONS IN ERIKSDAL 59

The oldest finds of this species are from Liassic strata of Queensland (de Jersey 1959) and the youngest from Middle Senanian of New Zealand (Cou­ per 1960).

Osmundacidites spec. [Osmundopsis cf. sturi (Raciborski) Harris] Plate VII, fig. 4

1961: Harris, p. 99, text fig. 32 D.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 53/7.

GEOGRAPHIC DISTRIBUTION: England, southern Sweden, Poland.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic (England) and Liassic (Poland) . In Eriksdal this spore occurs in a number of strata throughout the series investigated.

DESCRIPTION: Spores trilete, amb circular. Laesurae reaching almost to equator. Exine granular-papillate, projections mostly less than 1 f.1 high, exine, without projections, about 1 f.1 thick. Medium equatorial diameter 35 to

The present spores have all features 111 common with O. sturi (Raciborski) Harris.

REMARKS: Although the present spores are dispersed, I tentatively refer them to this species, which besides macroscopic remains, includes spores in situ. This treatment, i. e. to give dispersed spores the name of spores found in situ in sporangia, is unusual indeed. But, being inclined to come as close as possible to natural taxa with the specific determinations undertaken here, this arrangement seems defendable to me.

Genus Polycingulatisporites (Simoncsics et Kedves) Playf. et Dettm.

Simoncsics and Kedves, p. 34 (Polycingulatisporites). Reinhardt, p. 708 (Neochomotriletes). Stover, p. 55 (Taurocusporites). Playford and Dettmann, p. 143. 60 HANS TRALAU

This genus includes radial, trilete microspores, with simple or lipped laesura. The exine is smooth and provided with an equatorial cingulum. The distal part of the spore has a circumpolar ridge encircling concentrically a polar thickening. Similar features are found in spores of Recent species of Lopho­ soria (see Erdtman 1957, fig. 133 ).

Polycingulatisporites triangularis (Bolkh.) Playf. et Dettm. Plate XI, fig. 2.

1956: Bolkhovitina, p. 105, pi. III, figs. 98 a-c (Chomotriletes triangularis). 1960: Kara-Murza, pi. VI, fig. 9. 1961: Reinhardt, p. 708, pi. I, figs. l, 5 (Neochomotriletes triangularis). 1963: de Jersey, p. 6, pi. I, fig. 14, pi. II, figs. l, 2 (cf Taurocusporites triangularis ). 1964: Mädler, p. 187. 1965: Playford and Dettmann, p. 144. 1967: Schulz, p. S87, pi. XIV, figs. 10, 11, pi. XXIII, fig. 4.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/5.

GEOGRAPHIC DISTRIBUTION: Eurasia, Australia.

STRATIGRAPHIC DISTRIBUTION: From the Lower and Middle Jurrassic of the Soviet Union, Rhaetic and Liassic of Germany.

DESCRIPTION: Microspore trilete with circular or sub-circular amb. Lae­ sura extending to the equator, provided with prominent lips, which are 3 Il­ in width. Distal part ornamented with two concentric rings of thickenings around a thickened, almost circular area at the distal pole, which is about 16 to 20 11- in width. The concentric rings are about 4 to 6 ,u wide. Equato­ rial diameter 46 to 50 Il-·

AFFINITY: As pointed out above the genus Lophosoria has similar spores.

REMARKS: This species seems to be typical for the Upper Triassic and Lower Jurassic of Europe. The present occurrence is the youngest known so far. BOTANICAL INVESTIGATIONS IN ERIKSDAL 61

Genus Sestrosporites Dettmann

: Dettmann, p. 66.

ispersed spores comparable with spores of Recent Lycopodium manii Hil­ ebr. and those of L. laterale R. Br. are referred to this genus. The spores are with straight laesurae, which sometimes are provided with distinct ·ssures. The spore surface is foveolate to foveo-reticulate. Couper (1958) • ._ • ._ .. ._u these spores to the genus Cingulatisporites. Mary E. Dettmann insti­ the new genus and suggesred lycopodiaceous affinity.

Sestrosporites pseudoalveolatus (Couper) Dettmann Plate XV, fig. 3.

Couper, p. 147, pi. 25, figs. 5, 6 (Cingulatisporites pseudoalveolatus). Dettmann, p. 66, pi. XIII, figs. 11-16. Döring, p. 43, pi. 15, figs. 3-5 (Foveosporites multifoveolatus). Archangelsky and Gamerro, p. 233, pi. II, figs. 7-9. Tralau, p. 469, fig. l H.

AL MATERIAL: Swedish Museum of Natural History, Stockholm,

DISTRIBUTION: Eurasia, Australia, North and South

TIGRAPHIC DISTRIBUTION: Middle Jurassic to Lower Cretaceous. England the species occurs since the Middle Jurassic, in Germany it is Upper Jurassic times.

N: Spores trilete, pyramidal in proximal face and convex in distal face, amb rounded-triangular. Laesura long and straight, reaching equator and provided with narrow commissures. Proximal and distal parts f exine sculptured with deep circular foveolae, 0.5 to 1.0 f.-l in diameter and etween 2.0 and 3.0 f.-l apart. Outer margin of foveolae ornamented with ·ections, 1.0 to 2.0 f.-l high, which are truncated. Proximal and distal exine .O to 3.0 f.-l thick, occasionally thicker especially in the equatorial region. A delicate cingulum is sometimes preserved, which is 2.0 to 5.0 fl· wide. average size range of the equatorial diameter is around 45 /-l, the cingu­ being included. 62 HANS TRALAU

AFFINITY: Mary E. Dettmann suggested, as pointed out above, lycopodia­ ceous affinity, referring to Lycopodium manii and L. laterale. Couper (1958) favoured the view of unknown affinity.

REMARKS: This species is most characteristic for its sudden appearance in Middle Jurassic deposits of Northwestern Europe, hence it is of pronounced stratigraphic value for distinguishing between Lower and Middle Jurassic sediments. In other parts of the world the stratigraphic distribution is diffe­ rent.

Sestrosporites acutus spec. nov. Plate XI, fig. 3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: In the Middle Jurassic sediments of E riksdaL

DIAGNOSIS: Spores trilete, amb rounded-triangular, pyramidal in proximal face and convex in distal face. Laesura straight and with narrow commis­ sures, reaching to equator. Proximal and distal parts of exine sculptured with deep circular foveolae, 0.5 to 1.5 ,u in diameter and between 1.5 and 2.5 fl, apart. Margins of foveolae ornamented with spines, which are 2.0 to 3.0 f-l high. Exine between 1.5 and 3.0 f-i thick. Equatorial diameter between 30 and 42 f-l.

AFFINITY: The present species might be closely related to S. pseudoalveo­ latus.

REMARKS: This new species differs mainly from S. pseudoalveolatus by the pointed projections on the exine. A cingulum has never been observed in the present material.

Genus Stereisporites Pflug.

1953: Pflug in Thomson and Pflug, p. 53. 1953: Cookson, p. 463 (Sphagnites). 1956: Raatz ex Potonie, p. 17 (Sphagnumsporites). BOTANICAL INVESTIGATIONS IN ERIKSDAL 63 Dispersed spores referred to this genus have been compared with those of Sphagnum. A revision of these variable spores has recently been published by Döring, Krutzsch, Schulz, and Timmerman (1966), to whom I refer for further details.

Stereisporites granulatus spec. nov. Plate VI, fig. 2.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 53/12.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Middle Jurassic.

DIAGNOSIS: Microspore trilete,laesura covering 3/4 of spore radius, straight. Amb subcircular to rounded triangular. Exine 2.0 to 2.5 f.J., thick, granulate in proximal and distal faces, granula less than 1 f.J., in diameter. Exine thicke­ nings around the equator and in distal polar face. Equatorial diameter 30 to 32 f.J.,.

AFFINITY: No modern nor fossil affinities are known to the author.

REMARKS: This species has only been found in layer 53 at Eriksdal. From the recent revision published by the East Genuan authors mentioned above, it is perfectly clear that the present species is a new one.

Stereisporites cicatricosus (Rog.) Danze-Corsin et Laveine Plate X, figs. 9, 10.

Rogalska, p. 44, pi. XII, fig. 11 (Sporites cicatricosus). Rogalska, p. 84, pi. XXIX, fig. 7 (Sporites cf cicatricosus). Danze-Corsin et Laveine, p. 86 (Rogalskaisporites cicatricosus). Schulz, pi. VII, figs. 12-14 (Stereisporites cicatricosus).

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Lower and Middle Jurassic. 64 HANS TRALAU DESCRIPTION: Microspore trilete, laesura straight, covering radius of spore. Exine smooth, 2.5 to 3.0 ,u thick, with a low distal polar thickening, which is 12 p in diameter and radiating towards equator. Equa­ torial diameter 24 to 30 p.

AFFINITY: No recent affinity is known.

REMARKS: Previously this species was only known from Liassic sediments of Poland, Eastern Germany, and France, its uppermost occurrence being in the Toarcian of Germany.

Stereisporites psilatus (Ross) Pflug.

1949: Ross, p. 32, pi. I, fig. 12 (Trilites psilatus). 1952: Pflug, p. 119 (Stereisporites psilatus). 1953: Thomson and Pflug, p. 53, pi. I, fi gs. 75-78. 1953: Weyland and Krieger, p. 10, pi. III, figs . 29-30. 1954: Manum, p. 10, pi. I, fig. 2 (Polypodiaceae-type). 1958: Couper, p. 131, pi. XV, fi gs. l, 2 (Sphagnumsporites psilatus). 1962: Manum, p. 26, pi. II, fig. 3.

GEOGRAPHIC DISTRIBUTION: Eurasia.

STRA TIGRAPHIC DISTRIBUTION: Jurassic, Cretaceous, Tertiary.

DESCRIPTION: Microspore trilete, laesura straight, covering 2/3 to radius of spore. Amb rounded triangular. Exine smooth or undulating, 2.5 to 3.5 !-l thick. Equatorial diameter 24 to 35 /-l.

AFFINITY: Sp::> res of Sphagnum are comparable.

REMARKS: This species is abundant in the sediments of Eriksdal.

Genus Todisporites Couper

1958: Couper, p. 134, pi. XVI, figs. 6-10.

Although no macrofossils of Trodites are known from the fossiliferous Middle Jurassic sediments at Eriksdal, spores are present throughout the deposits in question (see also Osmundacidites for further discuss ion). BOTANICAL INVEST!GAT!ONS IN ERIKSDAL 65 Todisporites major Couper Plate IX, fig. 5.

1958: Couper, p. 134, pl. XVI, figs. 6-8.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 44/11.

GEOGRAPHIC DISTRIBUTION: England, southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Lower Liassic to Middle Jurassic (Eng­ land). Throughout the series in Eriksdal (see also table 1).

DESCRIPTION: Spores trilete, amb roundish if not folded; (the spores are often folded owing to pressure in the sediment). Laesurae distinct, narrow, ching almost to eguator. Exine smooth and about l f.l, less often 1.5 f.l ck. Eguatorial diameter between 50 and 80 fl.

AFFINITY: The spores summarized under this species earrespond weil with spores of Todites williamsoni (Harris 1961, p. 90).

REMARKS: Todisporites major is a typical fossil of the Lower and Middle urassic of England. Todites williamsoni is widespread and common in the Yorkshire Middle Jurassic flora, where it occurs abundantly throughout the · series. Todites williamsoni becomes common in the Upper Triassic extends commonly to the Middle Jurassic (cf Harris 1961, p. 90). From of macrofossils known from literature and because of the fact that main stratigraphic distribution of the dispersed spores obviously ceases the end of the Middle Jurassic period, it is Iikely that the major part of dispersed spores do belong to this macroscopic species.

Todisporites minor Couper Plate IX, fig. 4.

Couper, p. 135, pi. XVI, figs. 9, 10.

AL MATERIAL: Swedish Museum of Natural History, Stockholm, Eriksdal 39/3.

GRAPHIC DISTRIBUTION: England, Sotithern Sweden. 66 HANS TRALAU STRATIGRAPHIC DISTRIBUTION: Middle Jurassic, i. e. Lower Estuarine to Upper Deltaic (England). Throughout the series in Eriksdal.

DESCRIPTION: Spores trilete, with circular amb, if not folded by pressure. Laesurae distinct, narrow, reaching almost to equator. Exine smooth, about 1 fl thick. Equatorial diameter between 20 and 50 f-l.

AFFINITY: Similar spores are produced by Todites williamsoni, which ge­ nerally are bigger and by T. princeps (Harris 1948, text fig. 3 B, Harris 1961, text fig. 31 B). T. princeps is a species typical for the Liassic and Middle Ju­ rassic and is obviously absent from rocks younger than the Middle Jurassic.

REMARKS: The species is not infrequent in the sediments of Eriksdal.

Todisporites cladothecoides spec. nov. Plate XIV, fig. 1.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 58/7.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Throughout the series investigated Eriksdal.

DESCRIPTION: Spores trilete, circular in original state (mostly folded in the fossil state). Laesura narrow, reaching almost the equator. Exine minutely granulared (subgranulate) to almost smooth, about 1 ,u thick. Equatorial dia­ meter between 50 and 65 f-l.

AFFINITY: Similar spores, although generally smaller, are produced by To­ dites denticulatus (Brongn.) Krasser ( = Cladotheca undans Lindi. et Hutt.).

REMARKS: Todites denticulatus is according to Harris (1961, p. 82) known from Jurassic and Cretaceous deposits, but he feels some doubt about the synonymy of leaves identified, which "cannot yet be accepted". lt is neither by any means sure that the spores of Todisporites cladothecoides actually belong to Todites denticulatus. BOTANICAL INVESTIGATIONS IN ERIKSDAL 67

Todisporites granulatus spec. nov. Plate VII, fig. l.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 49/2.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Throughout the series in Eriksdal.

DESCRIPTION: Spores trilete, with originally circular amb (but now fre­ quently folded). Laesura mostly narrow, reaching almost to equator. Exine granulared about l Il thick. Granules never exceeding l fl in diameter. Equa­ torial diameter 50 to 72 fl.

AFFINITY: There are no osmundaceous spores known to me, which directly compare with these rather big specimens. The spores of Osmundacidites wellmanii are similar in general appearance, but definitely smaller.

REMARKS: According to measurements of W. F. Harris (1955), the size range of spores of modern Todea is from 37 to 63 fl. The present material is unique, because of the combination of' the big size of the spores, which is only re-found in the big-sized spores of Todisporites major, and the granu­ lared structure of the exine of spores, which is typical for a number of fossil osmundaceous spores of smaller size. The main characters of the fossil in question, however, compare well with common features of spores of recent and fossil Osmundaceae.

Genus Trilites Cookson ex Couper

1953: Couper, p. 29.

Trilites rariverrucatus (Danze-Corsin et Laveine) comb. nov. Plate V, fig. 5.

Danze-Corsin and Laveine, p. 72, pi. V, fig. 32 (Trilitisporites rariverrucatus). Levet-Carette, p. 96, pi. V, fig. 15. Mai in Schulz, p. 561, pi. III, figs. 5-6 (Trilites lygodioides). 68 HANS T RALAU

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 45/3.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Liassic to Dogger.

DESCRIPTION: Microspore trilete with triangular amb. Laesurae, covering 4/5 of radius of spore, are endosed by low membraneous lips. Lips 3.0 to 4.0 f-l wide. Exine subverrucate. Elevations of exine irregularly scattered, 1.0 to 3.5 f-l w ide and a bo ut 1.0 to 2.0 ~t high. Equatorial di ameter 49 to 55 p.

AFFINITY: Unknown.

REMARKS: This species is known from Liassic and Bajocian sediments of France (see au thors above) and is distributed from Toarci an to Bajocian times in northern Germany (Döring, Krutzsch, Mai, and Schulz 1966). The species is infrequent in Eriksdal. Leptolepidites cf verrucatus of Lantz (1958, pl. I, fi g. 12) from Engbnd, which has been suggesred to be identical with the present species by Levet­ Caretre (1964, p. 96), differs, however, by having bigger verrucae. The uppermost stratigraphic distribution of the species tlms is confined to the Bajocian.

Genus Uvaesporites Döring

1965: Döring, p. 39.

A lycopodiaceous, particularly selagin elli d affinity, has been suggesred for microspores referable to this form genus.

Uvaes porites argenteaeformis (Bolkh.) Schulz Plate III, fig. 4, plate IV, figs. l , 2.

1953: Bolkhovitina, p. 51, pi. VII, fig. 9 (S tenozonotriletes argenteaeformis). 1961: Reinhardt, p. 707, pi. II, figs. 1, 2 (Trilites reissingeri). 1964: Levet-Carette, p. 97, pi. V, fig. 17 (Leptolepidites cf m ajor). 1963: Couper and Hughes, p. 275, pi. I, fig. 3. 1967: Schulz, p. 560, pi. II, figs. 10, 11, pi. XXII, fig. 2 (Uvaes porites argenteae­ formis). BOTANICAL INVESTIGATIONS IN ERIKSDAL 69

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slides Eriksdal 55/1 (pl. III, fig. 4), 53/4 (pl. IV, fig. 1), 53/4 (pl. IV, fig. 2).

GEOGRAPHIC DISTRIBUTION: Eurasia (and North America?).

STRATIGRAPHIC DISTRIBUTION: In Keuper, Lower and Middle Jurassic to Lower Cretaceous sediments.

DESCRIPTION: Microspore trilete with rounded triangular to subcircular amb. Laesura reaching to equator. Exine 1 ,u thick, ornamented with irregular verrucae in distal face, which are between 2 and 5 fl high and 2 and 6 fl in diameter. Proximal side of spore smooth. Equatorial diameter 30 to 42 fl.

AFFINITY: Dispersed spores belonging to this genus have previously been referred to Botrychium (Rogalska 1954, 1956) and to Selaginella (Reissinger 1950).

REMARKS: According to a private communication by Dr. E. Schulz of Ber­ lin (letter dated Sept. 26th 1967) the present material is identical with speci­ mens called Uvaesporites argenteaeformis (Bolkh.) Schulz of German Meso­ zoic deposits. Dr. Schulz also kindly informed me that the type material of Bolkhovitina no longer is available. Specimens of this species are rather common in the sediments at Eriksdal.

Uvaesporites cerebralis spec. nov. Plate III, fig. 3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/5.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: This species has been encountered on­ ly from layers around layer 55.

DIAGNOSIS: Microspore trilete, triangular to rounded triangular in equa­ torial view. Laesura reaching to equator, straight and conspicuous. Exine between 1.0 and 2.5 fl thick, verrucate in distal and equatorial parts, but smooth on the proximal face. Verrucae 5.0 to 10.0 fl high and 3.0 to 5.0 fl wide. Equatorial diameter between 48 and 55 fl. 70 HANS TRALAU

AFFINITY: Similar spores are found in the Recent species Selaginella aitchi­ sonii (cf Sladkov 1951, 1962) but identity can hardly be suggested. Trili­ tisporites perverrucatus of Levet-Carette (1964, p. 97) although destroyed, seems to have similar features.

REMARKS: Dispersed spores of this species are extremely rare in the sedi­ ments of Eriksdal.

Genus Alisporites (Daugherty) T. Nilsson

1941: Daugherty, p. 98. 1958: Nilsson, p. 81.

This genus is instituted to include bisaccate pollen grains, which do not be­ long to the Abietineae or to Podocarpineae (Daugherty 1941). The affinity is suggested to be with the Mesozoic pteridosperms (Couper 1958, Harris 1962). Thomas (1933, p. 238, pl. XXIV, fig. 77) found similar pollen grains in a Middle Triassic Pteruchus of South Africa. From the Yorkshire Middle Jurassic flora Harris (1964, p. 174, figs . A-E, K-G) pictured pteridosperm pollen grains, which are similar to Alisporites robustus. Staplin, Pocock, and Jansonius (1967) connect this genus with the Corys­ tospermaceae.

Alisporites robustus T. Nilsson Plate XXI, fig. l.

1958: Nilsson, p. 82, pi. VIII, figs. 2-3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slid e Eriksdal 47/3.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Lower and Middle Jurassic.

DESCRIPTION: Pollen grains bisaccate, corpus of grain longer than broad, i. e. length 48 to 55 /h, breadth 33 to 42 fh. Exine of corpus granulate, about 1.5 f-l thick. Sacci 25 to 43 X 52 to 62 /h, intrareticulate. Muri of reticulum 0.5 to 0.75 f-l wide, lumina 1.0 to 4.0 fh in diameter. Exine generally less than l fh thick. BOTANICAL INVESTIGATIONS IN ERIKSDAL 71

AFFINITY: The dosest relationship, perhaps, lies with Mesozoic pterido­ sperms. For further discussions regarding similar fossils see Nilsson (1958, p. 82-83).

REMARKS: Pollen grains of this species are frequent in Eriksdal.

Genus Araucariacites Cookson ex Couper

1953: Cookson in Couper, p. 39.

In the rnaerafossil state the genus Araucaria is common and widespread in European Middle Jurassic to Upper Cretaceous deposits (Florin 1963, p. 178) and consequently the presence of considerable quatities of Araucaria pollen, described under the name of Araucariacites is not surprising. Macrofossils of araucarias have not been gained from sediments at Eriksdal, as far as is known to me, but the presence of the genus in the Middle Jurassic of Scania seems to be beyond any doubt because of the remarkable frequency of pollen, comparable with pollen of recent Araucaria.

Araucariacites australis Cookson Plate XVII, fig. 2.

1953: Cookson in Couper, p. 39. 1958: Couper, p. 151, pi. XXVII, figs. 3-5. 1958: Nilsson, p. 73, pi. VII, fig. l (Crassipollenites rugosus T. N.). 1967: Staplin, Pocock, and Jansonius, p. 299, pi. I, fig. 41.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/1.

GEOGRAPHIC DISTRIBUTION: Eurasia and Southern Hemisphere.

STRATIGRAPHIC DISTRIBUTION: Jurassic to Lower Cretaceous m

DESCRIPTION: Pollen grain inaperturate, spherical, but owing to pressure during sedimentation mostly more or less folded. Exine 0.5 to 1.5 f-l thick, smooth, slightly granulate or granulare sculptured. Size range between 50 and 85 f-l. 72 HANS TRALAU

AFFINITY: Similar pollen grains are produced by a number of recent Arau­ caria species, for which reason these pollen grains are tentatively assigned to this family. On the other hand similar pollen grains have been referred to Podozamites by Zauer and Mtchedlishvili (1954) and Bolkhovitina (1956), which genus belongs to an isolated fossil family of its own.

REMARKS: The remarkable variability of the pollen grains described here under the name of Araucariacites australis makes it Iikely that they have been produced by different natural species. It is not even sure, from evidence mentioned above, that all of them really belong to the genus Araucaria. At present I cannot see any possibility of distinguishing araucarian pollen from those of other genera.

Genus Brachysaccus Mädler

1964 a: Mädler, p. 62.

Brachysaccus microsaccus (Couper) Mädler Plate XXI, fig. 2.

1958: Couper, p. 151, pi. XXVI, figs. 3, 4 (Pteruchipollenites microsaccus). 1964: Mädler, p. 63. 1966: Levet-Carette, p. 167 (Pteruchipollenites microsaccus). 1967: Schulz, p. 596, pi. XVIII, fig. l.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slid e Eriksdal 47/7.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Rhaetic to Upper Jurassic.

DESCRIPTION: Pollen grain bisaccate, central body (corpus) of grain longer than broad, length 35 to 68 p.,, breadth 32 to 55 p.,. Breadth with sacci included 40 to 75 p.,. Exine of sacci intrareticulated, Iurnina about 1.0 p., in diameter. BOTANICAL INVESTIGATIONS IN ERIKSDAL 73

Exine of proximal face of central body scabrate to granulate, about 1 fl thick. Sulcus difficultly distinguishable.

AFFINITY: Couper (1958, p. 151) suggested pteridospermous affinity. There are no recent conifers producing similar pollen grains.

REMARKS: This species is comparatively frequent in Eriksdal. In Liassic sediments it is said to be rare (Schulz 1967). Pteruchipollenites cf microsaccus from the Wealden of France (Levet-Carette 1966, pl. XVI, fig. 15) is diffe­ rent and does not belong here. The unpictured specimens recorded as Pte­ ruchipollenites microsaccus (Levet-Carette 1966, p. 167) from the French Wealden are only tentatively referred to the present species. It remains doubtful whether they really belong here uniess more evidence is provided. At present the uppermost stratigraphic occurrence is in the Upper Jurassic.

Genus Caytonipollenites Couper (Genus Caytonanthus Harris)

Reissinger, p. 14 (Pityosporites pallidus). Reissinger, p. 109, plate XV, figs. 1-5 (Pityopollenites pallidus). Couper, p. 149, plate XXVI, figs. 7, 8.

The present family is, in the macrofossil state, represenred in Eriksdal by a single fragmentary of Sagenopteris (see plate XXV, fig 6) . Dispersed pol­ len has been found throughout the series. In Yorkshire Harris (1964, p. 13 ff, fig. 8, see also Harris 1932, 1933, 1941, 1951, 1960) has encountered identical pollen, which has been attached to macroscopic remains. He has thus obtained such pollen grains from a pollen sac of Caytonanthus sp., from pollen sacs of C. arberi and C. oncodes, as weil as in intimate association with micropyles of C. nathorsti and C. se­ wardi. He also mentioned "many grains sticking to a small leaf of Sagenop-

Although judging from the macroscopic remains known to belong to the fa­ mily under consideration, different species should be expected, but the dis­ persed pollen grains seem to be indistinguishable and for this reason are treated as a single species, i. e. form species, below. In the Middle Jurassic of Britain Harris (1964) distinguishes two different form species of leaves, three of megasporophylles, and one of seeds. Concerning the affinity we can assume that as long as there are neither recent nor other fossil plants known 74 HANS TRALAU to produce identical pollen, there is hardly any doubt about the affinity of the pollen grains under discussion and the assignment should therefore rea­ sonably be considered reliable. This completely isolated dass contains a single family only. It is obviously also monogeneric and the genus has been called the "Caytonia plant". The separate parts of the plant are named with different generic names. The leaves being Sagenopteris Presl., the fruits being Caytonia Thomas, the microsporophyll, as weil as pollen grains in situ, are called Caytonanthus Harris and the dispersed pollen grains, identical with those of Caytonanthus, have been named Alisporites Daugherty (Po tonie and Kremp 1956), Vit­ reisporites Leschik (Nilsson 1958), Caytonipollenites (Reissinger) Couper 1958, some other synonyms being suggesred by Townrow (1962). Somewhat similar pollen grains from the Rhaetic of Greenland, assigned to Hydropterangium marsilioides (Harris 1932, 1951, 1964) and Harrisia marsilioides (Harris 1964), are according to the suggestion of Harris other pteridospermous affinity and thus not related to the Caytoniales. The affinity of the caytonialean remains has for a Iong time been regarded as uncertain. Thomas (1925) pointed out similarity to both pteridosperms and angiosperms. Much work done since that time showes that this dass neither belongs to the pteridosperms, nor to the angiosperms, but is even more isolated. Harris (1964) made it perfectly clear that the fruit of the Caytoniales, as regards pollination, is "strictly gymnospermous", while the general features of the microsporophyll resembled those of the pteridosperms. The synangia of the Gaytoniales are radial and different from angiosperm anthers, which are bilaterial. The seeds are similar to seeds of some Bennetti­ tales and "to a less extent" to those of the angiosperms. The leaves show some similarity to angiosperms leaves. In fact, also the leaf epidermis of Sa­ genopteris is clearly angiosperm-like (Thomas 1925, Harris 1951). As far as it is known to me, the oldest finds of Sagenopteris are made by the Seanian palaeontologist Sven Nilsson, who found a considerable number of specimens in the sandstone of Höör (Nilsson 1820, plate V, fig. 3), and described these remains not as Angiosperms, but under the name of Filicites1) (cf Brongnian 1824 and Halle 1910).

1) Although not referring these particular foliar remains to the angiosperms, S. Nilsson maimained the presence of angiosperms in the Liassic of Scania (Nilsson 1820) in one of his earliest publications and did so for a Iong time, refusing to change his mind, even when evidence had turned up contradieting this point of view. In a letter to W. Hisinger of skinnskatteberg he tried to make his point of view clear, writing: "l för­ middag har jag inlagt en låda med petrifikater från Hör hvilka jag i morgon sänder till Malmö för att derifrån afgå till Stockholm och widare till Skinnskatteberg. Deri finnes: Nr. l. Ett blad af något löfträd, tydligen reticuleradt, så att ingen kan neka att det ju tillhört en dicotyledon wäxt." (Letter of S. Nilsson to W. Hisinger, Coli. Hisinger, Royal Swedish Academy of Science, July 24th, 1823). From evidence of later diary annotations (Library of the University of Lund, Collection S. Nilsson C38, 1873) it might be assumed that S. Nilsson included some of the Sagenopteris remains in the angiosperms. BOTANICAL JNVESTIGATIONS IN ERIKSDAL 75

Caytonipollenites pallidus (Reissinger) Couper Plate XX, figs. l, 3.

1908: Nathorst, p. 13, plate II, figs. 56-58. 1926: Harris, p. 78, plate VIII, fig. 5. 1932: Harris, p. 9, fig. 2. 1933: Harris, p. 107, fig. 11. 1937: Harris, p. 43, fig. 4. 1938: Reissinger, p. 14. 1941: Harris, p. 49, figs. 3-8. 1956: Bolkhovitina, p. 113, plate XX, fig. 207. 1956: Rogalska, p. 22, plate X, figs. 1-2. 1958: Couper, p. 150, plate XXVI, figs. 7-8. 1958: Nilsson, p. 78, plate VII, figs. 12-14. 1964: Couper, p. 133, fig. 1:4. 1964: Harris, p. 18, fig. 8. 1967: Playford and Cornelius, p. 91, pi. II, fig. 13.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/7 (plate XX, fig. 3), 55/5 (plate XX, fig. l).

GEOGRAPHIC DISTRIBUTION: Eurasia, Australia.

STRATIGRAPHIC DISTRIBUTION: Jurassic to Lower Cretaceous. In Eriks­ dal these pollen grains occur throughout the series.

DESCRIPTION: Pollen grains small, as a rule less than 35 p,, bisaccate, but also trisaccare specimens occur. Length of body from 12 to 28 p, , breadth of body between 10 and 20 p,, length of bladders between 15 and 30 p,, breadth of bladders between 10 and 20 p,, total breadth of pollen up to 40 Il. Central body of grain markedly more Iong than broad, oval in polar view. Thickness of exine always considerably less than l p,. Exine of central body sculptured with minute pits or sometimes smooth. Exine of bladders inter­ nally sculptured with scabrate patterns forming reticulate parts. The bladders seem to be slightly offset towards the distal face. In some specimens a sulcus can be observed running along the body from pole to pole between the distal attachments of the bladders.

AFFINITY: The pollen grains under discussion belong to the Caytoniales. The specific affinity is not establishable, as it is impossible to distinguish the single pollen grains from each other.

REMARKS: According to a revision published by Harris (1964) the present family reasonably includes a very limited number of species. In Yorkshire there are two species of foliar remains distinguished by Harris. The first one 76 HANS TRALAU

e UPPER JURASSIC "' 1!1 MIDDLE JURASSIC U6. lOO Q LDWER JURASSIC l!!l f UPPER TRIASSIC

Fig. 8: The distribution of Caytoniales. 1: Sagenopteris phillipsi (Brngn.) Prsl. sens. lat., 2: Sagenopteris colpodes Harris, 3: Sagenopteris nilssoniana Brngn., 4: Sagenopteris hallei Harris, 5: Sagenopteris undulata Nath., 6: Caytonanthus arberi (Thomas) Harris, 7: Cay­ tonanthus oncodes Harris, 8: Caytonia sewardi Thomas, 9: Caytonia nathorsti (Thomas) Harris, 10: Caytonia kendalli Harris, and 11: Caytonipollenites pallidus (Reissinger) Couper. is Sagenopteris colpodes Harris, which outside England, according to Har­ ris, is known from Jurassic deposits of Bornholm (Möller 1902, here as S. rhoifolia Presl.), Poland (Raciborski 1894, here as S. goeppertiana), Italy (Grandori 1913, here as S. nilssoniana Brongn.), Serbia (Pa ntic 1955, here as S. phillipsi Brongn.), and Siberia (Teslenko 1962 and Baranova, Burakova and Bekasova 1963, here as S. phillipsi Brongn. var. cuneata). The other species from England, S. phillipsi, is wide-spread in the Middle Jurassic of BOTANICAL JNVEST!GATIONS IN ERIKSDAL 77

Eurasia (see fig. 8). lt thus occurs on Bornholm (Möller 1902), in Poland (Raciborski 1894, Makarewiczowna 1928; the fossils of the later author be­ ing from Liassic deposits) and in the Soviet Union S. phillipsi has been oh­ from a number of localities, spread over the territory (Blank 1961, 1929, Prinada 1933, Delle 1959 a & b, 1960, Vasina 1959, Burako- 1960 a & b, 1962 a & b, Prosvirjakova 1961 a, b & c, Vakhrameev 1964, 1935-37, and Teslenko 1961 a & b, 1962). From Japan the species has so been recorded (Oishi 1940). Some other species are known to have been widespread during the Liassic · d, as for instance S. nilssoniana, encountered from layers of Greenland (Harris 1932), Sweden (Halle 1910), France (Carpentier 1947), and South (Menendez 1956) as weil as S. hallei, which is known from the assic of Greenland (Harris 1932) and NE Germany (Daber 1962). Caytonanthus species, representing the microsporophylls of Caytoniales, s weil as Caytonia species, the fruits, are chiefly found in England (see 8). However, C. nathorsti, i. e. Laconiella of Krasser (1920), is also pre­ in the Middle Jurassic flora of Sardinia (Edwards 1929). The evidence given here and summarized on the map (fig. 8) makes it ther clear, that the Gaytoniales has not been rich in species, but it is Iikely at at !east two species can be expected in the Middle Jurassic of Europe. e present pollen grains, however, are appearently indistinguishable.

Genus Chasmatosporites T. Nilsson

51.

Ilsson separated this genus from the genus Monosulcites Erdtman (Erdt- 1947) and suggesred that the sporomorphs in question are monolete res. He described 12 new species two of which are considered synany­ by Schulz (1967, p. 602) e. g. Ch. major and Ch. rimatus. Schulz re­ this genus to monosulcate pollen grains. No recent affinity has been ggested by either authors. The genus has recently been connected with the us.sorua.cec.re by Staplin, Pocock, and Jansonios (1967).

Chasmatosporites apertus (Rogalska) T. Nilsson Plate XXIII, fig. 2.

Rogalska, p. 45, pi. XII, figs. 13-15 (Pollenites apertus). 8: T. Nilsson, p. 56, pi. IV, figs. 5, 6. 58: T. Nilsson, p. 57, pi. V, fig. 3 (Chasmatosporites crassus). 78 HANS TRALAU

1958 : T. Nilsson, p. 57, pi. V, fig. 4 (Chasmatosporites flavus). 1963: Bona, p. 23, pi. I, fig. 2 (Verrucipollenites apertus). 1967: Schulz, p. 602, pi. XIX, figs. 14, 15.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 45 A/11.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Rhaetic to Middle Jurassic. In Poland and Hungary known from Liassic sediments, in Germany from Rhaetic to Middle Jurassic (Dogger), and in southern Sweden from Liassic to Middle Jurassic times.

DESCRIPTION: Pollen grain monosulcate, with circular amb. Exine infra­ reticulate, 1.5 to 2.0 Il thick. Sulcus as a rule widely open. Diameter between 35 and 50 fl.

AFFINITY: Gymnospermous origin can be suggested. For further discussion see above mentioned suggestion of Staplin, Pocock, and Jansonius (1967).

REMARKS: This species is frequent in Eriksdal. According to Schulz (1967) the species is a most common one in the Lower and Middle Liassic of Ger­ many.

Chasmatosporites hians T. Nilsson Plate XXIII, fig. l

1958: T. Nilsson, p. 55, pi. IV, figs. 3, 4.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4.

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Liassic and Dogger.

DESCRIPTION: Pollen grain monosulcate, with circular Exine infrareticulate, about l ,u thick. Reticulum irregular. Lumina of reti­ culum generally l fl in diameter. Sulcus in most specimens widely open. Dia­ meter between 55 and 70 Il. BOTANICAL INVESTIGATIONS IN ERIKSDAL 79

Gymnospermous origin seems to be likely. Nilsson (1958, p. 55) suggesred possible identity between this species and some specimens of Agathis ovata Warburg from the Liassic of Poland (Rogalska 1956, pi. XIII, figs. 1, 4) and Patellina exilis var. punctata from the Middle Jurassic of Rus­ sia (Maljavkina 1949, pi. XLVII, fig. 4).

REMARKS: This species is less frequent in Eriksdal. In one of the Liassic sites investigated by Nilsson, i. e. Sandåkra, this species is said to be com­ mon. From the other Liassic sites only single specimens have been obtained (Nilsson 1958, p. 55).

Genus Classopollis (Pflug) Pocock et Jansonius

Hörhammer, p. 134, pi. IV, fig. 27 Aaa, Aab (Cheirolepis muensteri). Kendall, p. 307, text figs. 1, J, K (?Brachyphyllum scottii). Pflug, p. 91, pi. XVI, figs. 20-25, 29- 37 (Classopollis classoides). Couper, p. 156, pi. XXVIII, figs. 2-7. Nilsson, p. 74, pi. VII, figs. 6-8. 1961: Pocock and Jansonius, p. 443 (emendation and list of synonymy).

Species and generic concepts are applied here in accordance with the view pointed out by Pocock and Jansonius (1961, p. 439 ff). They invalidare the specific name of Classopollis torasus (Reissinger) Couper by the following statement: "Couper (1955, 1958) re-examined grains from a cone attributed to Pagiophyllum connivens Kendall (1952) and expressed the opinion that they are "comparable in all respects" with Classopollis torasus (Reissinger), which he regards as synonymous with C. classoides Pflug. However, since he admitted that these grains were not clearly displayed, and as he based most of his discription on dispersed Classopollis grains from the same stratum, from which the cone was obtained, his evidence is unconvincing" and further­ more, concerning the species mentioned below that "it would appear that Pollenites torasus Reissinger and Classopollis classoides Pflug are not iden­ tical. Classopal/is classoides Pflug holds priority over all subsequently des­ cribed forms assignable to the genus and therefore remains the valid geno­ type". In Canada the genus Classopollis ranges from the Upper to the Eocene according to Pocock and Jansonius (1961), although having its main frequencies during Middle Jurassic to Lower Cretaceous times. They dis­ tinguish four different species, one of which is Permian. 80 HANS TRALAU

Araucarian-like, Mesozoic twigs have been described as Cheirolepidium from European Rhaeto-Liassic and Liassic deposits and as Brachyphyllum and Pagiophyllum with world-wide distribution in deposits of the Jurassic and Lower Cretaceous age. The genus Cheirolepidium is hardly ever con­ sidered to be closely related to any modern coniferous family and accordingly put into a family of its own, the Cheirolepidaceae (Hörhammer 1933, Florin 1963, Turutanova-Ketova 1963). The genera Brachyphyllum and Pagiophyl­ lum, without any doubt arbitrarily confined, are, as a rule, assigned to the Araucariaceae. Their Araucarian affinity is confirmed, not only by the ge­ neral appearance of the leafy shoots, but also by the microscopic structure of the epidermis and by the female cones attributed to them. However, it seems to me, that, at !east occasionally, the vegetative leafy twigs of Cheiro­ lepidium range across their generic boundaries towards Brachyphyllum and Pagiophyllum. The female cones of Brachyphyllum, called Protodammara, anatomically re­ semble cones of the present day genus Agathis. Pollen grains of Brachy­ phyllum mamillare are closely related to those of living Araucaria and Aga­ this (Kendall 1949). The female cone of Cheirolepidium is distinctly characterized by its twin seeded cone scales, which are bipartite in the apical parts. These features distinguish the recent Araucaria cones from those of Cheirolepidium. How­ ever, one fact should be kept in mind, the ligula of the Araucarians can easily be considered a remnant of bipartition in the cone scale apex of Araucarian ancestors, which make the difference less remarkable (see also pictures in Takhatadjan, Vakhrameev and Radchenko 1963, p. 242, 249). Pollen grains, when found dispersed called Classopollis, have actually been recovered from sporophylls of Cheirolepis muensteri (Hörhammer 1933, Reissinger 1950, Harris 1957, Couper 1958). The genus Classopollis is most ubiquitous among dispersed Mesozoic miospores. lt is thus common in a great number of localities throughout the Rhaetic-Liassic, Jurassic and Lo­ wer Cretaceous of the Northern Hemisphere, Africa, and Australia (cf be­ low). Although pollen grains identical with Classopollis have been found associated with Brachyphyllum scotti (Kendall 1949) and Pagiophyllum con­ nivens (Kendall 1948, 1952, Couper 1955, 1958), it is true that the only co­ nifer, in which Classopollis has been encountered from microsporophylls, is Cheirolepidium. On the other hand it is quite unlikely that the latter genus should be the only one to produce Classopollis. The geographic and strati­ graphic restriction of Cheirolepidium to the Rhaeto-Liassic and Lower Ju­ rassic of Europe definitely contradiets this assumption. Other Classopollis producing species are thus reasonably to be expected within the generic complexes of Brachyphyllum-Pagiophyllum, a fact that, besides the above mentioned association of Classopollis, Brachyphyllum and Pagiophyllum, well BOTANICAL JNVESTIGATIONS IN ERIKSDAL 81 earresponds to the geographic and stratigraphic distribution of the taxa in question. From this evidence it seems Iikely to assume a doser relationship, than what has been the rule, between Cheirolepidium, Brachyphyllum, and Pagiophyllum. The fact that the tegillate structure of the exine of Classo­ pollis by no means is unique among the Coniferae (Pettitt and Chaloner 1964) but, for instance, is found in Araucaria montana (Erdtman 1957), may indicate a relationship in some way to the Araucariaceae.

Classopollis classoides (Pflug) Pocock et Jansonius Plate XXIII, fig. 3.

Reissinger, p. 114, pi. XIV, figs. 15-16. Pflug, p. 91, pi. XVI, figs. 29-31. Nilsson, p. 74, pi. VII, figs. 6-8. Pocock and Jansonius, p. 443. Dettmann, p. 105, pi. XXVI, figs. 10-14. Pettitt and Chaloner, p. 611, pi. I, figs. 1-5, text fig. l. Couper, p. 133, fig. 1:3. Kockel-Brosius in Brölau, p. 56, pi. I, fig. 2. Srivastava, p. 94, pi. V, figs. 6-12.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/1.

GEOGRAPHIC DISTRIBUTION: Northern Hemisphere, Australia.

STRATIGRAPHIC DISTRIBUTION: Jurassic to Lower Cretaceous.

ESCRIPTION: Pollen grain monoporate (at proximal pole), more or less spherical or ovoid in equatorial view. Exine twin-layered, consisting of a with underlying columnellae, an ectonexine, which in its outer part continuous and in its inner part is camposed of inwardly directed rods and a Iamellated endonexine. Exine in apical regions about l {l, in equatorial reg;10r1s to 3 11 thick. Exine striated around the equator by about 5 to 8 an­ bands (also called rimula by Pflug) forming a distinct zone about 5 8 11 in breadth. Polar size range about 24 ft, equatorial size about 30 {l.

TY: See discussion above.

EMARKS: This pollen grain has been described repeatedly and therefore eeds no further discussion. The ultrastructure is sufficiently known, owing 82 HANS TRALAU to investigations by Pettitt and Chaloner (1964), which definitely settled previously discussed problems concerning the interpretation of the sporoderm stratification.

Genus Clavatipollenites Couper

1958: Couper, p. 159.

This genus includes monosulcate pollen grains the exine of which is clearly stratified. The sculpture layer is made up of clavae which form a reticulate partern in surface view. The genus Liliacidites Couper (Couper 1953, p. 56) has similar pollen grains.

Clavatipollenites hughesii Couper Plate XIX, figs . 1-4.

1958: Couper, p. 159, pi. XXXI, figs. 19-22. 1967: Schulz, p. 601, pi. XIX, figs. 11-13.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 53/8 (fig. 1), Swedish Museum of Natural History, Stockholm, slides Eriksdal 55/1 (fig. 2), 57/5 (fig. 3), 55/7 (fig. 4).

GEOGRAPHIC DISTRIBUTION: England, sm1thern Sweden, Germany.

STRATIGRAPHIC DISTRIBUTION: Wealden to Aptian in England. Lias­ sic to Lower Cretaceous in Germany.

DESCRIPTION: Pollen grain monosulcate, sulcus extending from 3/4 to entire length of grain. Amb elliptical to broad elliptical. Exine 1.8 to 2.5 f.1 thick, consisting of homogenous nexine, less than 1 f.1 thick and a ciavare sexine which forms a regular reticulate surface pattern. Lurnina of reticulum mostly less than 1 f-l i diameter. Dimensions 20 to 30 X 16 to 22 X 16 to 20 fl,.

AFFINITY: Couper (1958) compared pollen grains of the Recent Ascarina lucida (Chloranthaceae) and pollen of Liliaceae with the present species. There are, however, pollen grains of modern Cycadaceae with a reticulate BOTANICAL INVESTIGATIONS IN ERIKSDAL 83 surface pattern, as for instance in Cycas wadei and species of Lepidozamia. For this reason the present author is inclined to suggest cycadophytean affinity.

REMARKS: Pollen grains of this species are remarkably frequent in Eriksdal.

Genus Eucommiidites (Erdtman) Couper

1948: Erdtman, p. 267.

Eucommiidites troedssonii Erdtman

1948: Erdtman, p. 267, figs. 5-10, 13-15. 1955: K u yl, Muller and Waterbolk, p. 59, pi. VI, figs. 1-6. 1956: Couper, pi. VII, figs. a-e, h-i. 1957: Oszat, p. 103, figs. 1-7. 1958: Couper, p. 160, pi. XXXI, figs. 23-27. 1958: Nilsson, p. 64, pi. V, figs. 17-19. 1964: Couper, p. 133, fig. 1:5. 1966: Levet-Carette, p. 169, pi. XVI, figs. 16, 17. 1967: Schulz, p. 600, pi. XIX, figs. 6-7.

GEOGRAPHIC DISTRIBUTION: Western Eurasia.

STRATIGRAPHIC DISTRIBUTION: Liassic to Cretaceous.

DESCRIPTION: Pollen grain, tricolpate, with one colpus longer and broa­ der than the other two. The Iong colpus extends almost to the entire length of grain and gaps slightly at the ends. Exine smooth to faintly scabrate, 1.0- 1.5 !-l thick. Dimensions 20 to 35 X 15 to 30 X 15 to 26 fl.

AFFINITY: Erdtman (1948) suggesred a possible angiospermous ongm for this species. This is, however, denied by other authors as for instance Cou­ per (1956, 1958), Delcourt and Sprumont (1956), Groot and Penny (1960), Harris (1960), Hughes (1961 a, b), Hughes and Couper (1958), Nilsson (1958), Oszat (1957), Scott, Barghorn, and Leopold (1960) . Instead gymno­ spermous origin is suggested.

REMARKS: This species is fairly common m Eriksdal and does not need any further presentation. 84 HANS TRALAU

Eucammiidites granulasus Schulz Plate XXIII, fig. 4.

1967: Schulz, p. 600, pi. XIX, figs. 8, 9.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 45 A/3.

GEOGRAPHIC DISTRIBUTION: Northern Europe.

STRA TIGRAPHIC DISTRIBUTION: Hetrangian to Upper Bajocian m Germany.

DESCRIPTION: Pollen grain "tricolpate" with one colpus longer and occa­ sionally broader than the other two. The two smaller colpi are often only seen as narrow incisions. The Iong colpus extends almost to the entire length of grain. Exine granulate, 1.0 to 2.5 fl thick. Granula 0.5 to 1.0 !-l in diameter. Diameter 28 to 38 X 24 to 32 X 20 to 28 f.-l .

AFFINITY: Gymnospermous, preferably cycadophytean affinity is suggested.

REMARKS: This species is easily distinguished from E. traedssanii by its granulare exine. According to Döring, Krutzsch, Mai, and Schulz (1966) E. granulasus ranges stratigraphically from the Lower Liassic to the Upper Bajocian in Germany. In Eriksdal this species is fairly frequent but has not been observed in layers above layer 41.

Genus Ginkgacycadaphytus Samoilovitch

Ginkgacycadaphytus nitidus (Balme) de Jersey Plate XIX, figs. 7-10.

1957: Balme, p. 30, pi. VI, figs. 78-80 (Entylissa nitida). 1962: de Jersey, p. 12, pi. V, figs. 1-3.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/1 (plate XIX, fig. 7), 53/11 (plate XIX, fig. 8), 53/10 (plate XIX, fig. 9), 36/3 (plate XIX, fig. 10).

GEOGRAPHIC DISTRIBUTION: World-wide.

STRATIGRAPHIC DISTRIBUTION: Throughout the Mesozoic. BOTANICAL INVESTIGATIONS IN ERIKSDAL 85

DESCRIPTION: Pollen grains tenuate and with elliptical shape. Tenuitas extending the whole length of pollen grain. Exine smooth or finely scabrate, 1 f-l thick. Length 33 to 45 /.l, breadth 15 to 32 f-l .

Ginkgoalean, cycadophytean, and bennettitalean origin can be assumed.

REMARKS: This pollen grain is very common in Mesozoic deposits. It has consequently been described under various specific and generic names. In the present material, however, the variability of characters seems to over­ lap from one "species" to another. For this reason all specimens with thin exine (about 1 f-t thick) have been referred to this species.

Genus Monosulcites Cookson ex Couper

1953: Couper, p. 65 .

This genus includes monosulcate pollen grains with broad sulcus reaching almost whole length of grain.

Monosulcites cotidianus (T. Nilsson) comb. nov. Plate XIX, figs. 5, 6.

1958: Nilsson, p. 59, pi. V, figs. 5-7 (Monocolpopollenites cotidianus).

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slide Eriksdal 53/10 (plate XIX, fig. 5), Swedish Museum of Natural History, Stockholm, slide Eriksdal 45/2 (plate XIX, fig. 6).

GEOGRAPHIC DISTRIBUTION: Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Rhaetic to Middle Jurassic.

DESCRIPTION: Pollen grains monosulcate and with elliptical amb, sulcus extending the whole length of grain. Exine smooth to faintly subgranulate, 1.0 to 1.5 f-l thick. Length 24 to 32 f.l, breadth 16 to 22 f-l . 86 HANS TRALAU

AFFINITY: Nilsson (1958, p. 59) suggested identity with the pollen grains of Bennettistemon amblum Harris and B. bursigerum Harris from the Rhaetic of Greenland (Harris 1932, pi. XII, fig. 17).

REMARKS: The present specimens are identical with the species by Nilsson (1958) although he had some specimens which were sightly longer, i. e. 38 f-l.

Genus Perinopollenites Couper

1958: Couper, p. 152.

This genus includes monoporate and more or less spherical pollen grains the exine of which consists of two distinct layers. Couper (1958, p. 152) sug­ gesred taxodiaceous affinity.

Perinopollenites elatoides Couper Plate XVIII, figs. 1-3.

1958: Couper, p. 152, pi. XXVII, figs. 9-11. 1964: Levet-Carette, p. 106, pi. VI, fig. 6.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4 (plate XVIII, fig. 1), 55/1 (plate XVIII, figs. 2, 3).

GEOGRAPHIC DISTRIBUTION: Europe and North America.

STRATIGRAPHIC DISTRIBUTION: Liassic to Lower Cretaceous (Couper 1958, Doubinger 1961).

DESCRIPTION: Pollen grains monoporate, spherical hut mostly folded. Exine consisting of two distinct layers, outer coat scabrate and less than 0.5 f-l thick, inner layer smooth and about 1.0 f-l thick. Diameter 26.0 to 45.0 (inner layer included) and 30.0 to 55.0 f-l (outer layer included).

AFFINITY: Couper (1958, p. 152) campared the pollen of this species with those of the Jurassic species of Elatides williamsonii, which is assigned to the T axodiaceae. BOTANICAL INVESTIGATIONS IN ERIKSDAL .87

REMARKS: Pollen grains of this species are common throughout the Middle Jurassic sediments of Eriksdal.

Genus Pityosporites (Seward) Manum

Seward, p. 23. Potonie and Klaus, p. 534. 11anum, p. 14.

This genus includes, according to Seward (1914, p. 23), "winged spores agree­ ing in form and size with those of recent Abietineous genera". For further discussion see Manum (1960, p. 11 ff).

Pityosporites scaurus (T. Nilsson) Schulz Plate XXI, fig. 3.

T. Nilsson, p. 87, pi. VII, figs. 16, 17 (Taedaepollenites scaurus). Schulz, p. 595, pi. XVII, figs. 12, 13.

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slide

GEOGRAPHIC DISTRIBUTION: Northern Europe.

STRATIGRAPHIC DISTRIBUTION: Rhaetic and Liassic in Germany, Lias­ sic and Middle Jurassic in southern Sweden.

DESCRIPTION: Pollen grain bisaccate. Corpus of grain 40 to 51 X 26 to 32 f-l. Exine infrareticulate, 1.0 to 1.5 f-l thick. Lurnina always less than 0.75 f-l in diameter. Sacci 20 to 24 X 16 to 20 f-l. Exine infrareticulate, 0.75 to 1.0 f-l thick. Lurnina 1.0 to 3.0 f-l in diameter.

AFFINITY: A pinaceous affinity can be suggested. Potonie (1960, p. 78) sug­ gesred identity between Pinuspollenites Raatz (Raatz in Potonie 1958) and Taedaepollenites Nilsson (Nilsson 1958).

REMARKS: In Germany this species is said to be rare in Rhaetic but rela­ tively frequent in Liassic sediments (Schulz 1967, p. 596). It is rare in Eriks­ daL 88 HANS TRALAU

Genus Protopinus Bolk.

1956: Bolkhovitina, p. 90.

This genus has been instituted by Bolkhovitina to include bisaccate pollen grains. A complete and sli3htly modified diagnosis has been given by Nils­ son (1958, p. 84).

Protopinus scanicus T. Nilsson Plate XXII, figs. 1, 2.

1958: Nilsson, p. 84, pi. VIII, figs. 4, 5.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slides Eriksdal 43 B/1 (fig. 1), 55/1 (fig. 2).

GEOGRAPHIC DISTRIBUTION: Europe (Eurasia?).

STRATIGRAPHIC DISTRIBUTION: Lower and Middle Jurassic.

DESCRIPTION: Pollen grain bisaccate. Corpus of grain (40) 49 to 60 X (41) 59 to 78 f-l . Exine infrareticulate, 0,5 f-l thick. Lurnina generally less than 0.5 f-l in diameter. Sacci 25 to 42 X 58 to 80 f-l. Exine of sacci infrareticulate, lumina from 1 to 4 f-l in diameter.

AFFINITY: Pinaceous affinity is suggested. Similar fossils have been found in Lower Jurassic sediments of Poland (Rogalska 1954) and Siberia (Bolkho­ vitina 1956).

REMARKS: The species is frequent throughout the sequence of sediments in Eriksdal. In Scania it has previously been found in Lower Jurassic sedi­ ments at Sandåkra (Nilsson 1958).

Genus Spheripollenites Couper

1958: Couper, p. 158.

This genus includes spherical, probably monoporate pollen grains according to Couper. They are suggested to be of coniferous origin. BOTANICAL INVESTIGATIONS IN ERIKSDAL 89

Spheripollenites scabratus Couper Plate XVI, figs. 3, 4.

Couper, p. 158, pi. XXXI, figs. 12-14. Levet-Carette, p. 107, pi. VI, figs. 11-12.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 43 B/6 (plate XVI, fig. 3), 55/2 (plate XVI, fig. 4).

GEOGRAPHIC DISTRIBUTION: Europe and N. America.

STRATIGRAPHIC DISTRIBUTION: Middle and Upper Jurassic and Lower Cretaceous of Europe. Also known from the Lower Cretaceous of Canada (Pocock 1962).

Pollen grains probably monoporate (see fig. 3), spherical. Exine scabrate, 1.0 to 1.5 ~ thick. Diameter 27 to 34 ~-

AFFINITY: Couper (1958, p. 158) compared this species with pollen grains of Pagiophyllum connivens.

REMARKS: In Europe this species occurred during Middle Jurassic times and is common in Eriksdal.

Spheripollenites subgranulatus Couper

Plate XVI, fig. 5

1958: Couper, p. 158, pi. XXXI, figs. 9-11.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 45 A/3.

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: Jurassic to Lower Cretaceous. In Eng­ land the species is confined to the Middle and Upper Jurassic and Lower Cretaceous but in Eastern Germany it is said to occur since the Liassic (Dö• ring, Krutzsch, Mai and Schulz 1966).

DESCRIPTION: Pollen grain probably monoporate, spherical. Exine sculp­ slightly projecting granula, 0.8 to 1.0 ~ thick. Diameter 16 to 90 HANS TRALAU

AFFINITY: Couper (1958) suggested taxaceous affinity because pollen grains of Recent species of Taxus are similar. The genus Taxus is also known to occur in the rnaerafossil state in Middle Jurassic sediments (Florin 1963), thus supporting Couper's suggestion.

REMARKS: This species is found throughout the sequence of Middle Juras­ sic sediments at Eriksdal, although it does not seem to be frequent.

Spheripollenites psilatus Couper Plate XVI, figs. 6, 7.

1958: Couper, p. 159, pi. XXXI, figs . 4-8.

ORIGINAL MATERIAL: Geological Survey of Sweden, Stockholm, slide Eriksdal 45 A/9 (figs. 6, 7).

GEOGRAPHIC DISTRIBUTION: Europe.

STRATIGRAPHIC DISTRIBUTION: In Wealden and Aptian sediments of Britain.

DESCRIPTION: Pollen grains assumed to be monoporate, spherical although in the fossil state they are frequently found folded. Exine smooth, 1.5 to 2.0 f-l thick. Diameter 25 to 35 f-l .

AFFINITY: A coniferous affinity is suggested. Couper (1958) compared the pollen grains of Recent Thuja orientalis (Cupressaceae) with those of the present species, but pointed out that "a difinite suggestion of affinity based on such comparatively featureless pollen grains is not warranted". REMARKS: This species is very rare in the Middle Jurassic of Eriksdal.

Genus Tsugaepollenites (Potonie et Venitz) Potonie

1934: Potonie and Venitz, p. 17 (Tsugaepollenites). 1937: Raatz, p. 15. 1953: Pflug in Thomson and Pflug, p. 66 (Zonalapollenites). BOTAN!CAL JNVESTIGAT!ONS IN ER!KSDAL 91

Potonie in Potonie and Venitz, p. 48 (Tsugaepollenites emend.). Nilsson, p. 72 (Cerebropollenites). Dev, p. 48 (Callialasporites). D öring, p. 112 ( Applanopsis). Döring, p. 113 (Triangulopsis). Pocock, p. 72 (Pflugipollenites).

This genus comprises equatorially monosaccate and inaperturate pollen grains. A triradiate mark is usually distinct, hut sometimes, as for instance in Tsugaepollenites mesozoicus, difficultly seen or absent. The outer layer of the two-layered exine form~ the equatorial saccus, which also sometimes includes small vesiculae. Most authors consicler the pollen grains under discussion as being of coni­ ferous origin. Döring's (1961) suggestions that his specimens of Applanop­ sis and Triangulopsis should be of planktonic origin is not convincing and he does not give any evidence for this suggestion either. Although accepted by Goubin, Taugourdeau, and Balme (1964) this view has obviously been re­ jected later by Döring himself (Döring in Döring, Krutzsch, Mai, and Schulz 1966). In his stratigraphic table of Mesozoic pollen grains and microspores of Eastern Germany he referred these sporomorphs to the genus Callialaspo­ rites. Mary E. Dettmann made it clear that these fossils are monosaccate pol­ len grains for which reasons of priority the generic name of Tsugaepollenites is applicable. The pollen grains of Tsugaepollenites mesozoicus have been compared with some Recent species of Tsuga, as for instance, Tsuga canadensis (Poto­ nie 1958, Couper 1958). By evidence from rnaerafossils it is, however, per­ fectly clear that the present day genus Tsuga is reasonably hardly older than from the Eocene (see also Florin 1963, Tralau 1966). Nilsson (1958) who instituted the generic name of Cerebropollenites found, according to his view, considerable differences between the pollen grains of Tsugaepollenites (Cere­ bropollenites) mesozoicus and those of Tsuga. According to him "sind die genannten Unterschiede so gross, dass sie die Aufstellung einer eigenen Fonn­ gattung berechtigen. Es ist möglich, dass diese Beziehungen zur rezenten GattungTsuga hat" (Nilsson 1958, p. 72). Tsugaepollenites mesozoicus is ob­ viously widespread in Europe during Mesozoic times. Gamerro (1965, p. 133-136) has shown that pollen grains corresponding to those of Tsugae­ pollenites are produced by Apteraciadus and Townrow (1967, p. 144) made it clear that pollen grains of Masculostrobus warrenii also are comparable with pollen grains of Tsugaepollenites. Apteraciadus and Masculostrobus warrenii are ascribed to the Podocarpaceae. 92 HANS TRALAU

Tsugaepollenites mesozoicus Couper Plate XVII, figs. 3, 4, plate XX, figs. 2, 4, 5.

1931: Potonie, p. 556, fig. 2. 1934: Potonie, and Venitz, p. 17, pi. I, fig. 8. 1937: Raatz, p. 15. 1954: Rogalska, p. 20, pi. IX, figs. 5, 6. 1956: Rogalska, p. 32, pi. XIX, fig. 4. 1958: Couper, p. 155, pi. XXX, figs. 8-10. 1958: Nilsson, p. 72, pi. VI, figs. 10-12 (Cerebropollenites mesozoicus). 1963: Couper and Hughes, p. 275, pi. I, fig. 10.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/1 (pi. XX, fig. 5), 55/1 (pi. XVII, fig. 4), GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 55/10 (pi. XX, fig. 4), 56/9 (pi. XX, fig. 2), 55/9 (pi. XVII, fig. 3).

GEOGRAPHIC DISTRIBUTION: Eurasia.

STRATIGRAPHIC DISTRIBUTION: Jurassic to Lower Cretaceous.

DESCRIPTION: Pollen grains inaperturate, azonate, saccate. Circular or roundish oval in equatorial view. Exine extremely thin and smooth in distal part, forming a distinct circular or triradiate region. The rugulate protrusions about 4 to 8 11 thick. Equatorial size range between 30 and 84 f.l.

AFFINITY: No recent affinities are known, hut it is possible that the grains originate from predecessors of the genus Tsuga, as has been suggesred by various authors (see above).

REMARKS: The outstanding extension of the size range of the pollen grains may indicate the presence of more than one species hut no other evidence, except that one mentioned below, supports this assumption. Couper (1958, p. 155) mentioned an equatorial diameter between 45 and 88 11, in the Mesozoic material of Britain and Nilsson (1958, p. 72) found pollen grains in the Tosterup material ranging between 28 and 33 Il, and in the Sandåkra material between 41 and 82 f.l . In the present material the size frequency curves show two rather distinct maxima comparable with those of Nilsson. I do not feel sure whether this fact really signifies the presence of two or more species or not. However, it deserves mentioning and future investiga­ tions may perhaps give an answer to this question. BOT ANICAL INVESTIGA TIONS IN ER IKSDAL 93

Tsugaepollenites dampieri (Balme) Dettmann Plate XIII, figs. l, 2.

Balme, p. 32, pi. 8, figs. 88-90 (Zonalpollenites dampieri). Dev, p. 48, pi. 4, figs. 26, 27 (Callialasporites dampieri). Döring, p. 113, pi. 16, figs. 11-15 (Applanopsis dampieri). Pocock, p. 72, pi. 12, figs. 183, 184 (Pflugipollenites dampieri). Dettmann, p. 100, pi. XXIV, figs. 1-5 (Tsugaepollenites dampieri). Couper, p. 133, fig. 1:2. Goubin, Taugourdeau, and Balme, p. 225, pi. l, figs. 1-5 (Applanopsis dam­ pieri). Goubin, p. 1444, pi. I, figs. l, 2. Döring in Döring, Krutzsch, Mai, and Schulz, p. 69 ff (Callialasporites dam­ pieri).

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4 (plate XIII, fig. 1), 53/3 (plate XIII, fig. 2).

GEOGRAPHIC DISTRIBUTION: Eurasia, North America, Australia, Africa.

STRATIGRAPHIC DISTRIBUTION: In northern Central Europe confined to the Middle Jurassic (Aalian to Callovian) according to Döring, Krutzsch, Mai, and Schulz (1966). Otherwise in Asia, Australia and elsewhere widely distributed in Upper Mesozoic strata (Balme 1957, de Jersey 1959, Dettmann 1963 and others).

DESCRIPTION: Pollen grains monosaccate, semicircular to circular in equatorial and biconvex in polar view. The two-layered exine consists of intexine and exoexine. Smooth intexine 1.0 to 1.5 fl and granulare exoexine 1.5 to 2.0 1-• thick. Equatorial sacens uniform, 5 to 12 11- in width and com­ posed of intexine and exoexine, which is folded radially and contracted to­ wards polar regions, in which intexine and exoexine are adherent. A tetrad mark is observable in most specimens, though in some it appears to be ab­ sent. Size range of equatorial diameter 60 to 98 11- with the sacens included.

: An unknown coniferous affinity might be suggested. This spe­ elase to Tsugaepollenites dubius (see below), which is said to differ tetrad mark" and in having "a thicker

: A specific distinction between this species and Tsugaepollenites us is difficult to determine in a munber of specimens investigated. A rominent tetrad mark is readily recognizable in most specimens obtained the Eriksdal sediments. Specimens, the exine of which is thicker than 94 HANS TRALAU that of the present species and which differs in the shape of the saccus, are referred to Ts. dubius cited below. There is the possibility, howe~e r, that Ts. dubius does not deserve the rank of a distinct species, because it has a considerable number of features in common with Ts. dampieri.

Tsugaepollenites dubius (Couper) Dettmann Plate XIII, fig. 3.

1958: Couper, p. 146, pi. 24, fi gs. 3-5 (Cingulatisporites dubius). 1963: Dettmann, p. 99.

ORIGINAL MATERIAL: Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2.

GEOGRAPHIC DISTRIBUTION: England and Scania, Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: In England this species is confined to the Middle and Upper Jurassic (Ba jocian to Kimeridgian).

DESCRIPTION: Pollen grains monosaccate, roundish triangular to subcir­ cular in equatorial and biconvex in polar view. Two-layered exine composed of intexine, 1.5 to 2.0 p thick, and exoexine granulared 2.0 to 2.8 f-l thick. Equatorial saccus 10 to 18 fl in width, frequently folded and i particular in those parts, in which the trilete mark approaches the equatorial region of the saccus, giving the impression of tripartition of the saccus. Tetrad mark mostly distinctive. Size range of equatorial di ameter 72 to 98 fl with the saccus included.

AFFINITY: As m Ts. dampieri.

REMARKS: In the specimens referred to this species, the tetrad mark reaches the equatorial regions of the saccus, a feature that is unknown in Ts. dam­ pieri. It is, however, clearly seen also in Couper's specimens. For this reason and because of the difference in the exine this species is - despite some doubts - considered distinguished. For further discussion see under Ts. dam­ pieri. BOTANICAL I NVESTIGATIONS IN ERIKSDAL 95

Tsugaepollenites trilobatus (Balme) Dettmann Plate XV, fig. l , plate XVII, fig. l.

Balme, p. 33, pi. 8, figs. 91, 92 (Zonalpollenites trilobatus). Dev, p. 48, pi. 4, fi gs . 28, 29 (Callialasporites trilobatus). Döring, p. 114, pi. 17, figs. 4-8 (Triangulopsis trilobatus). Pocock, p. 73, pi. 12, figs. 186, 187 (Pflugipollenites trilobatus). Dettmann, p. 100, pi. XXIV, figs. 6-10, text fig. 6 f (Tsugaepollenites trilo­ batus). Goubin, p. 1444, pi. I, figs. 2, 3. Goubin, Taugourdeau, Balme, p. 227, pi. l, figs. 6-10 (Applanopsis trilo­ batus). Townrow, p. 144, fig. 4 A.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide

GEOGRAPHIC DISTRIBUTION: Eurasia, Australia, Africa.

STRATIGRAPHIC DISTRIBUTION: Upper Jurassic and Lower Cretaceous of Britain (Hughes and Couper 1958, Lantz 1958 b), and Middle Jurassic to Lower Cretaceous of Eastern Germany (Döring in Döring, Krutzsch, Mai, and Schulz 1966). Known from Middle Jurassic deposits of Madagasear (Goubin, Taugourdeau, and Balme 1964) but otherwise apparently recorded from Upper Jurassic to Lower Cretaceous sediments only.

DESCRIPTION: Pollen grains with trilobate saccus, triangular to subcircu­ lar in equatorial and biconvex in polar view. Two-layered exine consisting of intexine, 1.0 to 2.0 ,u thick, and granulate exoexine 1.0 to 3.0 fl thick. Equa­ torial saccus is trilobate and its medium width is about 14 fl. The tetrad mark extends from pole to equator of saccus. The tetrad mark consists of three low, often undulating commissures. The size range of equatorial dia­ meter is between 62 and 84 f-l, the saccus being included.

REMARKS: The present species is distinctive and hence easily distinguish­ able from all other species known. Its occurrence in the Eriksdal sediments are noteworthy. Here it occurs from layer 55 and the succeding ones. In England this species is unknown from sediments older than those from the Upper Jurassic, and in Eastern Germany its oldest occurrence is from the up­ per stage of the Middle Jurassic. 96 HANS TRALAU

Tsugaepollenites minus spec. nov. Plate XIII, fig. 4.

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 55/9.

GEOGRAPHIC DISTRIBUTION: Eriksdal, Southern Sweden.

STRATIGRAPHIC DISTRIBUTION: Throughout the sequence of sediments investigated at Eriksdal.

DIAGNOSIS: Pollen grains monosaccate, circular but less frequently subcir­ cular in equatorial and biconvex in polar view. A two-layered exine is com­ posed of intexine, about l f.l thick, and a granulare exoexine, 1.0 to 1.5 f-l thick. Equatorial saccus uniform, 3 to 5 ,u in width, and composed of the two-layered exine, which is frequently folded radially and contracted towards the polar regions, in which intexine and exoexine are adherent. The tetrad mark is usually prominent. Equatorial diameter between 35 and 50 t--t, with the saccus included.

AFFINITY: This species is extremely similar to Tsugaepollenites dampieri but differs by its definitely smaller size. There is no overlap in size range between these two species, for which reason the present species is considered distinct.

REMARKS: Fossils belonging to this species occur - although less frequently - throughout the sediments investigated.

Tsugaepollenites turbatus (Balme) comb. nov. Plate XI, fig. l.

1957: Balme, p. 31, pi. VII/VIII, ifgs. 85-87 (lnaperturopollenites turbatus). 1964: Levet-Carette, p. 109, pi. VI, fi gs. 22-24 (Applanopsipollenites triangularis). 1967: Schulz, p. 593, pi. XVII, figs. 3, 4 (Callialasporites turbatus).

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, slide Eriksdal 53/9.

GEOGRAPHIC DISTRIBUTION: Europe and Australia.

STRATIGRAPHIC DISTRIBUTION: In Europe from Upper Toarcian Callovian. In Australia from Middle Jurassic to the Lower Cretaceous. BOTAN!CAL !NVESTIGATIONS !N ER IKSDAL 97

DESCRlPTION: Pollen grains monosaccate, biconvex, with rounded triau­ gular to subtriangular amb. Exine two-layered. Inner body rounded trian­ gular, nexine (intexine) 1.0 to 1.5 p thick, smooth, endosed within a sub­ granulare exoexine 1.5 to 2.0 il thick, forming the saccus, which is almost never folded. The two layers are dosely appressed in the polar faces. Dia­ meter of inner body 45 to 55 ,u, equatorial diameter with saccus induded 72 to 78 il.

AFFINITY: No recent affinity is suggested.

REMARKS: This species is confined to Bajocian sediments in France, accor­ ding to our present knowledge. Tsugaepollenites turbatus occurs from the Upper Toarcian to Upper Callovian of Eastern Germany, i. e. it has a pre­ dominately Middle Jurassic distribution (cf Döring, Krutzsch, Mai, and Schulz 1966).

Tsugaepollenites dettmannae (Drugg) comb. nov. Plate XVI, fi g. l.

Drugg, p. 44, pi. VIT, fi gs. 12, 13 (A pplanopsis dettmannae).

ORIGINAL MATERIAL: GeologicaJ Survey of Sweden, Stockholm, slide Eriksdal 47/18.

GEOGRAPHIC DISTRIBUTION: North America and southern Sweden.

STRA TIGRAPHIC DISTRIBUTION: Maastrichtian and Danian in Califor-

DESCRIPTION: Pollen grains monosaccate, with subtriangular to circular amb. Exine two-layered. Intexine faintly granulate, 1 p thick, endosed within grannlate exoexin e, 0.5 il thick, forming a saccus equatorially. The two layers are dosely appressed in the polar faces. Tetrad mark not always distinct. Equatorial diameter of inner body 27 to 38 il, equatorial diameter with suc­ cus induded 45 to 65 i l.

AFFINITY: The present material resembles the American speCies, but no recent affinity can be suggested.

REMARKS: This species is not infrequent in Eriksdal, but the tetrad mark is usually not distinct, as it is in Drugg's material. Dr. Drugg himself in­ formed me in a letter, dated November 17, 1967 that: "The pictm·e which 98 HANS TRALAU you sent me does in fact resemble Applanopsis dettmannae. It strikes me, :however, that the 'Y' mark is less pronounced and there are no radiating folds in the outer flange. As you know I no longer believe that my species is an Applanopsis at all but is instead a selaginellid spore. I was misled by Pocock's work on Tsugaepollenites-Pflugipollenites since he showed forms with a 'Y' mark as included in this group. My present inclination would be to place forms with a distinct 'Y' mark into Selaginella and those without into Applanopsis".

VI. PRESUMED RE-BEDDED SPECIMENS OF MICROSPORES AND POLLEN GRAINS

Among the specimens investigated, there are single specimens the general stratigraphic distribution of which is very much below the Middle Jurassic. These specimens also are either highly distorred or remarkably infrequent. Mostly one or two specimens only are present. These species can have derived only from older, erosive material. They are exclusively Permian and Triassic in character. The following species are suggesred to be re-bedded in the sediments of Eriksdal. Zebrasparites laevigatus Schulz (see fig. 9 A) is only known from Middle and Upper Rhaetic sediments (Schulz 1967, p. 589). One specimen has been encountered in Eriksdal. One specimen of Convolutispora sp. (see fig. 9 B), a mainly Palaeozoic genus, (Hoffmeister, Staplin, and Malloy 1955) has been found in layer 49. Styxisporites sp. (see fig. 9 C) belongs to a genus which so far only is known from the Triassic in Europe. One specimen has been observed in layer 58 in Eriksdal. Osmundacidites minor Klaus (see fig 9 D) likewise is confined to the Triassic and two specimens only have been found in the present material. Conbaculatisporites mesozoicus Klaus (see fig. 9 E) also is Triassic (Klaus 1960, p. 126). One specimen is known from Eriksdal. Stereisporites (Dicyclosporis) cf triassicus (Schulz) (see fig. 9 F) is a species typical for Triassic sediments. Furthermore highly distorted speci­ mens of Permian bisaccate pollen grains as Taeniaesporites cf labdacus Klaus (Klaus 1963, p. 311) and T. cf ortesei Klaus (Klaus 1963, p. 310) have been observed. However, campared with the immense number of specimens investigated throughout the Eriksdal sediments, the mimber and frequency of possibly re­ bedded microspores and pollen grains is considered insignificant. BOTANICAL INVESTIGATIONS IN ERIKSDAL 99

Triassic sediments are still rather widely distributed in southern Sweden, whereas the presence of apparently Permian sporomorphs might indicate a previously wider range of Permian sediments in northern Europe than is known at present. Definite Carboniferous or older sporomorphs have not been encountered.

Fig. 9: Assumed re-bedded specimens. A: Zebrasparites laevigatus Schulz. B: Convolu­ tispora sp., C: Styxisporites sp., D: Osmundacidites minor Klaus, E: Conbaculatisporites mesozoicus Kl aus, F: Stereisporites (Dicyclosporis) cf triassicus Schulz.

VII. STRATIGRAPHICAL RESUL TS

As pointed out in chapter III the fossil flora of Eriksdal is situated between two sufficiently weil dated horizons; the lower of which is Liassic y in age, whereas the upper horizon, i. e. the greenish day, is suggesred from evidence 100 HANS TRALAU of ostracodes to be Upper Kimeridgian to Lower Portlandian in age (see also fig. 10). Pollen and spores obtained from the day support this suggestion. The day samples have been collected by Drs. Jan Bergström and Sven Lau­ feld, both at the Palaeontological Institute, University of Lund, at Nedraby in the valley of the Fyle river, SE of Eriksdal. These sediments, although

wsw ENE

E riksdal Grovet pit of AB FYLEVERKEN .. ···

100m 200m 300m " Green i sh clay : .,_ sands ~ cloys ~ cool --o­ i ro n-o res l Cardium-bed (LIAS t-l KIMERIOGIAN

Fig. 10: Section through the raised Jurassic sediments m the Eriksdal-Kurremölla-region with indication of their stratigraphic positions. only preliminarily scrutinized from the palynological point of view, contain inter alia Cyclotriletes subgranulatus Mädler, Ischyosporites amplireticosus Döring, Foraminisparis paucispinosus Döring, Lycopodiacidites spinatus Po­ cock, Cyclosporites hughesi (Cooks. et Dettmann) Cookson et Dettmann, and V astisporites vastiformis Döring. All these species are most typical for Ki­ meridgian sediments in geographically near by regions south of the Baltic sea, i. e. NE Germany (Döring, Krutzsch, Mai, and Schulz 1966, table C) . These unanimous results make it Iikely that the day really belongs to the Kime­ ridgian. However, it should be noted that the palynological investigations in this subject have not been finished so far. Pollen grains and microspores found in the sediments of Eriksdal confine the age of the sediments to the Bajocian and Bathonian. Apart from a considerable number of stratigraphically ubiquitous Meso­ zoic pollen grains and spores, there are some of remarkably restricted strati­ graphic distribution in northern, western and central Europe. The first group of pollen grains and microspores, which confines the age determination, comprises "old elements" (see table 1). These pollen grains and microspores are widely distributed in Lower Jurassic sediments hut have their "stratigraphic roof" in different stages of the Middle Jurassic. Hence it is evident that Concavisporites subgranulosus, which occurs throughout the Lower Jurassic as weil as the Bajocian, Bathonian, and Callovian of England, BOTANICAL INVESTIGATIONS IN ERIKSDAL 101

VI ;:, VI o ..... VI VI ;:, ;:, ;:, ;:,"' ... VI VI ... ~ "( "( lt: "( ..... ;:, o lt: ;:, u ...... 141 Q: "( ;:, Q. Il> Il> o Ql o ;:, ,.... 1..) ~ "( Q: ;:, "( ;:, ..... Q: o VI "( o Q: lt: VI z ..... lt: C> ~ VI "( "' 141 < VI 141 ~ ... :I: 141 ~ "" :... VI o ...... lt: "" "( lt: 141 u "' Cl VI - o ... "( o ii: 141 Q: ... Q. UJ o "" Q: Ci u- ... o Cl z Q. "( Q. o VI a: lt:- VI VI "'... :;;: 141 Ci o o 141 i "( ..... o Q. "( o Q. ~ ... ~ ~ u ... o VI "( ..... o ~ u Ci ..... u "'"( o ~ ).. o "( Q: ;:, :t u ...... u ...- 141 u z STA GES UJ E G E F G E E F E G F G G o_, BERRIASIAN < UJ ..... UPPER l: ci lU PURBECKIANMIDDL 0.. 0.. LOWER ::;) PORT LAN DIAN :I:_, < KIMERt DGIAN :I: OXFORDIAN

"'~ CALLOVIAN UJ _j "ou o BAlHONIAN :S! BAJOCIAN :f .."'UJ ::;) lOARCIA N "'.... [_ 3: o.... ~ .... III .r .."' III ..::;) a:< PLIENS- ::;) ..... BACHIAN .... a: i' "'3: lU g 3: o ...J .... ~ "' III .. III ~ ::;) < :; SINEMURIAN "'UJ 3: o....

o(2 HETTANGlAN "'1

Table 1. Lower and Middle Jurassic "key species" of Eriksdal and their stratigraphic distri­ bution in Europe (E= England, F = France, G = Germany). 102 HANS TRALAU

11'1 ::;,.... "( _, 11'1 o 11'1 ::;, l l

z STAGES UJ G E E F G E F o__. BERRIASIAN < UPPER UJ ..... !!t a: PURBECK IAN MIDDL. UJa.. a.. LOWER :l PORTLANDIAN x__. < KIMERIDGIAN x OXFORDIAN CALLOVIAN BAlHONIAN

UJ "'a.. a.. :> u TOARCIAN "'UJ U> {; 3: U> ~ Ul .r a.. ..., < :> a: PLI ENS- :l BACHIAN ..... UJ a: '1' "'3: UJ o !!t -' o__.

UJ u "'a.. iii (3 a.. Ul :> < :::; SINEMURIAN "' o(] ~-'

HETTANGlAN

Table 2. Middle and upper Jurassic "key species" of Eriksdal and their stratigraphic bution in Europe (E = England [and Scotland], F = France, G = Germany). BOT ANICAL ! NVESTIG A. TIONS IN ERIKSDAL 103

!::! (/) (/) (/) ::::. ::::. (/) Q ~ .... (/) ~ Q.. o l.u a: en o ;:: (.) (/) l:,_ "{ ii: (/) ::::. ~ o "'~ z ii: a: o o l!> o l.u (.) w < ~ L- (/) (/) u o "{ l: l.u ,_ ~

z STAGES LoJ G E F E F E F G ....o BERRIASIAN < ---, UPPE~ ~ or: PUR BECK IAN MI D ~ LoJ Q. Q. LO WER :::> - PORTLANDIAN ....L < K l MER l DGI A N l: OXFORDI A N n: , CALLOVIAN UJ __j <> o <-'D BAlHONIAN l l l g~ BAJOCIAN l l l l l l

UJ "'Q. ~ Q. ::> f---- lOARCIA N - u "'UJ (/) c ~ (/) ~ l --, BACH IAN "'UJ 0:: 0'- ~ LoJ g 3: ....o

-u UJ "'Q. iii (3 Q. ::> < "'::::; SINEMURIAN - UJ"' ~ "'3 ~

o(2 HETTAN GlAN l h Table 3. Middle Jurassic "key species" of Eriksdal and their stratigraphic distribution in Europe (E = England, F = France, G = Germany). 104 HANS TRALAU is an important species from the stratigraphic point of view. Leptolepidites major is found in the Bajocian and Barhonian of France and England, where­ as is occurs in Middle Jurassic and Toarcian sediments of Germany. Lyco­ podiacidites rugulatus has its uppermost occurrence in the Bajocian of Ger­ many and England, being so far known only from this stage in the latter country. The Barhonian is the stratigraphically highest stage for Todisporites major in England as weil as in France. Calamospora extends from the Lias­ sic to the Bajocian of England as does Trilites rariverrucatus in Germany and France. Pollen grains of Eucommiidites granufosus occur in Liassic and Ba­ jocian sediments of NE Germany. Chasmatosporites apertus, finally, is cha­ racteristic for Liassic and Dogger sediments in the region of the Baltic Sea. The seeond group, more restricted in number, is camposed of "new ele­ ments". The species of this group start their stratigraphic distribution in the northern part of the European continent and the British isles in Middle Ju­ rassic sites and continue into the Upper Jurassic and partly Lower Cretaceous (see table 2). Sestrosporites pseudoalveolatus is thus know n to begin its stra­ tigraphic distribution in the Bajocian of Germany and England, as does Spheripollenites scabratus. Tsugaepollenites trilobatus is, according to our present knowledge, less convincing. The oldest finds of this species in France are known in Bajocian, in Germany in Callovian, and in England in Oxfor­ dian sediments. Purther investigations in England and Germany might prove a wider Middle Jurassic distribution of this species. Tsugaepollenites trilo­ hatus does not appear to be frequent anywhere in Europe and might thus have been overlooked. The third groupisthat of Middle Jurassic endemics of Europe (see table 3). Four species are recognized in Eriksdal. Among these species Neoraistrickia gristhorpensis is found throughout the Middle Jurassic of Germany. In Eng­ land and France it has been encountered from Bajocian and Barhonian se­ diments respectively. Gleicheniidites conspiciendus is likewise known to oc­ cur in all three Middle Jurassic stages of Germany. More restricted is To­ disporites minor, which is confined to the Bajocian and Barhonian of Eng­ land and France and Leptolepidites equatibossus, which is restricted to the Bajocian in England and France. It seems Iikely to me that the strati-geographic development, of these spe­ cies should be expected to be similar to that of Coniopteris hymenophylloi­ des, the geographic distribution of which is Asiatic during the Lower Ju­ rassic (see fig. 4) and which apparently occupied the whole of Europe during the Middle Jurassic (see fig. S). In the Upper Jurassic the species again is restricted to Asia (see fig. 6) making a marvellous example of a "key spe­ cies" in regional stratigraphy. In Eriksdal "Bathonian elements", as for instance Lycopodiacidites ru­ gulatus, Calamospora mesozoica, Trilites rariverrucatus, Eucommiidites gra- BOTANICAL INVESTIGATIONS IN ERIKSDAL 105 nulosus (see table 1), and Leptolepidites equatibossus are not found above layer 41 (see figs. 2 and 10) whereas Bathonian elements continue upwards. For this reason it seems fair to assume that the lower part of the sediments investigated comprise Bajocian sites and hence the conclusion can be drawn that the upper section is Bathonian in age, the stratigraphic border being situated around the two upper coal seams.

VIII. ACKNOWLEDGEMENTS

The present investigation has been carried out both at the GeologicaJ Sur­ vey of Sweden, Stockholm and at the Swedish Museum of Natural History, Stockholm. The facilities of the above mentioned institutions and those of the Palaeontological Institute, University of Lund have been at my disposal. Financial support has also been obtained from the Swedish Natural Science Research Council. I wish to express my gratitude for kind help given to me by Dr. F. Brot­ zen, Stockholm, Dr. O. Brotzen, Stockholm, Professor Gunnar Erdtman, Sol­ na, Mrs. B. Ingve, Stockholm, Dr. U. Miller, Stockholm, Dr. Siwert Nilsson, Solna, Professor T. Nilsson, Lund, Mrs. Georgia Olsson, Stockholm, Dr. J. Praglowski, Solna, Professor Gerhard Regnell, Lund, Mr. K. E. Samuelsson, Stockholm, as weil as to the Trustees of the British Museum (NH), London, Dr. Warren Drugg, La Habra, California, Miss Dorothy Guy, Troon, Dr. E. Schulz, Berlin, Mrs. Nina Smith, Pittsburgh, and Professor Herbert Straka, Kiel. 106 HANS TRALAU

IX. REFERENCES

AKSARIN, A. V., 1955: Complexe d'Ustbalei. In: Atlas des formes guides de la faune et de la flore fossiles de Siberie occidentale. 2 Gosgeol., Moscou. - 1957: Schema der stratigraphischen Zergliederung der kohlenhaltigen Jura-Ablagerungen im Kanskischen Gebiet. In: Arbeiten d. intetdepartementalen Konferenz uber die Be­ arbeitung des unifizierten stratigr. Schemas Sibiriens, L., Gostoptechisdat. ANGELIN, N. P., 1859 and 1877: Geologisk öfversigtskarta öfver Skåne. Map printed Munich 1859 and text published in Lund 1877. ANTE VS, E., 1919: Die Liassische Flora des Hörsandsteins, K. Vet. Akad. Hand!. (59) 8, 6 pi. ARCHANGELSKY, S. A. and J. C. GAMERRO, 1966: Estudio Palinol6gico de la Formation Ba quer6 (Cret cico), provincia de Santa Cruz. Ameghiniana, 4:7, pp. 229-236, 2 pi. BALME, B. E., 1957: Spores and pollen grains from the Mesozoic of Western Australia, Pub!. Commoonwealth scientific, industr. res. arg., pp. 1-48, 12 pis. BARTHOLIN, C. T ., 1892-1894: Nogle i den Bornholmske Juraformation forekommende Planteforsteninger. Bot. Tidskr. 18:1 , 19 :1, 14 pi. BENNrE, J. and R. KmsTONE, 1886: On the occurrence of spores in the Carboniferous For­ mation of Scotland. Proc. Roy Phys. Sac. Edinb., 9, pp. 82-117. BHARDWAJ, D. C., 1957: The palynological investigations of the Saar coals. Part I. - Mor­ phography of Sporae dispersae. Palaeontographica B, 101, pp. 22-31, 7 fig. - 1957: The spore Flora of Velener Schichten (Lower Westphalian D) in the Ruhr Coal Measures. Palaeontographica B, 102 (4-6), pp. 110-138. BLANK, M. I., 1961: Jura-Ablager. im öst!. Teil d. Dneprovsk-Donetzk Senke u. am nord­ westl. Rand d. Donetz-Schicht. In: Arb. d. Sow;. Konf. fiir Präzisierung d. unifizierten stratigr. Schemas der mesozoischen Ablagerungen der Russischen Plattform. 2. Jura­ System. L., Gostoptechisdat. BöLAU, E., 1965: Der tertiäre Vulkanismus in Zentralschonen, Si.idschweden. Acta Univers. Lund II (30), pp. 1-6, 2 pi. BOJAKOVA, V. D. and V. P. VLAD!M!ROVICH, 1961: Stratigraphie vom nördlichen Teil des Braunkohlen-Gebiets Cheliabinsk. Infornt, Sammelschr. d. Sowf. d. Geol. Wiss. Forsch. Inst., 42 . BoLKHOVIT!NA, N. A., 1953: Caracteres sporo-polliniques du Cn~ tac e de la partie centrale de l'U.R.S.S. Trudy Inst. Geol. Nauk An, S.S.S.R. 145 (ser. geol. 61): 184 pp., 10 tabl., 10 fig., 16 pi. - 1956: Atlas des spores et pollens du Jurassique et du Crerace inferieur de la depression de Vilioui. Trav. Inst. Geol. U.R.S.S. 2, pp. 1-132, 9 fig., 25 pi., 4 tabl. - 1959: Complexes sporoo-polliniques des couches mesozo!ques du bassin du Vilioui et leur interet stratigraphique. Trud. Geol. Inst. 24, pp. 1-185, 16 fig., 30 tabl. - 1961: Spores fossiles et actuels de la famille des Schizaeaceae. Trud. Geol. Inst. Akad. Nauk S.S.S.R. 40, pp. 1-177, 19 fig. , 41 pi. , 9 tabl. BoNA, J., 1963: A mecseki liasz feketeköszentelepek lavolazonositasara ir:inyul6 palynol­ giai vizs galatok. Földt Közl. 93 (1), pp. 15-23, fig., tabl., 2 pi. BosE, M. N., 1959: The occurrence of Cycadopteris Z igno in the Mesozoic rocks of India. Palaeobotanist 6 (2), pp. 113-114, l pi. - 1959: The fossil flora of the Jabalpur group. - l. Ptilophyllum institacallum n. sp. The Palaeobotanist 7 (1), pp. 26-28, l fig., l pi. DOTANICAL JNVESTI GATIONS IN ERIKSDAL 107

- 1960: The fossil flora of the Jabalpur series. - 2. Filicales. The Palaeobotanist 7 (2), pp. 90-92, 1 pi. BosE, M. N. and SuKH DEv, 1959: Occurrence of two characteristic Wealden Fems in the Jabalpur Series. Nature 183, pp. 130-131, 4 fig. - 1960: Studies on the fossil flora of the Jabalpur Series from the South Rewa Gond­ wana basin. - l. Cycadopteris, Nipaniophyllum and Ginkgoites. The Palaeobotanist 7 (2), pp. 143-154, 7 fig., 3 pi. - 1961: Studies on the fossil flora of the Jabalpur series from the South Rewa Gondwana basin. - 2. Onychiopsis paradoxus n. sp. The Palaeobotanist 8 (112), pp. 57-64, 3 fig., 2 pi. BRICK, M. I., 1935: Flora des Mesozoikums aus dem siidl. Fergan. 1 Farne, p. 36, 17 fig., 4 tabl. - 1937: La Flore Mesozoique du Ferghana Meridional. Transact. Geol. Trust. Centre Asia, 3. - 1952: Flore fossile et stratigraphie des depots du mesozolque inferieur du basin moyen de la riviere Ilek, dans le Kazakhstan. Trav. VSEGE]. - 1953: Flore de mesozo'ique du basin boniller de Ferghana oriental. Trav. VSEGEJ. BRONGNIART, A., 1828: Prodrome d'une histoire des vegetaux fossiles. Paris. - 1828-1838: Histoire des Vegetaux fossiles, ou Recherches botaniques et geologiques sur les vegetaux renfermes dans les divers couches du globe. I-II. Paris. - 1849: Tableau des genres de veghaux fossiles consideres sous le point de vue de leur classification botanique et de leur distribution geologiques. Paris. BuRAKOVA, A. T., 1960: Nouvelles especes d'Equisetales dans le Jurassique moyen de Turkmenie occidentale. Paleont. Zh., 2, pp. 149-157, 4 fig., 2 pi. - 1960: The Jurass ic flora of Tuarkyr, and its stratigraphic distribution. Dok/. Akad. Nauk S.S.S.R. 135 (3), pp. 678-681, 1 tabl. - 1961: A middle Jurassic species of Selaginellites from Western Turkmenia. Paleont. Zh. 2, pp. 133-134, l fig. - 1961: Middle Jurassic Filicales from Western Turkmenia. Paleont. Zh. 4, pp. 138-143, 6 fig., 1 pi. - 1962: Flore Mesozo'ique de Tuarkyr et sa signification stratigraphique. Vest. Leningr. Univ. ser. geol. 6 (1). - 1962: On the evolution of the Jurassic flora of Tuarkyr. Vestn. Leningr. Univ. ser. geol. 12 (2), pp. 5-10, 1 fig., 1 tabl. - 1965: On the age of the Lower Jurassic deposits of the south-western spurs of the Gissar range (Kugitangtan range). Vestn. Leningr. Univ. ser. geol. georgr. 6 (1), pp. 41-46, l tabl. CARPENTIER, A., 1947: Note sur les microspores de quelques Pteridospermees. Ann. Soc. Sci. N at., Bot. 11: Vlll, 6 t. CHITALEY, S., 1951: Fossil microflora from the Mohgaon KaJan beds of the Madhya Pra­ desh, India. Proc. Nat. In st. Sci. India, 17 (5), pp. 373-383, 28 fig., 3 pi. - 1951: Further report on the fossil microflora from the Mohgaon KaJan beds of the Madhya Pradesh, Jndia. Proc. 38th Indian Sci. Congress, pp. 159-160. CooKsON, I. C., 1947: Plant microfossils from the lignites of Kerguelen Archipelago. B.A.N.Z. Antarctic Res. Exp. 1929-31, Rep. A2, pp. 127-142. - 1953: Difference in microspore composition of some samples from a bore at Comaum, South Australia. Aust. ]. Bot. 1, pp. 462-473. - 1954: A palynological examination of No. 1 bore, Birregurra, Victoria. Proc. Roy. Soc. Viet. 66, pp. 119-128. - 1956: Additional microplankton from AnstraJian late Mesozoic and Tertiary sedi­ ments. Aust. ]. Mar. Freshw. Res. 7, pp. 183-191. 108 HANS TRALAU

CooKSON I. C. and M. E. DETTMANN, 1958 a: Cretaceous "megaspores" and a closely associated microspore from the Australian region. Micropaleontology 4, pp. 39-49. - 1958 b: Some trilete spores from Upper Mesozoic deposits in the eastern Australian region. Proc. Roy. Soc. Viet. 70, pp. 95-128. - 1959 a: Microfloras in bore cores from Alberton West, Victoria. Proc. Roy. Soc. Viet. 71, pp. 31-38. - 1959 b: On Schizosporis, a new form genus from Australian Cretaceous deposits. Micropaleontology 5, pp. 213-216. CourER, R. A., 1953: Upper Mesozoic and Cainozoic spores and pollen grains froom New Zealand. Paleont. Bull. New Zealand Geol. Surv. 22, pp. 1-77. - 1955: Supposedly colpate pollen grains from the Jurassic. Geol. Mag. 92 (6), p p. 471-475, pi. 20-21. 1956: Evidence of possible gymnospermous affinity for Trica/pites troedssonii Erdtman. New Phytol. 55, pp. 280-285, l pi. 1957: Plant microfossi ls from the Papakaio Formation. In: Gage, M., The Geology of Waitaki subdivision. N. Z. Geol. Surv. Bull. 55, p. 103, l tabl. 1958: British Mesozoic microspores and pollen grains. A systematic and stratigraphic study. Palaeontographica B, 103 (4-6), pp. 75-179, 11 fig., 16 pi. l depl. 1960: New Zealand Mesozoic and Cainozoic plant microfossils. N. Z. Geol. Surv. Pal. Bull. 32, 88 p. 1964: Spore-pollen earrelation of the Cretaceous rocks of the Norrhem and Southern Hemisphere. Palynology in Oil Exploration, Soc. Econ. Paleontol. Mineral., Spec. pub/. 11, pp. 131-142, 6 fig. CouPER, R. A., and N. F. HuGHEs, 1963: Jurassic and Lower Cretaceous palynology of the Nerherlands and adjacent areas. Verh. Koninkl. Neder/. Geol. Miinb. Genootsch. Trans. jubil. Convent. Geol. Ser. 21 (2), pp. 105-108, l fig. DABER, R., 1962: Biartreste im Lias von Nordostdeutschland. Paläont. Abhandl. 1 (2), pp. 123-138, 6 fig., 4 pi. DANZE, J. and J. P. LAVEINE, 1963: Etude palynologique d'une argile provenant de la limite Lias-Dogger, dans un sondage a Boulogne-sur-Mer. Ann. Soc. Geol. Nord. 83 (1), pp. 79-80, 4 pi. 0AUGHERTY, L. H., 1941: The Upper Triassic flora of Rrizona. Carnegie Inst. Washington 526, pp. 1-108. DE JERSEY, N. J, 1957: Spore distribution and earrelation - Rosewood Coalfield - Glen­ coe Oakleigh and Warmanton No. l Mine areas. Qd. Govt. Min. J. 58, pp. 190-197. - 1958: Macro- and micro-floras of North-eastern New South Wales. J. and Proc. Roy. Soc. New South Wales 92 (3), pp. 83-89, 4 fig. - 1959: Jurassic spores and pollen grains from the Rosewood coalfield. Queensl. Go­ vernm. Min. J. 60, pp. 346-366. - 1962: Triassic spores and pollen grains from the Ipswich coalfield. Geol. Surv. Queensl. Public. 307, pp. 1-18, 6 pi. - 1963: Jurassic spores and pollen grains from the Marburg Sandstone. Geol. Surv. Queensl. Public. 313, pp. 1-15, fig., 3 pi. DE ]ERSEY, N. ]., and R. J. PATE N, 1964: Jurassic spores and pollen grains from the Surat Basin. Geol. Surv. Queensl. Public. 322, pp. 1-18. DELCOURT, A., and G. SPRUMONT, 1955: Les spores et grains de pollen du Wealdien du Hainaut. Mem. Soc. Beige Geol. Paleont. Hydr. n. s. 5, pp. 1-73, fig. 1-15, pi. 1-4. - 1956: Presence d'Eucommiidites dans une coupe du Wealdien de Baudour. Bull. Soc. Beige Ge61. 65, pp. 375-380, 4 fig. - 1957: Quelques microfossiles du Wealdien de Feron-Glageon. Bull. Soc. beige de Geol. Pal. et Hydr. 66 (1), pp. 57-67, 3 pi. BOTANICAL INVESTIGATIONS IN ER IKSDAL 109

1959: Spores, grains de pollen, H ystrichospheres et Peridiniens dans le Wealdien de Feron-Glageon. Ann. Soc. Geol. Nord 79, pp. 29- 64, 5 pi., l tabl. - 1959: Curieuse association de microfossiles dans le Wealdien de Feron-Giageon (France). Bull. Soc. Belg. Geol. 68 (1), pp. 122-125. DELCOURT, A., M. E. D ETTMA NN, and N. F. HuGHEs, 1963: Revision of some lower Cretaceous microspores from Belgium. Palaeontology 6 (2), pp. 282-292, l fig., 4 pi. DELLE, G. V., 1959: Ginkgoales from the Jurassic deposits of the Tkvarcheli coal basin (Georgian S.S.R.). Bot. Zh. 44 (1), pp. 87-91, 5 fig., 2 pi. - 1959: The new genus Ptiloctenia from the Caucasus Jurass ic deposits. Bot. Zh. S.S.S.R. 44 (6), pp. 819-822, 2 pi. - 1960: Recent data on the Jurassic flora of Tkvarcheli. Dok!. Akad. Nauk S.S.S.R. 133 (5), pp. 1150-1153, l tabl. - 1962: A contribution to the knowledge of the Jurassic flora of Azerbaijan. Bot. Zh. 47 (5), pp. 690-693, 1 pi. DEPAPE, G., 1961: Les flores wealdiennes d'Ortigosa (Espagne) et de Feron-Glageon (France) . Comparaison. Ann. Soc. Geol. Nord. 81 (3}, pp. 145-147. DETTMANN, M . E., 1959: Upper Mesozoic microfloras in weil cores from Woodside and Hedley, Victoria. Proc. Roy. Soc. Victoria 71 (2), pp. 99-105, tabl. - 1963: Upper Mesozoic microfloras from South-Eastern Australia. Proc. Roy. Soc. Vic­ toria n. s. 77 (1), pp. 1-148, 6 fi g., 27 pi., tabl. DEv, S., 1959-1961: The fossil fl ora of the Jabalpur series - 3. Spores and pollen grains. The Palaeobotanist 8 (112), pp. 43-56, 8 pi. DöRING, H ., 1961: Planktonartige Fossilien des Jura/Kreide-Grenzbereichs der Bohrungen Werle (Mecklenburg). Geologie 32, pp. 110-121, 1 fi g., 2 pi. - 1964: Neue Sporengattungen und -arten aus dem Jura/Kreide-Grenzbereich Nord­ deutschlands. Monatsber. Dtsch. Akad. Wiss. Berlin 6 (1), pp. 37-45, 2 pi. - 1964: Trilete Sporen aus dem Oberen Jura und dem Wealden Norddeutschlands. Geo­ logie 13 (9), pp. 1099-1129, 8 pi. - 1965: Die Sporenpaläontologische Gliederung des Wealden in Westmecklenburg (Struk­ tur Werle) . Geologie Beih . 14 (47), pp. 1-118, 3 fig., 23 pi. 3 tabl. DöRI NG, H ., W. KRuTzscH, D. H. MAI, and E. ScHULZ, 1966: Erläuterungen zu den spo­ renstratigraphischen Tabell en vom Zechstein bis zum Oligozän. Abh. zentr. Geol. Inst. 8, pp. 1-203, 12 tab. DöRIN G, H., W. KRuTZSCH, E. ScHuLz , and E. TIMMERMANN, 1966: Ueber einige neue Sub­ formgenera der Sporengattung Stereisporites Th. & Pfl. aus dem Mesozoikum und Alttertiär M itteleuropas. Geologie 15, Bh. 55, pp. 72, 3 pi., 4 figs. DouBINGER, J., 1961: Spores et pollens des "stipites" du Larzac (Bathonien). C. R. Som. Seanc. Soc. Geol. Fr. 6, pp. 162-163. DRucc, W. S., 1967: Palynology of the Upper Morena Formation (Late Cretaceous-Paleo­ cene) Escarpado Canyon, California. Palaeontographica B:120, pp. 1-71, 9 pi., 5 figs . DuTHIE, A. V., and S. GARS ID E, 1936: Studies in South African Ricciaceae. 1. Three annual species. R. plana Taylor, R. cupu/ifera sp. nov., and R. curtisi T. P. James. Trans. Roy. Sac. S. Afr. 24, pp. 93-133. EDWARDs, W. N., 1929: The Jurass ic flora of Sardinia. Ann. Mag. Nat. Hist. 10:4. - 1934: Jurassic Plants from New Zeland. Ann. Mag. Nat. Hist. 10:13. EcGERT, D., and T . N. TAYLOR, 1966: Studies of Palaeozoic : On the genus Tedelea gen. nov. Palaeontographica 11 8:B, pp. 52-73, 4 pi., 8 fi gs. ERDTMAN, G., 1947: Suggestions for the classification of fossil and recent pollen grains and spores. Svensk bot. tidskr. 41, pp. 104-114. - 1948: Did dicotyledonous plants exist in Ea rl y Jurassic times? Geolog. För. i Stockholm Förhandlingar 70:2. 110 HANS TRALAU

- 1957: Pollen and spore morphology and plant taxonomy. Gymnospermae, Pteridophyta, Bryophyta (illustrations). An introduction to palynology. II, pp. 1-152, 265 fig., 6 pi. FLORIN, R., 1963: The distribution of Conifer and Taxad genera in time and space. Acta Horti Berg. 20 (4}, pp. 21-312, 68 fig., 4 tabl. FuLFORD, M., 1956: The young stages of leafy Hepaticae. Phytomorphology 6, pp. 199-235. GAMERRO, ]. C., 1965: Morfologia del polen de la conifera T risacodadus tigrensis Archang. de la formaci6n Baquer6, provincia de Sant Cruz. Ameghiniana 4 (1), pp. 31-38, 4 fig., 2 pi., l tabl. GEKKER, R. F., 1948: Ein fossiler .Jura-See im Gebirge Kara-tau. Arb. d. Palaeontologischen Inst. d. Wiss. Akad. URSS, Ausg. l. GENKINA, R. Z., 1959: Flore fossile des sediments carboniferes jurassiques du gisement de lignite de l'Oural Oriental et sa signification stratigraphique. Ugletekhizdat. - 1960: Fossil flora and the stratigraphy of coal-bearing deposits of the Severo-Sosvinsk basin. Izv. Akad. Nauk. S.S.S.R. Ser. Geol. 10, pp. 70-76, l fig., l tabl. - 1961 : The Mesozoic flora of the South-Yakutian (Aid anian) carboniferous basin, and its stratigraphic distribution. Do/d. Akad. Nauk S.S.S.R. 138 (3), pp. 635-638. GowvA, T. F., 1948: Pflanzen-Fossili en aus dem Kemchukskischen Braunkohlen-Fundort im Chulymo-.Jennissei kohlenhaltigen Gebiet. Arb. d. Univer. Tomsk. 99. - 1954: Jura-Pflanzen aus den Distrikten des Sobolevsk Fundortes (kohlenhaltiges Chulymo­ Jennissei-Gebiet). Arb. d. Univer. Tomsk 132. GouniN, N., 1965: Description et repartition des principaux Pollenites permiens, triasiques et jurass iques des sondages du bassin de Morondava (Madagascar). Rev. lnst. fr. Petro/e 20:10, pp. 1415-1461, 3 fig., l dpl. h.t. GounrN, N., J. T AUGOURD~

- 1941: Caytonanthus, the microsporophyll of Caytonia. Ann. of Bot., N .S. 5 (17). - 1942: Notes on the Jurassic Flora of Yorkshire. Ann. Mag. Nat. Hist. London 11 '(9). - 1943: Notes on the Jurassic Flora of Yorkshire, 4-9. Ann. Mag. Nat. Hist. London 11 (10). - 1944: Notes on the Jurass ic Flora of Yorkshire, 10-15. Ann. Mag. Nat. Hist. Lon­ don 11 (11). - 1945: Notes on the Jurassic Flora of Yorkshire, 16-27. Ann. Mag. Nat. Hist. London 11 (12). - 1946: Liassic and Rhaetic Plants collected in 1936-38 from East Greenland. Meddel. om Grönland 114 (9): 1. - 1948: Notes on the Jurassic flora of Yorkshire 37- 39. Ann. Mag. Nat. Hist. 12 (1), pp. 181-213, 8 figs. - 1950: Notes on the Jurassic flora of Yorkshire 46-48. Ann. Mag. Nat. Hist. 12, 3 (36), pp. 1001-1030, 9 figs. - 1951: Notes on the Jurassic flora of Yorkshire 49-51. Ann. Mag. Nat. Hist. 12, 4 (45), pp. 915-937, 5 figs. - 1951: The relationships of Caytoniales. Phytomorphology 1, pp. 29-39. - 1952: Notes on the Jurassic flora of Yorkshire 52-54. Ann. Mag. Nat. Hist. 12, 5 (52) , pp. 362-382. - 1952: Notes on the Jurassic flora of Yorkshire 55-57. Ann. Mag. Nat. Hist. 12, 5 (54), pp. 614-627. - 1953: Notes on the Jurassic flora of Yorkshire 58- 60. Ann. Mag. Nat. Hist. 12, 6 (61), pp. 33-52, 6 figs. - 1955: The fossil flora of Scoresby Sound, East Greenland 4. Medd. om Gmnl. 112 (1), pp. 154-167. - 1957: A liasso-rhaetic flora in South Wales. Proc. Roy. Sac. B 147 (928), pp. 289-308, 6 figs, 1 pl. - 1960: The seed of Caytonia. The Palaeobotanist 7 (2), pp. 93-106, 8 figs., 2 pi. - 1960-1961: The Rhaeto-Liassic flora of Scoresby Sound, Central East Greenland. In: Geology of the Arctic. Ed. Gilbert O. Raasch 1, pp. 629-273. - 1961: The form and structure of Ctenozamites cycadea (Berger) Schenk. Bull. Brit. Mus. Nat. Hist. Geol. 5 (6), pp. 159-173, 2 figs., 1 pi. - 1961: The fossil Cycads. Palaeontology 4 (3), 313-323, 2 figs. - 1961: The Yorkshire Jurassic flora. I. Brit. Mus. (NH). London. - 1962: Palaeobotany of Pteruchus. Nature 195 (4844), pp. 844. - 1964: The Yorkshire Jurassic flora. II. Brit. Mus. (NH). London. HARRIS, W. F., 1955: A manual of the spores of New Zealand Pteridophyta. Bull. D.S.I.R., Wellington 116. HöRHAM MER, L., 1933: Ober die Coniferen-Gattungen Cheirolepis Schimper und Hirme­ riella nov. gen. aus dem Rhät-Lias von Franken. Bibliotheca Botanica 107, pp. 1-34, 7 pi., 11 figs. HOFFMEISTER, W. S., F. L. STAPLIN, and R. E. MALLOY, 1955: Mississippian plant spores from the Hardinsburg formation of Illinois and Kentucky. ]. Paleont. 29, pp. 372-399, 4 figs., 2 pi. HuGHEs, N. F., 1961: Further interpretation of Eucommiidites Erdtman, 1948. Palaeonto­ logy 4 (2), pp. 292-299, 1 fig., 2 pl. - 1961: Fossil evidence and Angiosperms ancestry. Sci. Progr. 49 (193), pp. 84-102, 2 tabl. - 1963: The assignment of species of fossils to genera. Taxan 12 (9), pp. 336-337. - 1963-1964: Cretaceous floras and the assessment of past climates. In: Problems in Pa- laeoclimatology, Pro ceedings of the NATO Palaeoclimates Conference held at the Uni· 112 HANS TRALAU

versity of Newcastle upon Tyne, ]anuary 7-12, 1963, pp. 44-49, Interscience Pub!. John Wiley & Sons, London-New York-Sydney. HuGHEs, N. F. and R. A. CouPER, 1958: Palynology of the Brora coal of the Scottish Middle Jurassic. Nature 181 (4621 ), pp. 1482-1483, l fi g. IoRAHIM, A., 1933: Sporenferme des Aegierhorizontes des Ruhrreviers. Diss. Techn. Hochsch. Berlin, pp. 1-47, 8 pis. IvERSEN, J. and J. TROELS-SMITH, 1950: Pollenmorfologiske definitioner of typer. Danmarks geol. unders. IV:3:8. JAcon, K., 1938: Jurassic plants from Tabbowa, N. W. Ceylon. In: Proc. 25th Indian Sci. Congress 3. JACOB, K. and B. N. SHUKLA, 1955: Jurassic plants from the Saighan series of Northern Afghanistan and their palaeo-climatological and palaeo-geographical significance. Pa­ laeont. indica 33 (2), pp. 1-63, 13 pi. KAPIZA, A. A. and M. M. KocH MAN, 1961: Nouvelles donnees sur la phytostratigraphie des sediments de la chalne du Petit Khingan. In: Geologie Geomorphologie et Farets dfossiles de la Region de /'Amour 1:72. KARA-MURZA, E. N., 1958: Quelques donnees sur la composition des complexes sporo­ polliniques de Cretace inferieur marin de la region de Nordvik. Sborn. Stat. Paleont. Biostr. Bull, 10 Izd. Inst. Geol. Arktiki, Leningrad. - 1960: Bases palynologiques de la subdivision stratigraphique des sediments meso­ zo.iqe de la depression de la Khatanga. Trud. Nauchn. lssl. lnst. Geol. Arktiki 109, pp. 1-134, 19 figs., 22 pi. - 1960: Palynologische Begriindung fiir eine stratigraphische Zergliederung der mesozoi­ schen Ablagerungen in der Hantangskischen Niederung. Arb. d. Wiss.-Forsch. Geol. d. Arktis. 109. KAWASAKI, S., 1925: Same older Mesozoic plants in Korea. Bull. Geol. Surv. (Korea), Keizyo, 4, pp. 1-71, pis. 1-47. - 1939: Second addition to the older Mesozoic plants in Korea. Bull. Geol. Surv. Cho­ sen (Korea), Keizyo, 4, 3, pp. 1-69, pis. 1-16. KEDVES, M. and P. SIMONCSICS, 1964: Microstratigraphy of the earbonare manganese ore layers of the shaft III of Urkut on the basis of palynological investigations. Acta Miner Petr. Szeged. 16, pp. 3-48. - 1964: Spores nouvelles extraites de minerai de manganese Jurassique de d'Urkut (Hongrie). Pollen et Spores 6, pp. 605-610. KENDALL, M. W., 1948: On six species of Pagiophyllum from the Jurassic of Yorkshire and Sotnhern England. Ann. Mag. Nat. Hist., ser. 12:1, pp. 73-108. - 1949: On a new Conifer from the Scottish Lias. Ann. Mag. Nat. Hist., ser. 12:2. 1952: Same Conifers from the Jurassic of England. Ann. Mag. Nat. Hist., ser. 12, (54), pp. 583-594, 5 figs. KILPPER, K., 1964: Ober eine Rät-Lias-Flora aus dem närdlichen Abfall des Alburs-Gebirges in Nordiran. Teil 1: Bryophyta and Pteridophyta. Palaeontographica B 114 (113), pp. 1-78, 37 figs., 15 pis. KIRITCHKOVA, A. I., 1962: Floristische Komplexe des kohlenhaltigen Mesozoikums im Czeliabin-Gebiet. Arb. d. Allgem. Sowiet. Inst. f. wiss. Forsch. d. geol. Schurfung, Ausg. 196. KLAus, W., 1960: Sporen der karnischen Stufe der ostalpinen Trias. ]b. Geol. Bundesanst. Sonderbd. 5, pp. 107-184, 14 figs., 11 pis. - 1963: Sporen aus dem siidalpinen Perm (Vergleichsstudie flir die Gliederung nordalpiner Salzserien). ]b. Geol. Bundesanst. 106 (1), pp. 229-361, 38 figs., 20 pis. KNox, E. M., 1938: The spores of Pteridophyta with observations on roierospares in coals of Carboniferous age. Trans. Bot. Sac. Edinb. 32, pp. 438-466. BOTANICAL JNVESTIGATIONS IN ERIKSDAL 113

1950: The spores of Lycopodium, Phylloglossum, Selaginella, and Iso etes, and their value in the study of microfossils of Palaeozoic age. Trans. Bot. Soc. Edinb. 35, pp. 209-357. KovALTCHUK, G. M., 1961: Caracteristiques paleobotaniques des dep6ts du Mesozoique inferieur du bassin de Karagunda. Trud. Lab. Geol. Vgl. 13, pp. 67-85, 17 pis. 1961: Carateristiques paleobotaniques des sediments du Mesozoique inferieur du bassin du Kenderlyk. Trud. Lab. Geol. Vgl. 12, pp. 207-217. KRASSER, F., 1912: Williamsonia in Sardinien. - Sitzb. K. Akad. Wiss., Wien, Math.-Na­ turw. Cl. 121, Abth. (1), 2 Taf. 1920: Die Doggerflora von Sardinien. - Sitzb. K. Akad. Wiss., Math.-Naturw. Cl. 129, Abth. 1 (112). 1922: Zur Kenntnis einiger fossiler Floren des unteren Lias der Sukzessionsstaaten von Osterreich-Ungarn. Sitzb. Akad. Wiss. Wien (1) 130, pp. 345-373. KRUT ZSCH, W., 1959: Einige neue Formgattungen und -Arten von Sporen und Pollen aus der mitteleuropäischen Oberkreide und dem Tertiär. Palaeontographica B 105 (5-6}, pp. 125-127, 18 fi gs., 5 pis. 1959: Mikropoläontologische (sporenpaläontologische) Untersuchungen in der Braun­ kohle des Geiseltales. Geologie 8 (21/2 2), pp. 1-425, 38 figs., 49 pis., 12 tabl. 1962-1963: Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des närdlichen Mitteleuropas. Zentral. Geol. Inst. Berlin VEB Dtsch Verl. Wiss. l, pp. 1-108, 46 pis.; 2, pp. 1-141, 50 figs., 50 pis., 2 tabl.: 3, pp. 1-128, 19 figs. , 43 pis. KusiTCHKINA, J. M., E. A. REPMAN, and T. A. SIXTEL, 1959: Der Versuch einer stratigraf. Zergliederung von kontinentalen untermesozoischen Ablagerungen Mittel-Asiens. In: Biostratigraphische Fragen der Kontinentalen Schichten. Trudy Vsesoiusnovo paleontol. ob-va, 3.-sess., M., Gosgeoltechisdat. KuYL, O. S., J. MuLLER, and H . T. WATERilOLK, 1955: The application of palynology to oil geology, with special reference to western Venezuela. Geol. Miinb. 17 (3), pp. 49-75, 8 figs., 8 pis. LANTZ, J., 1958: Etude palynologique de quelques echantillons mesozoiques du Dorset (Grande-Bretagne). Rev. Inst. Fr. Petro/e 13 (6), pp. 917-943, 1 fig., 7 pis., 3 tabl. 1958: Etude des spores et pollens d'un echantillon purbeckien de !'ile d'Oieron. Rev. Micropaleont. 1 (1), pp. 33-37, l pi. LARSEN, G., 1965: 0resund, Helsingor-Hälsingborg Linien. Geologisk rapport udarbejdet ved Danmarks Geologiske Undersogelse (med bidrag af O. Bruun Christensen, L Bang, A. Buch). Danmarks Geologiske Vndersogelse. LEBEDEV, E. L., 1963: The Upper-Jurassic flora of the Zea river, and its role in the deli­ mination of Upper Jurassic and Lower Cretaceous continenta! deposits wirhin the Ba­ sin of the Amur river. Dold. Akad. Nauk S.S.S.R. 150 (1), pp. 149-151, l tabl. v, L V., 1950: Die Jura des zentralen Distrihes von Kussbass. Trudy Tomsk. un-ta, 65, vyp. 2. 1955: Die Jura-Flora (Karaldin-Komplex). In: Atlas d. fiihrenden Formen von Fauna­ u. Flora-Fossilien West-Sibiriens, T 2, M. Gosgeoltechisdat. 1955: Das Jura-System (stratigr. Skizze). In: Atlas d. fiihrenden Formen von Fauna­ u. Flora-Fossilien West-Sibiriens, T 2, M. Gosgeoltechisdat. 1955: Jura-Flora (Komplex Tersiuks). In: Atlas d. fiihrenden Formen von Fauna- u. Flora-Fossilien West-Sibiriens, T . 2, M. Gosgeoltechisdat. 1956: Das Mesozoikum des Kusnetzk-Kessels. In: Fragen den Geologie von Kusbass, T. 1, M., Ugletechisdat. 1958: Kontinentales Mesozoikum im östlichen Teil von West-Sibiren. Autorenref. Dokt. Diss, Tomsk. 114 HANS TRALAU

1958: Die Kreide-Ablagerungen in der Czulymo-Jenissei Senke. !sv. Tomsk. politech. in-ta, 90. 1959: Zur Geschichte der Kohlenanhäufungen aus der Jura im östlichen Teil von West-Sibirien. In: Die geologischen Fragen von Kussbass, T. 2, M., Ugletechisdat. LEE, H. H., 1954: On the occurrence of Zamiophyllum from the Wutsunpu formation in Eastern Kansu, China. Acta Palaeont. Sin. 2 (4), pp. 439-446. 1954: Stratigraphy of the Shikuai coal field, Tachingshan, Inner Mongolia, with special reference to the significance of several unconformities. Acta Geol. Sin. 34 (4) , pp. 411- 436. 1955: On the age of the Yunkang series of the Tarung coal field in North Shansi. Acta Palaeont. Sin 3 (1), pp. 25-46. LENK, G., Sporenpaläontologischer Nachweis von Maastricht ::lllf der scholle VOl! vörde. Geologie, Beih. 55, pp. 90-101, 2 pis. LESNIKOVA, A. F., 1915: Die Jura-Pflanzen Kaukasiens. !sv. Geol. kom. 34, vyp. 3. LEVET-CARETTE, J., 1963: Etude de la microflore infraliasique d'un sondage effectue dans le sous-sol de Boulogne-sur-Mer (Pas-de-Calais). Ann. Soc. Geol. Nord 83 (2), pp. 101- 128, 2 figs., 4 pis. 1964: Etude de la microflore bajocienne d'un sondage effectue dans le sous-sol de Boulogne-sur-Mer (P.-de-C. ). Ann. Soc. Geol. Nord 84 (2), pp. 91-121, 2 tabl., 2 pls. 1966: Microflore Wealdienne prove nant d'un puits nature! a la fosse Vieux-Conde (groupe de Valenciennes). Ann. Soc. Geol. Nord 86, pp. 153-174, 3 pis. LEWARNE, G. C., and J. M. PALLOT, 1957: Mesozoic plants from fiss ures in the carboni­ ferous limestone of South Wales. Arm. Mag. Nat. Hist. 12 (10), pp. 72-79, 3 figs. LuNDBLAD, B., 1950: Studies in the Rhaeto-Liassic floras of Sweden I. Pteridophyta, Pteri­ dospermae and Cycadophyta from the mining district of N. W. Scania. K. Svenska Vet.-Akad. Hand!., ser. 4, l (8), pp. 1-82, 30 figs., 13 pls. MÄDLER, K., 1964: Bemerkenswerte Sporenformen aus dem Keuper und unteren Lias. Fortschr. Geol. Rheinl. W estf. 12, pp. 169-200, 3 pis., l tabl. MAHIN, K., 1968: Sporenpalaeontologischer Nachweis von mittlerer Jura in H öllviken. Geologiska Föreningens i Stockholm Förhdlg. (in press). MAKAREWICZOWNA, A., 1928: Flora dolno-liasowa okolic Ostrowca. Prace Zakl. Geol. Univ. Wilnie, 3. MALIAVKINA, V. S., 1949: Bestimmungsschli.issel von Sporen und Pollen der Jura - Kreide. Tr. VNIGRI, nov. ser., vyp. 33, L. Gostoptechisdat. MANUM, S., 1954: Pollen og sporer i tertia:re kull fra Vestspitsbergen. Blyttia l, pp. 1-10, 2 pis. 1960: On the genus Pityosporites Seward 1914, with a new description of Pityosporites anatarcticus Seward. Nytt. Mag. Bot. 8, pp. 11-16, l pi. 1962: Studies in the Tertiary flora of Spitsbergen, with notes on tertiary floras of Ellesmere, Island, Greenland, and Iceland. Norsk Polarinst. Skrift 125, pp. 1-127, 26 figs., 21 pls., 2 tabl. MARKOVITCH, E. M., 1961: Die untermesozoischen Pflanzenfossilien im si.idlichen Teil Magnitogorskischen Synclinoriums. Trudy Labor. geol. uglia AN SSSR, vyp. 12 . MARKOVITCH, E. M., and I. Z. FADDEEVA, 1960: A new Middle Jurassic fern from Orsk brown coal basin. Paleont. Zh. 3, pp. 127-130. MENENDE Z, C. A., 1956: Florula Jurassica del Bajo de los Baguales en plaza Huincul, Neuquen. Acta Geol. Lillaana 1, pp. 315-338, 4 figs., 5 pis. MoBERG, J. Ch., 1882: Om de äldsta kritaHagringarna och Rät-Lias i sydöstra Reseberättelse. Ofvers. Kgl. Svenska Vet. Akad. Förhand!. 9. 1888: Om Lias i sydöstra Skåne. Kgl. Svenska Vet. Akad. Hand/g. 22:6. BOTANICAL JNVESTIGATIONS IN ERIKSDAL 115

- 1893: Bidrag till kännedom om Sveriges mesozoiska bildningar. Bih. Kg/. Svenska Vet. Akad. hand/., 19:2:2. MöLLER, Hj., 1902: Bidrag till Bomholms fossila flora. Pteridofyter. Acta Universit. Lund. 38, Afd. Il:S. - 1903: Bidrag till Bomholms fossila flora (Rhät och Lias). Gymnospermer. Kgl. Svenska Vet. Akad. Hand/g. 36:6. MöLLER, Hj., and T. G. HALLE, 1913: The fossil flora of the Coalbearing deposits of South­ eastern Scania. Kgl. Svenska Vet. Akad. Arkiv för Botanik. 13:7. MOIS EEV, A. A., 1929: Dber Fundorte der Beschui-Steinkohle in der Krim. Mat. obtch. i prikl. geol., vyp. 100, pp. 1-40. MooRE, L. R., 1946: On the spores of some Carboniferous plants; Their development. Quart. ]ourn. Geol. Sac. 102:3, pp. 251-298, 3 pis. NAKAMURA, J, and T. SHJBASAKI, 1959: Diagnostic characters of fern spores (1). Ophio­ glossaceae, Helminthostachyaceae and Osmundaceae. Res. Rep. Kochi Univ. 8 (14), pp. 1-11, l fig., 7 pis. NATHORST, A. G., 1908: Paläobotanische Mitteilungen 4-6. 4. Dber die Untersuchung kutinisierter fossiler Pflanzenreste; 5. Dber Nathorstia Heer; 6. Antholithus Zeilleri n. sp. mit noch erhaltenen Pollenkörnem aus den rhätischen Ablagerungen Schonens. Kg/. Svenska Vet. Akad. Hand/g. 43:6, pp. 1-32, 4 pis. NAuMOVA, S. N., 1939: Spores and pollen of coals of the U.S.S.R. Rep. Int. Geol. Congr., 17th Session U.S.S.R. l, pp. 353-364. NEJBURG, M. F., 1929: Stratigrafie u. Alter der kohlenhaltigen Ablagerungen im Kusnetzk­ Gebiet. Dok/. AN SSSR, Serije A, 14 . - 1931: Ein Versuch die kohlenhaltigen Serie des Kusnetz-Gebiets, stratigrafisch dem Al­ ter nach, einzuteilen. Isv. Glavn. geol.-rasved. upr. 50, vyp 5. - 1936: Stratigrafie und Alter der kohlenhaltigen Ablagerungen in der Tannu-Tuvini­ schen Volksrepublik. Trudy Geol. in-ta AN SSSR, 5. NrKJFOROVA, l. K., 1957: Dber die stratigrafische Lage der mesozoischen Flora zwischen den Fliissen Tylsko-Toromsk (west. Prichotje). Isv. vost. filialovAN SSSR, Nr. 4-5. NrLssoN, S., 1820: Om Försteningar och Aftryck af tropiska trädslag och deras blad, funne i ett Sandstenslager i Skåne. Kong!. Vetensk. Acad. Hand/g. för år 1820, pp. 108-122, 2 pis. NILssoN, S., 1941: Rapport angående resultaten av den preliminära bestämningen av växt• fossil från Fyledalen. Manuscript. Swedish Geological Survey, Stockholm. NrLSSON, T., 1958: Dber das Vorkommen eines mesozoischen Sapropelgesteins in Schonen. Lunds Universitets Arsskrift, N. F., Avd. 2, 54, pp. 1-112, 8 pis. 0ERTLI, H. J., F. BROTZEN, and H . BARTENSTEIN, 1961: Mikropaläontologisch-feinstrati• graphische Untersuchung der Jura-Kreide-Grenzschichten in Siidschweden. Sveriges Geologiska Undersökning Ser. C, No. 579 ( Arsbok 55:3). OrSHr, S., 1940: The Mesozoic flora of Japan. ]ourn. Fac. Sci. Hokkaido Imp. Univ. '4:4. 0RLOVSKAJA, E. R., 1958: Zwei neue Farne aus den Jura-Ablagerungen des kohlenhaltigen Gebiets Maikiuben. Vestnik AN Kasakh. SSR, 12. - 1958: Material iiber die Jura-Flora des Kohlengebiets Maikiuben. In: Geschichts­ materiale uber die Fauna und Flora Kasakhstans, B. 2. Alma-Ata, Isd-vo, AN Kasakh­ SSR. - 1961: Zur Flora der Farne aus den mesozoischen Ablagerungen von Ost-Kasakhstan. In: Materia/e uber die Geschichte der Fauna und Flora von Kasakhstan, B. 3. Alma-Ata, lsd-vo AN Kasakh-SSR. OsZAsT, J., 1957: Tricolpites (Eucommiidites) Troedssonii Erdtman in refractory Jurassic clays from Grojec near Cracow. Bull. Acad. Polon. Sci. Cl. Il, 5, pp. 103-105, 1 pi. 116 HANS TRALAU

PALMQVIST, S., 1935: Geochemical studies on the iron-hearing Liassic series m southern Sweden. Lund. PANTIC, N., 1955: Contributian a la connaissance de la pa!eoflore de Serbie. Zbor. Rad. Geol. Inst. "]ovan Zhufovic" 8, p p. 203-219, 5 pis. - 1955: Comp!ement a la connaissance des paleoflores de Serbie. Ann. Geol. Penins. Balkan 23, pp. 75-89, l pi. PETTITT, J. M., and W. G. CHALONER, 1964: The ultrastructure of the Mesozoic pollen Classopollis. Pollen et Spores 6 (2), pp. 611-620, l fig. , l pi. PFL UG, H., 1952: Palynologie und Stratigraphie der eozänen Braunkohlen von Helmstedt. Paläont. Z. 26, pp. 112-137, 8 figs., 3 pis. - 1953: Morphogenetische Reihen mesophsytischer und kenophytischer Pollenformen. Pa­ läont. Z. 27 (112): 10. PIERCE, R. L., 1961: Lower Upper Cretaceous plant microfossils from Minnesota. Univ. Minnesota Geol. Surv. Bull. 42: I-XI, pp. 1-86, l fig., 3 pis., 3 tabl. PHILLIPS, T. L., and H. N. ANDREWS, 1965: A fructification of Anachoropteris from the middle Pennsylvanian of Illinois. Ann. Miss. Bot. Garden 52, pp. 251-261. PLAYFORD, G., and K. D. CORNELIUS, 1967: Playnological and lithostratigraphic features of the Razorback Beds, Mount Morgan district, Queensland. Univ. Queensland Pap ers, Dept. Geol. 6:3, pp. 81-94, l fig., 3pls. PLAYFORD, G., and MARY E. DETTMANN, 1965: Rhaeto-liassic plant microfossils from the Leigh Creek coal measures, Smith Australia. Senck. leth. 46:2/3, pp. 127-181, 6 pis. PococK, S. ]., 1962: Microfloral analysis and age determination of strata at the Jurassic­ Cretaceous boundary in the Western Canada plains. Palaeontographica B 111 (1-3), pp. 1-95, 21 figs., 15 pis., 3 tabl. PococK, S. J., and J. Jansonius, 1961: The pollen genus Classopollis Pflug 1953. Micro­ paleontology 7 (4), pp. 439-449, 6 figs., 1 pi. PoMERANZEVA, A. A., 1961: Dber die Jura-Flora des Maikiuben-Gebiets. In : Kohlenhaltige Formationen einiger URSS-Regionen. L. Gosroptechisdat. PoTONIE, R., 1931: Zur Mikroskopie der Braunkohlen. Tertiäre Sporen- und Bllitenstaub­ formen. Z. Braunkohle 27, pp. 554-556. - 1956: Synopsis der Gattungen der Sporae dispersae. l. Teil. Sporites. Beih. Geol. ]ahrb. 23, 103 p. - 1958: Synopsis .der Gattungen der Sporae dispersae. II. Teil: Sporites (Nachträge), Saccites, Aletes, Praccoplates, Polyplicates, Monocolpates. Beih. Geol. ]ahrb. 31, 114 p. - 1960: Synopsis der Gattungen der Sporae dispersae. III. Teil: Nachträge Sporites, Fort­ setzung Pollenites. Mit Generalregister zu Teil I-III. Beih. Geol. ]ahrb. 39, 189 p. - 1962: Synopsis der Sporae in situ. Beih. Geol. ]ahrb. 52, 204 p. PoTONIE, R., and J. GELLETICH, 1933: Dber Pteridophyten-Sporen einer eözanen Braun­ kohle aus Dorog in Ungarn. Sitzb. Ges. naturf. Fr. Berlin 33, pp. 517-526. PoTONIE, R., and W. KLAus, 1954: Einige Sporengattungen des alpinen Salzgebirges. Geol. ]ahrb., 68, pp. 517-544, l tabl., 10 figs. PoTONIE, R., and G. KREMP, 1954: Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geol. ]ahrb. 68, pp. 111-194. - 1955: Die Sporae dispersae des Ruhrkarbon, ihre Morphographie und Stratigraphie mit Ansblicken auf Arten anderer Gebiete und Zeitabschnitte. Teil l. Palaeontographica B 98, pp. 1-136. - 1956: Indem Teil Il. Palaeontographica B 99, pp. 85-191. PoTONIE, R., and A. VENITZ, 1934: Zur Mikrobotanik des miozänen Hurnodils der nie­ derrheinischen Bucht. Arb. Inst. Paläob. petrogt. Brennsteine 5, pp. 1-54. PRINADA, V. D., 1933: Die Jura-Pflanzen des kohlenhaltigen Tkwarczel-Gebiets in Trans­ kaukasien. Trudy V ses. geol. rasved. objed., Vyp 261. BOTANICAL INVESTIGATIONS IN ERIKSDAL 117

- 1938: Material zur Kenntnis der mesozoischen Flora des Flussgebiets Kolyma. Materialy po isocz. Kolymsko-Indigir. kraja, serija 2, vyp 13. 1938: Material zur Jura-Flora des Distrikts Embensk. In: Probleme d. Palaentologie, T. 4. - 1941: Ober die Entwicklung der mesozoischen Flora Kasakhstans. In: Die Geologie der URSS, T. 20. Ost-Kasakhstan, T . 1, Geologische Beschreibung. - 1962: Flore mesozolque de Siberie orientale et de Transbaikalie. M. Gosgeol., 368 pp., 78 figs., 25 pis. PRINADA, V. D., and A. l. TuRUTANOVA-KETOVA, 1962: Equisetums and fems from the Triassic of Bashkiria. Paleont. Zh. 3, pp. 111-122, 6 figs., 1 pi. RAATZ, G. V., 1937: Mikrobotanisch-srratigraphische Untersuchung der Braunkohle des Muskauer Bogens. Abb. preuss. geol. L.-A.N.F. 183, pp. 1-48. RAC IBORSKr, M., 1891: Beiträge zur Kenntnis der rhaetischen Flora Polens. Bull. Internat. Acad. Sci. Cracow 10. 1894: Flora kopalna ogniotrwalych glinek Krakowskich. Czesc. l. Rodniowce (Archae­ goniarae). Pam. mat.-przyr. Akad. Um. Krak6w, 18. RADFORTH, N. W., 1938: An analysis and comparison of the structural features of Dac­ tylotheca plumosa Anis sp. and Senftenbergia ophiodermatica Göppert sp. Trans. Roy. Sac. Edinburgh 59:14, 2 pi. REINHARDT, P., 1961: Sporae dispersae aus dem Rhät Thi.iringens. Monatsber. Deutschen Akad. Wiss. Berlin 3 (11/12), pp. 704-711. RErssrNGER, A., 1939: Die "Pollenanalyse' ausgedehnt auf alle Sedimente der geologischen Vergangenheit. Palaeontographica B 84, pp. 1- 20, 2 figs. - 1950: Die "Pollenanalyse" ausgedehnt auf alle Sedimentgesteine der geologischen Ver­ gangenheit, 2. Palaeontographica B 90, pp. 99- 126. REMY, R., and W. REMY, 1955: Mitteilungen i.iber Sporen die aus inkahiten Fruktifika­ tionen von echten Farnen des Karbon gewonnen wurden. Abh. Dtsch. Akad. Wiss., Berlin 1, pp. 41-47, 5 pis. - 1957: Durch Mazeration ferriler Farne des Paläozoikums gewonnene Sporen. Paläont. Z. 31 (112), pp. 55-65, 3 pis. RITENBERG, M . 1., and l. Z. FADDEEVA, 1961: Untermesozoische Kohlenanhäufungen im Territorium des Maikiuben-Gebiets. Trudy Labor. geol. uglia AN SSSR, vyp 12, cz. 1. RoG ALSKA, M., 1954: Spore and pollen analysis of the brown coal in the region of the so-called Blanowice Coal in Upper Silesia. Biul. lnst. Geol., Warszawa, (Bull. Serv. Geol. Pologne) 89, pp. 1-46, 12 pis. - 1956: Analiza sporowo-pylkowa liasowych osad6w abszaru Mroczk6w-Rozwady w powiece Opoczynskim. Inst. geol. Biuletin 104, pp. 1-89, 32 pis. RoMANOVA, E. V., 1961: Material zur Kenntnis der Jura-Flora im Kohlenfundort Boroldin. In: Material zur Geschichte der kasakhstanischen Fauna und Flora, B. 3. Alma-Ata, Isd-vo Kasakh.-SSR. Ross, N . E., 1949: On a Cretaceous pollen and spore hearing day deposit of Scania. Bull. Geol. Instn. Univ. Uppsala 34, pp. 27-43. RousE, G. E., 1959: Plant microfossils from Kootenay coal-measures strata of British Co­ lumbia. Micropaleontology 5 (3), pp. 303-324, 2 pis. SAHNI , B., 1936: Occurrence of Matonidium and Weichselia in India. Rec. Geol. Survey India 71 :2. SAMOJLOVICH, s. R., 1953: De age de la seri de Solikam d'apres les resultats de l'analyse sporo-pollinique. V.N.I.G.R.I. Recueil Geol. 2 (5), pp. 134-145, 1 pi. 1953: Les spores et pollens des dep6ts permiens des regions ouraliennes de Cherdynsk et d'Aktjubinsk. Trudy Vses . Neft. Issl. Geol. Razv. Inst. n. s. 75, pp. 5-57, 17 tabl. - et al., 1961: Pollen and spores of Western Siberia: Jurassic to Paleocene. Trud. V.N.I.G.R.I. 177, pp. 1-657, 149 pis. 118 HANS TRALAU

SATO, S., 1961: Pollen analysis of carbonacous matter from the Hakobuchi Group in the Enbetsu district, northern Hokkaido, Japan. Palynological study on Cretaceous sedi­ ments (1). J. Fac. Sci. Hokkaido Univ. (Geol.) 11, pp. 77-94. ScHENK, A., 1867: Die fossile Flora der Grenzschichten des Keupers und Lias in Franken. Wiesbaden. ScHIMPER, W. PH., 1869-1874: Traite de Paleonotologie Vegetale (ou la Flore du Monde Primitif dans ses Rapports avec les Formations Geolog. et la Flore du Monde Actuel.). Paris. ScHOPF, J. M., 1938: Spores from the Herrin (No. 6) Coal Bed in Illinois. Rep. lnvest. Il/. Geol. Surv. 50, 73 p. ScHOPF, J. M ., L. R. WILSON, and R. BENTALL, 1944: An annotated synopsis of Paleozoic fossil spores and the definition of generic groups. Rep. Invest. Il/. Geol. Surv. 91, 112 p. ScHULZ, E., 1967: Sporenpalaeontologische Untersuchungen rätoliassischer schichten im Zentralteil des Gerrnanischen Beckens. Palaeontol. Abhl., Palaeobot., Il:3, pp. 542-633, 26 pis., l tabl. ScoTT, R. A., E. S. BARGHOORN, and E. B. LEOPOLD, 1960: How old are the Angiosperms? Amer. J. Sci. Bradley 258A, pp. 284-299. SEWARD, A. C., 1900: Notes on some Jurassic plants in the Manchester Museum. Mem. Manchester Lit. Phil. Soc. 44. - 1914: Antareric fossil plants. British Anatarct. (Terra Nova) Expedition 1910. Nat. Hist. Rep., Geol., 1, pp. 1-49. SEWARD, A. C., and N. BANCROFT, 1913: Jurassic Plants from Cromarty and Sutherland, Scotland. Trans. Roy. Soc. Edinb. 48 (4), 2 pl. SEWARD, A., and R. HoLTTUM, 1922: Jurassic plants from Ceylon. Quart. J. Soc. Geol. London 78. SHTEMPEL, B. M., 1959: Application de la methode paleobotanique pour la subdivision du Mesozolque continental du sud de la Province Maritime. Vopros. Biostr. Kantin. Tolsh. Gosgeoltekh, pp. 194-199. - 1959: The development stages of the Cretaceous flora of South Primorye. Dok/. Akad. Nauk. S.S.S.R. 127 (3), pp. 665-668. - 1960:Phytostratigraphie du systeme cretace de la province maritime meridionale. Trud. Lab. Geol. Ugl. S.S.S.R. 10, pp. 167-193, fig., tabl. SHTEMPEL, B. M., and Z. l. VERBITSKAIA, 1958: Repartition verticale des restes de flore dans les couches producrives du bassin houiller de Suchansk. Trud. Labor. Geol. Ugl. 8. SIBIRJAKOVA, L. V., 1962: Die Jura-Ablagerungen von West-Turkmenien. In: Referate der sow;etischen Geologen zum I Internationalen Kolloquim des jura-Systems. Isd-vo AN Grus.-SSR. SIKSTEL, T. A., 1952: Flore jurassique des gisements houillers de Fan-Iagnob. Trav. Inst. Geol. R.S.S., Tadiikie 2. - 1953: Materiaux pour la connaisance de la flore jurassique du gisement houiller d'Ang­ ren. Trav. Inst. Geol. Acad. Sci. R.S.S. Ouzbekie 7 (21). 1953: Material zur Stratigraphie der Juraschich t im Steinkohlenfundort Kok-Jangak. Tr. in-ta geologii AN Usb. SSR, 7, Taschkent, pp. 69-115. Material zur Stratigrafie der kohlenhaltigen Jura-Ablagerungen von Jagman in der Turkruenischen SSR. Trudy in-ta geol. AN Usb.-SSR 7, sb. 2. Zur Charakteristik der kontinentalen Obertrias-Ablagerungen von Mittel-Asien. Trudy Usb. geol. upr., sb. 1. Stratigrafie der Kontinental-Ablagerungen Mittel-Asiens. Trudy Taschkent un-ta, 176:13. BOTANICAL INVESTIGAT!ONS IN ERIKSDAL 119

SIMONCSics, P., and M. KEDVES, 1961: Paleobotanical examinations of manganese series in Urkut (Hungary, Transdanubia). Acta Miner. Petr. Szeged. 14, pp. 27-57. SKARBY, A., 1964: Revision of Gleicheniidites senonicus Ross. Stockh. Contr. Geol. 26, pp. 59-77, 11 figs., 3 pis. SKOilLO, V. M ., 1961: Ober Alter und Zergliederung der Gussinooser-Serie. In: Beratschla­ gung iiber Bearbeitung von stratigrafischer Schema des Sabaikals. Leningrad. SLADKov, A. N., 1951: Die Bestimmung der Arten von Lycopodium L. und Selaginella Spring nach Sporen und Mikrosporen. Tr. in-ta geografii AN SSSR, t. 50 (Mater. po geomorfologii i palaeogeografii, 5, pp. 167-199). 1962: Die Morphologie von Sporen und Pollen gegenwärtiger Fflanzen der URSS in Verbindung mit den Methoden ihrer Anwendung in der Praxis. Isd. MGU - Moscow. SRIVASTAVA, S. K., 1966: African playnology in international aspects. Proc. Second West African micropal. Colloquium, Ibadan ]une 18th-ju/y 1st, pp. 219-223. STANISLAVSK IJ, F. A., 1957: Flore fossile du Bathonien-Callovien du Bassin du Donetz et de la depression du Dniepr-Donetz. Kiev. Akad. Nauk S.S.S.R., pp. 1-130, 30 figs., 18 pls. STAPLIN, F. L., S. ]. PococK. and ]. JANSONIUS, 1967: Relationships among gymnospermous pollen. Rev. Palaeobotan. Palynol., 3, pp. 297-310, l pl., 2 figs. STOCKMANS, F., and F. F. MATHIEU, 1941: Contributian a l'etude de la flore jurassique de la Chine septentrionale. Mus. Roy. d'Hist. Nat. Belg., pp. 33-67, 7 pis. STOVER, L. E., 1962: Taurocusporites, a new trilete spore genus from the Lower Cretaceous of Maryland. Micropaleontology 8 (1), pp. 55-59, 1 pl. SzE, H., 1949: Die mesozoische Flora aus der Hsiangchi Kohle Serie in Westhupeh. Pa­ laeontol. Sinica, ser. A, 2. 1952: Jurassic plants from Szechuan. Palaeontol. Sinica, ser. A, 3. 1959: Jurassic plants from Tsaidam, Chinghai Province. Acta Palaeont. Sinica 7 (1), pp. 17-31, 8 pis. TAKHTADJAN, A. L., V. A. VAKHRAMEEV, and G. P. RADCHENKO, 1963: Principles of Palaeon­ tology. Gos. isd., Moscow. TEIXEIRA, C., 1948: Flora Mesoz6ica Portuguesa. l. Serv. Geol. de Portugal, pp. 1-118, 45 pis. TESLENKO, J. V., 1959: Einige Gesetzmässigkeiten in der Verbreitung der Cycadophyten in der Jura Sibiriens. Dok/. AN SSSR 127, Nr. 1. 1961: Einige palaeontologische Angaben flir die Stratigrafikation der Jura-Ablagerungen in der Westsibirischen Niederung. In: Beschliisse und Arbeiten der interdepartementa­ len Beratung iiber Festsetzung und Präzisierung des Stratigrafischen Schemas der West­ sibirischen Niederung, L. Gostoptechisdat. 1961: Ober die Flora des Mitteljura in der westsibirischen Niederung und deren Be­ deutung fi.ir das Studium der Jura-Flora Sibiriens. Trudy Sib. nauczno-issled. in-ta geol., geophys. i miner. syrja, vyp. 15. 1962: Die Jura-Pflai1Zen West-Sibiriens. Trudy Sib. naucznoissled. in-ta geol., geophys. i miner. syrja, vyp. 22. TmERGART, F., 1949: Der stratigraphische Wert mesozoischer Pollen und Sporen. Palaeon­ tographica B 89, pp. 1-34. THoMAs, H. H., 1911: The Jurassic flora of Kamenka in the district of lsium. M em Com. geol. St. Petersbourg. N. S. 71. 1912: Recent researehes on the Jurassic plants of Yorkshire. Rep. Brit. Ass. London. 1913: The Fossil flora of the Cleveland District of Yorkshire l. - The flora of the Marske Quarry . . . Quart. ]ourn. Geol. Soc. 69, pp. 223-251, 4 pls. 1925: The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Trans. Phil Roy. Soc. Ser. B. 213, 5 pls. 120 HANS TRALAU

1933: On some Pteridospermous plants from the mesozoic rocks of South Africa. Phil. Trans. Roy. Sac. Ser. B. 222. THOMSON, P. W., and H. PFLuG, 1953: Pollen und Sporen des mitteleuropäischen Tertiärs. Gesamtiibersicht iiber die stratigraphisch und paläontologisch wichtigen Formen. Pa­ laeontographica 94 B (1-4), pp. 1-138, 4 tabl., 20 figs., 15 pis. TowNROW, J A., 1962: On some disaccate pollen grains of Permian to middle Jurassic age. Grana Palyn. 3 (2), pp. 13-44, 8 figs., 2 pis., 3 tabl. 1967: On a conifer from the Jurassic of East Antarctica. Pap. and Proc. Roy Sac., Tasmania, 101, pp. 137-146. TRALAU, H., 1965: Phlebopteris angustiloba (Presl. ) Hirmer et Hörhammer () from "Olstorp" shaft, Bjuv, Scania. Bot. Not. 118:4, pp. 373-376, l fig. 1966: Botanical investigations in the fossil flora of Eriksdal in Fyledalen, Scania. Sve­ riges geologiska undersökning, ser. C: 611 (Arsbok 60:6), pp. 1-36, 11 figs. 1967: Some Middle Jurassic microspores of southern Sweden. Geol. Fören. Förhand/g. 89:4, pp. 111, 2 figs. UoAR, R., 1957: Culture studies in the genus Riccia (Mich.) L. J. Indian bot. Sac. 36, pp. 580-586. VAKHRAMEEv, V. A., 1958: Stratigraphie et flore fossile du Jurassique et du Cretace de la depression du Vilioui et de la parti contigue de la flexion marginale de la region de Verkhoiansk. Stratigr. Region. U.R.S.S. Akad. Nauk Geol. Inst. 3, pp. 1-136, 16 figs., 31 pis. 1962: Jurassic floras of the Indo-European and Siberian botanical-geographical regions. Comm. Strat. Congr. Geol. Intern. Coli. ]urass. Luxembourg 1962, pp. 1-27. 1964: Jurassic and early Cretaceous floras of Eurasia and the palaeofloristitc provinces of this period. Acad. Sci. USSR, Geol. Inst. 102, pp. 1-263, 49 figs. VAKHRAMEEv, V. A., and M. P. DoLUDENKO, 1961: Flore du Jurassique superieur Cretace inferieur du bassin de Bureinsk et sa signification pour la stratigraphie. Geol. Inst. Akad. Nauk S.S.S.R. 54, pp. 1-136, 29 figs., 60 pis., 4 tabl. VAKHRAMEEV, V. A., and V. A. KRASILOV, 1961: Domerian flora of the Northern Caucasus. Paleont. Zh. 3, pp. 103-108, l fig. VAKHRAMEEV, V. A., and R. A. VASINA, 1959: Lower Jurassic and Aalenian floras of North Caucasus. Paleont. Zh. 3, pp. 125-133, l fig., 2pls., l tabl. VAN DER HAMMEN, T., 1955: Principios para la Nomenciatura Palinol6gica sistematica. Inst. Geol. Nac. Columbia, Bot. Geol. 2:2, pp. 1-21. VASILEVSKAIA, N. D., 1956: Nouveaux vegetaux du Jurassique inferieur dans le Pergana oriental. Ezheg. Vses. Pal. Obshch. 15, pp. 23-31, 3 figs., 2 pis. 1958: Preles et fougeres dans les sediments carbonifl:res de la province de Sangary (bassin houiller de la Lena). Sborn. Stat. Paleont. Biostr. Izd. Inst. Geool. Arktiki 12. 1959: Fourgeres dans les sediments charbonneux de la region de Sangary (Bassin houiller de la Lena). Sborn. Stat. Paleont. Biostr. Izd. Nautch. Issl., Inst. Geol. Arktiki 13. 1959: Caytoniales et Cycadophytes dans les sediments charbonneux de la region de Sangary (Bassin houiller de la Lena). Sborn. Stat. Paleont. Biostr. Izd. Nautch. Issl. Inst. Geol. Arktiki 14. 1959: Plantes gymnospermes dans les sediments charbonneux de la region de Sangary (Bassin honiller de la Lena). Sborn. Stat. Paleont. Biostr. Izd. Nautch. Issl. Inst. Geol. Arktiki 15. 1959: Stratigraphie et flore des sediments charbonneux mesozolqne de la region de Sangary (Bassin honiller de la Lena). Trud. Nautchn. Issl. Inst. Geol. Arktiki 105 (11). VAsiLEVSKAIA, N. D., and V. V. PAvLov, 1963: Problemes petroliferes de l' Arctique. II. Stratigraphie et flore des sediments cretaces de la region Lena-Olenek dans le bassin BOTANICAL INVESTIGATIONS IN ERIKSDAL 121

houiller de la Lena. Trud. Nuchn. Iss. Inst. Geol. Arktiki 128, pp. 1-96, 1 fig., 49 pis., 8 tabl. VERBITSKAYA, E. I. , 1958: Spore-pollen complexes of Cretaceous deposits in the Suchansky Coal Basin. Tr. Lab. Geol. Ugl., Akad. Nauk S.S.S.R 8, pp. 314-322. 1962: PalynologicaJ evidence and stratigraphical subdivision of Cretaceous deposits of the Suchansky Coal Basin. Tr. Lab. Geol. Ugl., Akad. Nauk S.S.S.R. 15, 165 p. VmAL, G., 1968: Some Mesozoic spores and pollen grains from Höllviken, Scania. Pa­ laeontological Institute, Lund, manuscript. VLADIMIROVICH, V. P., 1959: On the stud y of the post-Triassic and ear! y Jurassic flora of the East Urals. Bot. Zh. 44 (4), pp. 457-466, 4 figs., 3 pis. WEYLAND, H., and W. KRIEGER, 1953: Die Sporen und Pollen der Aachener Kreide und ihre Bedeutung fiir die Charakterisierung des mittieren Senons. Palaeontographica 96 B (1 - 3), pp. 6-29, pis. 1-5. WILSON, S., and P. J. YATES, 1953: On two dicksoniaceous ferns from the Yorkshire Juras­ sic. Ann. Mag. Nat. Hist., ser. 12, 6 (72), pp. 929-937, 3 figs. ZAUER, V. V., and N. D. MTCHEDLICHVILI, 1954: Le pollen de Brachyphyllum Brongn. Donees sur la Palynologie et la Stratigraphie. Trav. Inst. Fed. Rech. Geol., Moscow, pp. 7-9, 1 fig. ZEILLER, R., 1903: Flore fossile de gites de charbon du Tonkin, pp. 1-320, 56 pis., Paris.

JII1TEPATYPA The following list of Russian references has been prepared by Mrs. Skanse, Botanical Section, Swedish Museum of Natural History.

AKcap11H A . B. lO p eKall !pJi opa. Y CTh6aJieM:cKI1H KOMnJie Kc. B KH.: << ATJiac p y i{ OBOil: ­ III.l\11X !popM 11CH onaeMhiX !p ayHhl 11 !pJIOphl 3 arra)l; HOti Cl1611p11, T2 )). MOCKBa, rocr eOJI ­ T8XI13)l;aT , 1955. CxeMa CTpaT11rpa!pi1Y eC Horo pacYJieHeHI11I IOp CH I1X y r Jie HO CHhiX OTJIOlK8H11ll: K allc­ Horo 6accettua. B 1n r.: << TpyiJ:hi Memsen oM CTB eHHoro coBel.l\aHI11I no p asp a- 6oTHe yrm!Jll1l.\11posaunhiX cTpaTMrpa!pi1Y8CHHX cxeM C11611p11 >> . Jlemmrpan, roc­ TOnTeXI1 3il:aT, 1957. BJiaHK M. M. 10pCK H8 OT JI OlK 8H11H BOCTOYHOH YaCTI1 ,IJ>w rrpOBCH0-.1J:OH8l.\HOH Bna)l;HHbl 11 cesepHo-san anHoll: y Kpa11Hhl .IJ:oHel.\KOro KpmHa. B IHI.: << TpyiJ: hi B cecoiO SHOro COB8I.l\aHI11I no YTOYH 8HI1!0 YH11!JlHl.\11pOBaHHOH CX8Mhl CTpaTMrpa!pl111 M83 030H CH11X OTJIOlK 8H11ti P y cCHOH rr Ji aT!popMhl. T 2. IOpcHall CI1 CTeMa )) . JleHI1Hrpan, rocTon­ T8XH 3)l;aT, 1961. EoJixOBI1THHa H . A . Cnoposo-nhiJihl.\eBaJI xapaHTep11CTI1Ha MeJlOBbiX OTJ1 omen11ll: l.\ 8HTpaJibHhix o6JiacTetl CCCP. - Tpyil:hi MrH AH CCCP, Bhm. 145, I'eOJI. ce n. No 61, CTp. 1- 183, 1953. ATJiac cnop 11 n hi Jihl.\hi 11 3 ropcHI1X 11 nl1mHeMeJI OBhiX OT Ji omenHll: BHJI IOll:cHotl srran11nhi. - Tpynhr r eoJI. 11H-Ta AH CCCP, 1956, Bhlrr. 2. Cnoposo-nhiJi hl.\8Bhi8 HOM nJieKChi Meaoaotl. cimx OT JIOm eH11ll: BI1JIIOHCKOM: sna)l;HHhi 1111X 3HaY eHI18 )l;JIII CTpaT11rpa!pl111. - Tpy)l;hl r eoJI. 11H-Ta AH CCCP, 1959, Bh!ll. 24. EoJIXOBI1TMHa H. A ., KOToBa M. 3. Cnoposo-nhiJibl.\ 8Bhie KOMnJieKChi yrJieHOCHOll: TOJII.l\11 CyM:!pyncHoro 6accettua na .IJ:aJi hH8M BocTOH e. - Mas. AH CCCP, cep111I reoJI., 1963, No l. BoiiKOBa B . .IJ:. , B Ji a)l; I1M11pO BHY B. Il. CTpaT11rpa!pi11I ceBepnoll: 'laCTI1 '1 8JIII611HCHOro 6ypoyroJibHoro 6acceM:Ha. - MH!popM. c6. n ay'IH0-11CCJien. reoJI. 11H-Ta, 1961, N° 42. Ep11H M. M. M ea osotlcKall !pJiopa IOmHoll: epraHbi. I. IlanopoTHI1HI1. T awKenT, M an-Bo KoM. u ayH y s6. CCP, 1935. M es osoM. cHaJI !pJiopa IOmn oll: epraHhi. - IlanopOTI·I11HI1 j oKOHYaHI1 ej . TpyiJ:hi Cpen.-As. reoJI. TpecTa, 1937, 3. M es osoll:Cllall !pJiopa K aM h!U.I-E awu. TawHeHT, ys6. rocHS)l; aT, 1941. MCKOnaeMall lfJ Ji opa 11 CTpaT11rpa!pHII H11mH 8M83 030HC K11X OTJIOlK8HHH Cp e)l; Hero T8Y8HI11I p. M JieK B 3an a)l;HOM KasaxcTane. MoCI·ma, rocreOJII13)l;aT, 1952. 122 HANS TRALAU

- Me303otlcHarr epraHcHoro HaM eHHoy ronbHOro 6accet1Ha. :M:ocH­ Ba, rocreOJIH3AaT, 1953. BypaHOBa A. T. HoBble DHAbi Equisetales 11 3 cpeAHetl IOpbr 3 anaAIIOtl TypHMeHI111. - naneoHTOJI. m. , 1960, N° 2. T. 2 IOpcHarr H4 eC IWe pacnpeAenenl1e. - ,l],o1m. AH CCCP, 1960, 135, No 3. l. CpeAHeiOpCHI1e rrarropoTIII1H I1 HB 3arraAHOtl TypKMeHHH. - n aneOHTO JI . m., 1961, N° 4. 2. CpeAHeiOpCKHtl DI1A Selaginellites 113 3arraAHOtl Typ11M eHHI'! . - n aneOHTOJI. m., 1961, No 2. l. K Borrpocy o paaBI'!THI'! IOpCHOtl bipa. - B eCTHHK JleHHHrp. y n -Ta, 1962, N° 12, cep11rr reon. H r eorp., Bbm. 2. :M:eaoaotlcHarr epraHbl. - Ell;erOAH11H B eec. rraneOHTO JI . o6-Ba, 1956, T. 15. XBOI.I.II1 11 rrarropOTH11H11 11 3 y r ne!JOCHbiX oTn omen11t! CaHrapcKoro patlona j JleHCKHtl yrneHOCHbitl 6accet1H/ . B mr.: << C6opHHH CTaTetl no naneoHTO JI OI'I'!I1 ~~ 6110 CTpaTI1r­ p a>. JlemmrpaA, MaA -BO Hay4nO-HCCJieA . 11H-Ta r eon . ApHT~IHH, 1958. l. nanopOTHHHH na yrnenoCHbiX oTn omen11t! CaHrapc"oro p atloHa j Jien CH11tl yrnenocnbitl 6accetlnj . B Hl!.: << C6opmm cTaTetl no naneOHTO JIOrl111 n 6nocTpaTHr­ paHH. Bhlrr. 13 >>. JiemrHrpaA, M3A-BO Hay4HO-HCCJieA . HI·I-Ta r eon . ApHTHHH, 1959. 2. K etiTOHHeBbie H l\H"aAo(PHTbi 113 yrnenoCHb!X OTJIOll> eHntl CaHrapcrwro patlon a j JleHCHHtl yrneHOCHbrtl 6accet1H j . B HH.: <• C6opH11H cTaTetl no naneoHTonorHI1 H 6HO CTpaTHrpaHH, Bbm. 14 •> . JienHHrpaA, MaA-BO Hay 4H0-11CCJie A. HH -Ta r eon. ApHTHHH, 1959. 3. ronoceMFIHHbl e pacTeHJilfl 113 yrneHOCHbiX OT JI OmeHHt'r CaHrapcH oro patloHa j Jien ­ CHHt'r yrneHOCHbi tl 6accetlnj . B JUL: << C6opH11H CTaTetl no naneOHTO JI OI'I1!1 H 6110CTpa­ THrpaI1H . Bbm. 15 >>. JleHI1Hrp aA, MaA-BO Hay4H0-11ccneA. Hn-Ta reon . ApHTHHH, 1959. 4. CTpantrpaJim 11

HFI H

T er aa oHocnocTI1 ApHTJI!HJI!, Bb!D . 2. Baxpa~I ee B B. A. CTpaTnrpa> . :M:o cHn a-JleHHHrpaA, MaA -BO AH CCCP, 1958. IOpcHI1e ) . T6HJIHCI1, MaA -BO AH rpy3. CCP, 1962. IOpcHHe 11 paHHeMenonbre

oro HaM ennoyron bnoro 6accetlna. TpyAbT Jla6op. reon. yrnrr AH CCCP, Bbm. 8, 1958. - n aJIHHOJIOl'H4eCHOe OÖO CHOD al!l1e CTpaT11rpal14 eCH Of0 paC4JieHeHJI!H MeJlOBbiX OTn omen11tl Cy4ancHoro HaM enHoyroJibHoro 6accet1Ha. Tpy Abi Jla6op. reon, yrnFI AH CCCP, Bblll. 15, 1962. BJi a AI1~111pOBI14 B . n. K H3J4eHJII!O II03AH eTpHaconotl - paHH eiopCHOH

. McHorraeMOe !OpCHO e 03epo B xpe6Te Kapa-Tay. - Tpy Abl naneOHTOJI. Hn-Ta AH CCCP, 1948, 15, Bbm. I. BOTANICAL INVESTIGATIONS IN ERIKSDAL 123

roJIOBa T. Jiope THnap'!eJIH. - ,Il;oHJI. AH CCCP, 1960, 133, No 5. MaTepHaJibi H IOpCHOll: Jiope Aaep6atl)J,maHa. - BoTaH. m., 1962, 47, N° 5. 3ayep B. B. H M'le)J,JIHlliDHJIM H. ,Il;. O IIbiJihliB Brachyphyllum Br. 1954 « MaT-Jibl no IIaJIHHOJIOr. H CTpaTHrpa11M >). rocreOJITBXHa,IJ;aT, MOCKBa, 1954. CnopOBO-IIbiJibli8BbiC HOMnJieHCbi MeaoaofiCHMX H Hatiuoaoti:CHMX OTJIOmeHHH r. TJOM8Hl1. - MaT-Jibl TIO rraJIMHOJIOr. H CTpaTHrpaMM. MocRBa, rocreOJIT8XMa)J,aT, 1954. Karr11111a A. A. 111 Koll!Maa M. M. Honbre )J,anubre no MTOCTpaTHrpaMM MeJlOBbiX OTJiomei-mtt xpe6Ta MaJibltl X11araH. B Hn.: << reoJiorMH, reo~wpoJiorHH, rr oJieanhre HCKOIIaBMbre IlpHaMyp~>H. Bbin. l (72) >>. Xa6aposcH. 1961. Kapa-Mypaa 3. H . IlamuiOJiorwiecRoe o6ocuonan11e cTpaTHrpaH'IBCHoro paC'IJICHe ­ HHll MeaoaotlCKHX OTJIOmeaHtl XaaTaHrcHotl nrra,IJ;HHhi. - TpyAhi uay'lnO-MCCJie)J,. MH -Ta reoJI. ApHTHHH, 1960, 109. KMpH'IHOBa A. 11 . JIOpHCTH'IeCKMe HOMnJieHCbi y r Jieuoci-roro Meaoaofl qeJIH6HHCHOro 6accell:na. - TpyAbi Bcec. neT. nay'lnO-HCCJie)J,. reoJI. paaBe,IJ;. HH-Ta, 1962, Bbiii. 196. KoBaJih'IYH r. M. l. IlaJieo6oTaHH'I8CHafl xapaHT8pHCTHHa HHmneMeaoaotlCHHX OT­ JIOmeHHH HaparaH)J,MHCIWro 6accetlua. - TpyAhi Jla6op. reoJI. yrJill AH CCCP, 1961. - 2. IlaJieo6oTaHH'ICCHaH xapaHTepHCTHHa nHmHeMeaoao tl: cKMX OTJiomenMH KeH­ AepJibiHCIWM MYJihAbT. - TpyA~>I ,Il;a6op. reoJI. yrJifl AH CCCP, 1961, Bhiii. 13. KyaH'IHHHa lO. M., PenMaH E. A., CHHCTeJih T . A. OnhiT CTpaTHrpaH'IecHoro paC'IJI8H­ neHHll HMmHeMeaoao tlcHHX HOHTHnenTaJihHhiX OTJIOmeHHM Cpe,li;Hett Aa111111. B HH.: << Bonpocbl 6HOCTpaTHrpaMH HOHTHHeHTaJihH&Ix TOJI!l.l >>. TpyA&I 3-tl cecc1111 Bcec. rraJieOHTOJI. o6-na. MocHna, rocreoJITexMa,IJ;aT, 1959. Jle6e,11;en E . JI . BepxHeiOpcHafl Jiopa p. Se11 11 ee aaa'lei·me AJifl paarpaHH'I8HI1H BepXH810pCHI1X M HMmHCM8JIOBbiX HOJ-J TMHCHTaJihHb!X OTJI0H{8J-111H B 6accetlHe p. AMyp. - ,Il;oHJI. AH CCCP, 1963, 150, N° l. Jie6e,11;eB 11 . B . IOpa t~eHTpaJihnoro patl:ona Kya6acca. - TpyAhi T oMcH. yu-Ta, 1950, 65, Bbiii. 2. l. IOpcHafl Jiopa (KapaJI,IJ;H I!CHI1H HOMII JIC I{C). B HH .: << ATJiac pyHoBOAllll.IMX opM 11CHOrraeM&IX aynbl M JIOpbl 3arra,IJ;HOH CI16HpH, T. 2 >). MocHna, rocreOJITCXH a,IJ;aT, 1955. 2. IOpcHall CMCTeMa (cTpaT11rpa11'1eCH11tl o'lepH). B RH.: << ATJiac pyHOBOAflll.IHX opM 11CHOrraeMbiX JIOpbi 11 ayHbl 3arra,IJ;HOH Cl1611pH, T. 2 >) MoCHBa, rocreoJI­ T8XI13,1J;aT, 1955. 3. IOpcHafl Jiopa (TepCIOHCMM HOMIIJieHc). B HI-I. : << ATJiac pyHOBOAflll.IHX opM HCROII38Mb!X ayHbi 11 JIOpbl 3arra,IJ;HOH Cl1611pH, T. 2 )) . MoCHBa, rocreOJIT8X11a,IJ;aT, 1955. Meaoaotl: Hyanet~HOtl: HOTJIOBMHhi. B HH .: << Borrpochl reoJior1111 Kya6acca, T. l>>. MocHBa, YrJieTexHa,IJ;aT, 1956. l. HOHTMHCHTaJibHbiH Me aoa otl BOCTO'IHOH 'laCTM 3arra,li;HOll: C11611p111. ABTOpe. AOHT. AHCc., ToMcH, 1958. 2. MeJIOB&re OTJIOmermtt qyJihiMo-EnHcetlcHOH BTia,IJ;MH&I. - Man. ToMCK. rroJIHTex. HH -T a, 1958, 90. K 11CTOpHH IOpcHoro yrJieHaHorrJieHHfl B BOCTO'IHOM 'laCTI1 3ana,IJ;Hotl: CH6HpH. B Kn.: << BorrpOChi reoJIOrHH Kya6acca, T. 2 >>. MoCI{Ba, YrJieTexHa,IJ;aT, 1959. JiecHI1ROBa A.

MoHceen A. C. O Be!llyil:cHOM HaMennoyroJihHOM MeCTopom):leHHH B KphrMy. -MaTe­ pHaJihi IIO 06IlleH H IIpHHJI. reOJI., 1929, Bbiii. 100. RayMona C. H. Crrophi H IIhiJihlla yrneil: CCCP. - Tp. XVII ceccHH MemAynapOAh reon. Honrpecca n CCCP n 1937 r., CTp . 355-366. MocHna, 1939, rocreonHaAaT. Heil:6ypr M. >. A nMa-ATa, MaA -BO AH Kaaax. CCCP, 1958. K >. MocHsa, 1938. o paanHTHH Me3030HCHOH >. MoCima-Jien:HnrpaA, rocreonHaAaT, 1941. Meaosoil:cHaf! >. JienHnrpaA, MsA-BO AH CCCP, 1961. 3. IOpcHaf! > . JienHnrpaA, Ma):I-BO AH CCCP, 1961. PerHOHaJibHaf! cTpaTHrpa>. AnMa-ATa, Ms):I-BO Kasax. CCCP, 1961. CaMOHJIOBH'I C. P. IlbiJihlla H crropbi rrepMCHIIX OTJIOmenHil: qepAHHCHoro 11 AHTI06Hn­ CHoro IlpHypaJihfl. - << TpyAhi Bcec. ne>, T. 2 /Bcec. ne>. - JienHnrpaA, rocTonTeXH3AaT, 1961 /Tpy):lhi BHMr­ PM, Bbiii. 177/. CH6Hp1IHOBa JI. B. IOpcHHe OTJIOmenHil: 3ana):lnoil: TypHMeHHH. B KH.: << .lJ:oHJia):lbi co­ neTCHHX reOJIOrOB H l Mem):lynapO):IHOMY HOJIJIOHBHYMY no IOpCHOH CHCTeMe >). T6HJIHCII, Ms):l-nO AH rpys CCP, 1962. BOTANICAL INVESTIGATIONS IN ERIKSDAL 125

CuKCTeJih T. A. IOpcHaH an-HrHoo. - Tpyp;hr 11n-Ta r eoJI. AH Tap;m. CCP, 1952, II. l. MaTepuaJihi H noauanu10 IOpCKOti > . Jieni1IHpap;, 1961. CJia)l;HOB A. H. Onpep;eJie nlle BM JJ; OB Lycopodium L . N 11 s elagineila Spring . no cnopaM M MMKpocrropaM. - TpyJJ;bi 11n-Ta reorp. AH CCCP , B. 50 1951. - MopBa, 1962. CTaHMCJiaBHCHti . A. 11cHonaeMaH I. l-\ 11 eB, 11ep;-Bo AH YCCP, 1957. an A. JI ., Bax paM eeB B. A. 11 Pap;lfeHHO r. II. OcHOBhl rraJieOHTOJIOfMH. - roc. 113)1;. MoCHBa, 1963. HO H eHOTOp11e aaHonnoMepHOCTM pacnpocTp anemm l\11Hap;ore JJ; JIH CTpaTI1H s. 11 MHHep. ChlphH, 1961, Bblfl. 15. IOpc1me pacTenua 3an ap; notl C116np11. - Tpyp; br C116. u aylfn0-11CCJi ep; . 11n-Ta r eoJI. , reo11 s. 11 Ml1nep. CblpbH, 1962, Bhm. 22. B. M. l. IIp11M eHenne rraJieO). Mocrma, rocr eOJIT6XH3JJ;aT, 1959. 2. ::>Tarm paaDI1TI1H MeJIOBOti MTOcTpaTnrpaHa MeJionon CI1CTeMbi IOmHoro IIpHMOpbH. - Tpy!l:M Jlaoop. reoJI. yrJIH AH CCCP, 1960, Bhiii. 10. rr eJi b B. M., B ep011L\ Ha a 3. 11. Pacnpe)J; eJieHne ocTaTHOD I Jlaoop. r eoJI. yrJIH AH CCCP, 1958, B~>m. 8. 126 HANS TRALAU

X. INDEX OF GENUS AND SPECIES NAMES

amblum, Bennettistemon 86 Bennettistemon bursigerum 86 acutus, Sestrosporites 19, 62 bunburyanus, Otozamites 7 adriennes, Lygodiumsporites 30 Brachyphyllum mamillare 80 aequalis, Coptospora 21, 28, 29 Brachyphyllum scottii 79, 80 Agathis ovata 79 Brachysaccus microsaccus 22, 72 agathoecus, Lycopodiumsporites 46 bromerifolia, Osmunda 24 aitchisonii, Selaginella 70 cf burejensis, Coniopteris 10 Alisporites robustus 22, 70 bursigerum, Bennettistemon 86 Allicospermum baiereanum 8 Allicospermum ginkgoideum 8 Calamospora Alsophila chimborazensis 43 mesozoica 4, 19, 25, 101, 104 amplireticosus, Ischyosporites 100 Callialasporites dampieri 93 anglica, Marattia 10, 11, 12 Callialasporites trilobatus 95 angustiloba, Phlebopteris 36 Callialasporites turbatus 96 annotinoides, Lycopodiumsporites 20, 50 canadensis, Tsuga 91 annotinum, Lycopodium 49, 51 Caytonanthus arberi 73 apertus, Caytonanthus nathorsti 73 Chasmatosporites 4, 23, 77, 101, 104 Caytonanthus oncodes 73 apertus, Pollenites 77 Caytonanthus sewardii 73 apertus, Verrucipollenites 78 Caytonia nathorsti 77 Applanopsipollenites, triangularis 96 Caytonipollenites pallidus 22, 75 Applanopsis dampieri 93 cerebralis, Uvaesporites 20, 69 Applanopsis dettmannae 97, 98 Cerebropollenites mesozoicus 91, 92 Applanopsis trilobatum 95 Chasmatosporites Arancaria montana 81 apertus 4, 23, 77, 101 , 1,04 Araucariacites australis 22, 71, 72 Chasmatosporites erassus 77 arberi, Caytonanthus 73 Chasmatosporites flavus 78 argenteaeformis, Stenozonotriletes 68 Chasmatosporites hians 23, 78 argenteaeformis, Uvaesporites 20, 68, 69 Chasmatosporites major 77 Ascarina ludda 82 Chasmatosporites rimatus 77 asper, Lygodium 30 Cheirolepsis muensteri 79, 80 Aspiclires thomasi 32, 33 chimborazensis, Alsophila 43 australi s, Araucariacites 22, 71, 72 Chomotriletes triangularis 60 australis, Cyathidites 18, 31 cicatricosus, Rogalskaisporites 63 cicatricosus, Sporites 63 Baculatisporites comaumensis 20, 24 cicatricosus, Stereisporites 19, 63 Baculati sporites truncatus 55 Cingulatisporites dubius 94 Baculatisporites wellmannii 58 Cingulatisporites problematicus 27 Baiera furcata 9 Cingulatisporites pseudoalveolatus 61 Baiera gracilis 8, 9 cinnamomea, Osmunda 24 baiereanum, Allicospermum 8 circinata, Gleichenia 39 bancrofti, Gleichenia 40 Cladophlebis lobifoli a 7 biformis, Selaginella 55, 56 Cladotheca undans 57, 66 Bennettistemon amblum 86 cladothecoides, Todisporites 19, 66 BOTANICAL INVESTIGATIONS IN ERIKSDAL 127

cl aru s, Clavatisporites 44 Cycas wadei 87 cl assoides, Classopollis 23, 79, 81 Cyclosporites hughesi 1{)0 Classopollis cl assoides 2•3, 79, 81 Cyclotriletes subgranulatus 100 Cl assopollis torosus 79 Clavatipoll enites hnghesi 23, 82 Dactylotheca plumosa 47 Clavatisporites ciarus 44 dampieri, Applanopsis 93 cl avatoides, dampieri, Callialasporites 93 Lycopodium sporites 20, 48, 49, 51 dampieri, Pflugipollenites 93 cl avatum, Lycopodium 51, 5·2 dampieri, Tsugaepollenites 22, 93, 94, 96 colpodes, Sagenopteris 76 dampieri, Zonalpollenites 93 comaumensis, Baculatisporites 20, 24 Densoisporites erassus 21, 35, 35 comaumensis, Trilires 24 Densoisporites perinatus 33 complanatum, Lycopodium 51 Densoisporites regularis 35 complex pr. parte, Dictyosporites 33 Densoisporites scanicus 21, 34 Conbaculatisporites, mesozoicus 98, 99 Densoisporites velatus 21, 33, 35 Concavisporites crassexinus 36 densum, Lycopodium 55, 56 Concavisporites granulasus 20, 26 densus, Lycopodiumsporites 20, 52 Concavisporites juriensis 36 denticulatus, Todites 66 Concav isporites dettmannae, Applanopsis 97, 98 subgranul osus 4, 20, 26, 27, 100, 101 dettmannae, Tsugapollenites 22, 97 Concavisporites toralis 36 diaphanum, Lycopodium 48 concavus, Cyathidites 18, 32 Dicksonia kendalli 31 concavus, Stenozonotriletes 32 Dicksonia mariopreris 31 Coniopteris cf burejensis 10 Dicksonia pauciloba 8 Coniopteris hymenophylloides 6, 8, 9, 10, Dicranopteris linearis 40 13, 14, 15, 16, 17, 18, 31, 104 Dictyophyllidites crassexinus 19, 36 margaretae 31 Dictyophyllidites mortoni 36 Coniopteris simplex 31 Dictyophyllum rugosum 36 Coniopteris tarungensis 8 Dictyosporites camplex pr. parte 33• connivens, Pagiophyllum 79, 80, 89 Dicyclosporis cf triassicus 98, 99 conspiciendus, dubius, Cingulatisporites 94 Gleicheniidites 4, 19, 40, W3, 104 dubius, Tsugaepollenites 22, 93, 94 conspiciendus, Perigrinisporites 40 Contignisporites problematicus 21, 27 Eboracia lobifo lia 7, 8, 32 Coptospora aequalis 21, 28, 29 EJaticles cf curvifolia 8 Coptospora perforara 21, 29 Elatides williamsonii 86 Coptospora striata 28, 29 Elatocladus cf johnstrupi 8 Corrugatisporites scanicus 27 elatoides, Perinopollenites 23, 86 cotidianus, Monocolpopoll enites 85 etl)arginata, Gleichenia 40 cotidianus, Monosulcites 23, 85 Entylissa, nitida 84 couperi, Monoli tes 21, 54 equatiboss us, Leptolepidites 4, 19, 43, 44, · crassexinus, Concavisporites 36 103, 104, 105 crassexinus, Dictyophyllidites 19, 36 equatibossus, Trilires 43 Crassipollenites rugosus 71 eq uatibossus, Trilitisporites 43 crassus, Chasmatosporites 77 Equisetites mobergii 8 crass us, Densoisporites 21, 35, 35 Eucommiidites cf curvifolia, Elatides 8 granulasus 4, 23, 84, 101, 104 Cyathidites australis 18, 31 Eucommiidites troedssoni 23, 83, 84 Cyathidites concavus 18, 32 exilis var. punctata, Patelina 79 Cyathidites mmor 14, 18, 31 128 HANS TRALAU fallax, Nilssonia 8, 9 hughesi, Cyclosporites 100 fasrigiatum, Lycopodium 49 Hydroprerangium marsilioides 74 flavus, Chasmatosporires 78 hymenophylloides, Coniopteris 6, 8, 9, 10, Foraminisporis, paucispinosus 100 13, 14, 15, 16, 17, 18, 31, 104 Foveasporis irregularis 21, 37 Foveosporires mulrifoveolatus 61 Inaperruropollenires turbarus 96 Foveotriletes microreticularus 37, 38 infragranulatus, Lycopodiacidires 20. 46 Foveorrileres scanicus 20, 37, 38 irregularis, Foveosporis 21, 37 Foveotrileres scrobiculatus 37 Ischyosporites amplirericosus 100 furcara, Baiera 9 Ischyosporites granulasus 20, 41

Georhallus tuberosus 28 d johnstrupi, Elatocladus 8 Ginkgocycadophyrus nitidus 23, 84 juriensis, Concavisporires 36 ginkgoideum, Allicospermum 8 Ginkgoites regnellii 8 kendalli, Dicksonia 31 Ginkgoires sibirica f. pulsilla 9 Gleichenia banerofri 40 cf labdacus, Taeniaesporires 98 Gleichenia circinata 39 laevigatus, Zebrasparites 98, 99 Gleichenia emarginata 40 laevissima, Gleichenia 39 Gleichenia laevissima 39 laterale, Lycopodium 5!0, 61, 62 Gleicheniidires Leiotrileres neddenioides 42 conspiciendus 4, 19 , 40, 103, 104 Leiotrileres cf varius 18, 42 Gleicheniidites senonicus 19, 39, 40 Leptolepia novaezealanica 43 globosus, Rerirriletes 52 Leptolepidisporites major 43 globulifera, Pilularia 33 Leptolepidites goepperri, Matonidium 36 equatibossus 4, 19, 43, 44, W3, 104, 105 goeppertiana, Sagenopteris 76 Leprolepidites major 4, 19, 44, 101, 104 goepperrianus, Todires 57 Leptolepidites cf major 68 goepperri, Rutfordia 8 Leprolepidites rotundus 19, 43, 44 goepperti, Sphenopteris 8 Leptolepidires verrucatus 43, 68 gracilis, Baiera 8, 9 d lindsrrömi, Pityophyllum 8, 25 graci lis, Lycopodiumsporites 52 linearis, Dicranopteris 40 granularus, Stereisporires 19, 63 lobifoli a, Cladophlebis 7 granulatus, Todisporites 19 , 67 lobifolia, Eboracia 7, 8, 32 granulosus, Concavisporites 20, 26 lucida, Ascarina 82 gran ulosus, Lycopodiacidires infragranularus 20, 46 Eucommiidites 4, 23, 84, 101, 104 Lycopodiacidites granulosus, Ischyosporites 20, 41 rugulatus 4, 20, 45, 101, 104 grisrhorpensis, Lycopodiumsporires 46, 55 Lycopodiacidites spinatus 100 grisrhorpensis, N eoraistrickia 4, 20, 46, Lycopodium annotinum 49, 51 55, 55, 56, 103, 104 Lycopodium clavatum 51, 52 Lycopodium camplanatum 51 hallei, Sagenopteris 77 Lycopodium densum 55, 56 hallei, Selaginella 34 Lycopodium diaphanum 48 Harrisia marsilieides 74 Lycopodium fastigiatum 49 hartzi, Todites 58 Lycopodium laterale 50, 61, 62 hians, Chasmatosporires 23, 78 Lycopodium manu 61, 62 hoerensis, Marattia 11, 12 Lycopodium paniculatum 48 hoerensis, Maratdopsis 12 Lycopodium parvireticulatum 52 hughesi, Clavatipollenites 23, 82 Lycopodium phyllanthum 50 BOTANICAL JNVESTIGATJONS IN ERIKSDAL 129

Lycopodium volubile 49 minor, Osmundacidites 98, 99 Lycopodiumsporites agathoecus 46 minor, Todisporites 4, 19, 57, 65, 103, 104 Lycopodiumsporites annotinaides 2-0, 50 minus, Tsugaepollenites 22, 96 Lycopodiumsporites mobergii, Equisetites 8 clavatoides 20, 48, 49, 51 Monocolpopollenites cotidianus 85 Lycopodiumsporites densus 20, 52 Monalires couperi 21, 54 Lycopodiumsporites gracilis 52 Monosulcites cotidianus 23, 85 Lycopodiumsporites gristhorpensis 46, 55 montana, Arancaria 81 Lycopodiumsporites paniculatoides 20, 47 mortoni, Dictyophyllidites 36 Lycopodiumsporites muensteri, Cheirolepidium 80 pseudophyllanthus 20, 49, 50 muensteri, Cheirolepis 79 Lycopodiumsporites muensteri, Marattia 12 reticulumsporites 2-0, 51 muensteri, Marattiopsis 12 Lycopodiumsporites scanicus 20, 48 multifovoolatus, Foveosporites 61 Lycopodiumsporites semimuris 20, 52 lygodioides, Trilires 67 nathorsti, Caytonia 77 Lygodiumsporites adriennes 30 nathorsti, Caytonanthus 73 Lygodium asper 30 nathorsti, Neocalamites 25 neddenioides, Leiotriletes 42 Maculatisporites undulatus ·37 Neocalamites nathorsti 25 major, Chasmatosporites 77 Neochomotriletes triangularis 60 major, Leptolepidisporites 43 Neoraistrickia gristhorpensis 4, 20, 46, 5·5, major, 55, 5·6, 103, 104 Leptolepidites 4, 19, 44, 68, 101, 104 Neoraistrickia samuelssoni 20, 56 major, Neoraistrickia trm1eata 20, 55, 56 Todisporites 4, 19, 57, 65, 67, 101, 1{)4 Nilssonia fallax 8 mamillare, Brachyphyllum 80 Nilssonia schaumburgensis f. fallax 8, 9 manii, Lycopodium 61, 62 Nilssonia schaumburgensis f. typica 9 cf mantelli, Sagenopteris 8 nilssoniana, Sagenopteris 76, 77 Marattia anglica 10, 11, 12 nitida, Entylissa 84 Marattia hoerensis 11, 12 nitidus, Ginkgocycadophytus 23, 84 Marattia muensteri 12 novaezealanica, Leptolepia 43 Marattiopsis hoerensis 12 Marattiopsis muensteri 12 oncodes, Caytonanthus 73 Marattisporites scabratus 21, 53 orientalis, Thuja 90 margaretae, Coniopteris 31 cf ortesei, Taeniaesporites 98 mariopteris, Dicksonia 31 Osmunda bromerifolia 24 marsilioides, Harrisia 74 Osmunda cinnamomea 24 marsilioides, Hydropterangium 74 Osmundacidites minor 98, 99 Masculostrobus warrenii 91 Osmundacidites wellmannii 19, 58, 67 Matonidium goepperti 36 Osmundopsis plectrophora 58 mesozoica, Osmundopsis sturi 19, 59 Calamospora 4, 19, 25, 101, 104 Otozamites bunburyanus 7 mesozoicus, Cerebropollenites 91, 92 ovata, Agathis 79 mesozoicus, Conbaculatisporites 98, 99 mesozoicus, Tsugaepollenites 22, 91, 92 Pagiophyllum connivens 79, 80, 89 microreticulatus, Foveotriletes 37, 38 pallidus, Caytonipollenites 22, 75 microsaccus, Brachysaccus 22, 72 pallidus, Pityopollenites 73 microsaccus, Pteruchipollenites 72, 73 pallidus, Pityosporites 73 minor, Cyathidites 14, 18, 31 paniculatoides, Lycopodiumsporites 20, 47 130 HANS TRALAU paniculatum, Lycopodium 48 regnellii, Ginkgoites 8 parvireticulatum, Lycopodium 52 regularis, Densoisporites 35 Patelina exilis var. punctata 79 reissingeri, Trilires 68 pauciloba, Dicksonia 8 Reticulatisporires ? rruncatus 55 paucispinosus, Foraminisparis 100 reticulumsporires, Pecopteris plumosa 47 Lycopodiumsporires 20, 51 perforara, Coptospora 21 , 29 Retirrilites globosus 52 Perigrinisporires conspiciendus 40 rhoifolia, Sagenopteris 76 perinarus, Densoisporires 33 rimarus, Chasmasporires 77 Perinopollenires eJaroides 23, 86 robustus, Alisporires 22, 70 Perotrilites rugularus 45 Rogalskaisporites cicarricosus 63 perverrucatus, Trilirisporires 7·0 rotundus, Leptolepidites 19, 43, 44 Pflugipollenites dampieri 93 Ruffordia goepperti 8 Pflugipollenires trilobarus 95 rugosum, Dictyophyllum 36 phillipsi, Sagenopteris 76, 77 rugosus, Crassipollen ires 71 phillipsi var. cuneata, Sagenopteris 76 rugulatus, Phlebopteris angustiloba 36 Lycopodia cidires 4, 20, 45, 101, 104 Phlebopteris polypodioides 36 rugulatus, Perotrilites 45 phyllanrhum, Lycopodium 50 Pilularia globulifera 33 Sagenopreris colpodes 76 Piryophyllum d lindströmi 8, 25 Sagenopreris goeppertiana 76 Piryopollenites pallidus 73 Sagenopteris hallei 77 Pityosporires pallidus 73 Sagenopteris cf manrelli 8 Pityosporites seanrus 22, 87 Sagenopteris nilsoniana 76, 77 plecrrophora, Osmundopsis 58 Sagenopreris phillipsi 76, 77 plumosa, Dactylorheca 47 Sagenopteris phillipsi var. cuneata 76 plumosa, Pecopreris 47 Sagenopreris rhoifolia 76 plumosa, Senftenbergia 47 samuelssoni, Neoraistrickia 20, 56 polaris, Selaginellires 34 scabrarus, Marattisporites 21, 53 Pollenites apertus 77 scabra tus, Pollenires torosus 79 Spheripollenites 4, 23, 89, 102, 104 Polycingularisporites triangularis 21, 60 scandens, Selaginella 34 polypodioides, Phlebopteris 36 scanicus, Corrugari sporites 27 princeps, Todites 57, 66 scanicus, Densoisporites 21, 34 problemaricus, Cingulatisporites 27 scanicus, Foveorrilires 20, 37, 38 problematicus, Contignisporites 21, 27 scanicus, Lycopodiumsporites 20, 48 Proropinus scanicus 22, 88 scanicus, Protopinus 22, 88 pseudoalveolatus, Cingulatisporires 61 scaurus, Piryosporires 22, 87 pseudoalveolatus, scaurus, Taedaepollenires 87 Sesrrosporires 4, 19, 61, 62, W2, 104 schaumburgensis f. fallax, Nilssonia 8 pseudophyllanthus, schaumburgensis f. rypica, Nilssonia 9 Lycopodiumsporites 20, 49, 50 schenki, Thaumaropreris 36 psilatus, Sphagnumsporires 64 scotti, Brachyphyllum 79, 80 psilarus, Spheripollenites 23, 90 scrobicularus, Foveorrileres 37 psilarus, Stereisporites 19, 64 scrobicularus, Trilires 37 psilatus, Trilires 64 Selaginella, aitchisonii 70 Pteruchipollenires microsaccus 72, 73 Selaginella biformis 55, 56 Selaginella hallei 34 rariverrucatus, Trilires 4, 20, 67, 101 , 104 selagineila scandens 34 rariverrucatus, Trilirisporites 67 Selaginella stolonifera 55 BOTANICAL INVESTIGATWNS IN ERIKSDAL 131

Selaginella vaginata 43 Todites den ticulatus 66 ,l Selaginella velata 33 To di tes goeppertianus 57 Selaginellites polaris 34 Todires hartzi 58 semimuris, Lycopodiumsporites 20, 52 Todites princeps 5·7, 66 Senftenbergia plumosa 47 Todites undans 57, 58 senonicus, Gleicheniidites 19, 39, 40 Todites williamsoni 57, 65, 66 Sestrosporites acutus 19, 62 toralis, Concavisporites 36 Sestrosporites torosus, Classopellis 79 pseudoalveolatus 4, 19, 61, 62, 102, 104 torosus, Pollenites 79 sewardii, Caytonanthus 73 triangularis, Applanopsipollenites 96 sibirica f. pulsilla, Ginkgoites 9 triangularis, Chomotriletes 60 simplex, Coniopteris 31 triangularis, Neochomotriletes 60' Sphagnumsporites psilatus 64 triangularis, Polycingulatisporites 21, 60 Sphenolepis sternbergiana 10 triangularis, cf Taurocusporites 60 Sphenopteris goepperti 8 Triangulopsis trilobatus 95 Spheripollenites psilatus 23, 90 cf triassicus, Dicyclosporis 98, 99 Spheripollenites cf triassicus, Stereisporites 98, 99 scabratus 4, 23, 89, 102, 104 Trilires comaumensis 24 Spheripollenites subgranulatus 23, 89 Trilires equatibossus 43 spinatus, Lycopodiacidites 100 Trilires lygodioides 67 Sporites cicatricosus 63 Trilires psilatus 64 Stenozonotriletes argenteaeformis 68 Trilires Stenozonotriletes concavus 32 rariverrucatus 4, 20, 67, 101, 104 Stereisporites cicatricosus 19, 63 T rilites reissingeri 67 Stereisporites granulatus 19, 63 Trilires scrobiculatus 37 Stereisporites psilatus 19, 64, 64 Trilires truncatus 55 Stereisporites cf triassicus 98, 99 Trilitisporites equatibossus 43 sternbergiana, Sphenolepis 10 Trilitisporites perverrucatus 70 stolonifera, Selaginella 55 Trilitisporites rariverrucatus 67 striata, Coptospora 28, 29 trilobatus, Applanopsis 95 sturi, Osmundopsis 19, 59 trilobatus, Callialasporites 95 subgranulosus, trilobatus, Pflugipollenites 95 Concavisporites 4, 20, 26, 27, lrOO, lt01 trilobatus, Triangulopsis 95 subgranulatus, Cyclotriletes 100 trilobatus, subgranulatus, Spheripollenites 23, 89 Tsugaepollenites 4, 22, 95, 102, 104 trilobatus, Zonalpollenites 95 Taedaepollenites scaurus 87 troedssoni, Eucommiidites 23, 83, 84 T aeniaesporites cf labdacus 98 truncata, Neoraistrickia 20, 55, 56 Taeniaesporites cf ortesei 98 truncatus, Baculatisporites 55· tatungensis, Coniopteris 8 ? truncatus, Reticulatisporites 55 cf Taurucosporites triangularis 60 truncatus, Trilires 55 Thaumatopteris schenki 36 Tsuga canadensis 91 thomasi, Aspiclires 32, 33 Tsugaepollenites dampieri 22, 93, 94, 96 Thuja orientalis 90 Tsugaepollenites dettmannae 22, 97 Todisporites cladothecoides 1·9, 66 Tsugaepollenites dubius 22, 93, 94 Todisporites granulatus 19, 67 Tsugaepollenites mesozoicus 22, 91, 92 Todisporites Tsugaepollenites mmus 22, 96 major 4, 19, 57, 65, 67, 101, 1-04 Tsugaepollenites Todisporites trilobatus 4, 22, 95, 102, 104 minor 4, 19, 57, 65, 103, Hl4 Tsugaepollenites turbatus 22, 96, 97 132 HANS TRALAU tuberosus, Geothallus 28 velatus, Densoisporites 21, 33s, 3'5 turbatus, Callialasporites 96 verrucatus, Leptolepidites 43 turbatus, lnaperturopollenites 96 cf verrucatus, Leptolepidites 68 turbatus, Tsugaepollenites 22, 96, 97 Verrucipollenites apertus 78 volubile, Lycopodium 49 und ans, Cladotheca 57, 66 undans, Todites 57, 58 wadei, Cycas 83 undulatus, Maculatisporites 37 warrenii, Masculostrobus 91 Uvaesporites argenteaeformis 20, 68, 69 wellmannii, Baculatisporites 58 Uvaesporites cerebralis 20, 69 wellmannii, Osmundacidites 19, 58, 67 williamsoni, Elatides 86 vaginata, Selaginella 43 williamsoni, Todites 57, 65, 66 varius, Leiotriletes 18, 42 vastiformis, Vastisporites WO Zebrasporites laevigatus 98, 99 Vastisporites vastiformis l 00 Zonalpollenites dampieri 93 velata, Selaginella 33 Zonalpollenites trilobatus 95 BOTANICAL INVESTIGATIONS IN ERIKSDAL 133

XL PLA TES I TO XXVI HANS ' TRALAU

PLATE I

Fig. 1: Lycopodiumsporites paniculatoides spec. nov. (Type specimen). Microspore in distal and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/7. Fig. 2: Lycopodiumsporites scanicus spec. nov. (Type specimen). Microspore in distal and equatorial views. Geological Survey of Sweden, Stockholm, slide Eriks­ dal 53/11. Figs. 3-5: Lycopodiumsporites clavatoides Couper. Microspores in distal views. Swedish Museum of Natural History, Stockholm, slides Eriksdal 39/4 (fig. 3), 53/5 fig. 4), 43B/6 (fig. 5). Figs. 6-7: Lycopodiumsporites pseudolaterale spec. nov. (Type specimen fig. 7). Micro­ spores in proximal (fig. 7) and distal views. Swedish Museum of Natural His­ tory, Stockholm, slides Eriksdal 41 A/7 (fig. 6), 53/6 (fig. 7).

All specimens of this and the following plates are at a magnification of 1000 X uniess otherwise stated. The photographs have been taken by K. E. Samuelsson except those of pi. XXIV, figs. 1, 2, 4, 5, 6, 8, 9, 10, pi. XXV, figs. 1-7, and pi. XXVI, figs, 2, 6, which have been taken by Seth. Nilsson al. Steneström. BOTAN!CAL !NVEST!GAT!ONS IN ER!KSDAL 135

3 4

PLATE I 136 HANS TRALAU

PLATE II

Fig. 1: Lycopodiumsporites annotinaides spec. nov. (Type specimen). Microspore in distal view. Geological Survey of Sweden, Stockholm, slide Eriksdal 47/15. Figs. 2-3: Lycopodiumsporites reticulumsporites (Rouse) Dettmann. Microspores in distal view. Swedish Museum of Natural History, Stockholm, slides 45/3 (fig. 2), 55/4 (fig. 3). Fig. 4: Lycopodiumsporites semimuris Danze-Corsin et Laveine. Microspore in distal and proximal view. Geological Survey of Sweden, Stockholm, slide Eriksdal 43B/8. Figs. 5-6: Neoraistrickia gristhorpensis (Couper) Tralau. Microspore in distal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 49/7 (fig. 5), 46/2 (fig. 6). Fig. 7: Neoraistrickia samuelssoni Tralau. Microspore in distal and equatorial view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4. BOTANICAL INVESTIGATIONS IN ERIKSDAL 137

2 3 ·' ..

PLATE II 138 !-IANS TRALAU

PLATE III

Fig. 1: Leptolepidites rotundus spec. nov. (Type specimen). Microspore in distal and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriks­ dal 53/6. Fig. 2: lschyosporites granufosus spec. nov. (Type specimen). Microspore in Geological Survey of Sweden, Stockholm, slide Eriksdal 52/11 . Fig. 3: Uvaesporites cerebralis spec. nov. (Type specimen). Microspore in proximal views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/5. Fig. 4: Uvaesporites argenteaeformis (Bolkh.) Schulz. Microspore in distal and equatorial views. Swedish Museum of Natural History, Stockholm, sl id e Eriksdal 55/1. BOTANICAL INVESTIGAT!ONS IN ERIKSDAL 139

1 2

PLATE III 140 HANS TRALAU

PLATE IV

Fig. 1: Uvaesporites argenteaeformis (Bolkh.) Schulz. Microspore in distal and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 53/4. Fig. 2: Uvaesporites argenteaeformis (Bolkh.) Schulz. Microspore in proximal view. Swe­ dish Museum of Natural History, Stockholm, slide Eriksdal 53/4. Fig. 3: Dictyophyllidites crassexinus (Nilsson) comb. nov. Microspore in proximal and equatorial views. Geological Survey of Sweden, Stockholm, slide Eriksdal 104/10. Fig. 4: Lycopodiumsporites densus spec. nov. (Type specimen). Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2. Fi g. 5: Lycopodiacidites infragranulatus Mädler. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2. Fig. 6: Lycopodiacidites infragranulatus Mädler. Microspore in proximal view. Museum of Natural History, Stockho/m, slide Eriksdal 49/4. BOTANICAL INVESTIGATIONS IN ERIKSDAL 141

PLATE IV 142 HANS TRALAU

PLATE V

Fig. 1: Contignisporites problematicus (Couper). Microspore in lateral v1ew. Geo­ logical Survey of Sweden, Stockholm, slide Eriksdal 52/9. Figs. 2-3·: Contignisporites problematicus (Couper). Microspore in lateral view. Geo­ logical Survey of Sweden, Stockholm, slide Eriksdal 49/10. Fig. 4: Lycopodiacidites rugulatus (Couper) Schulz. Microspore in proximal v1ew. Swedish Museum of Natural History, Stockholm, slide Eriksdal 41 A/1. Fig. 5: Trilites rariuerrucatus (Danze-Corsin et Laveine) comb. nov. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriks­ dal 45/3. BOTANICAL INVEST!GATIONS IN ERIKSDAL 143

2

4

PLATE V 144 HANS TRALAU

PLATE VI

Fig. 1: Foveasporis irregularis spec. nov. (Type specimen). Microspore in lateral Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/8. Fig. 2: Stereisporites granulatus spec. nov. (Type specimen). Microspore in proximal, equatorial, and distal views. Geological Survey of Sweden, Stockholm, slide Eriksdal 53/12. Figs. 3-4: Marattia d anglica (Thomas) Harris. Microspores found in situ. Palaeontological l11stitute, University of Lund. BOTANICAL INVESTIGATIONS IN ERIKSDAL 145

3

PLATE VI 146 HANS TRALAU

PLATE VII

Fig. l: Todisporites granulates spec. nov. (Type specimen). Campressed microspore. Swe­ dish Museum of Natural History, Stockholm, slide Eriksdal 49/2. Fig. 2: Osmundacidites wellmanii Couper. Folded microspore. Geological Survey of Swe­ den, Stockholm, slide Eriksdal 45A/10. Fig. 3: Osmundacidites wellmanii Couper. Microspore in proximal view. Geological Sur­ vey of Sweden, Stockholm, slide Eriksdal 53/11. Fig. 4: Osmundacidites spec. [Osmundopsis cf sturi (Raciborski) Harris]. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, sl ide Eriksdal 5317. BOTAN!CAL INVESTIGATIONS IN ERIKSDAL 147

PLATE VII 148 HANS TRALAU

PLATE VIII

Fig. 1: Baculatisporites comaumensis (Cookson) Potonie. Microspore in proximal and equatorial views. Geological Survey of Sweden, Stockholm, slide Eriksdal 47/16. Fig. 2: Baculatisporites comaumensis (Cookson) Potonie. Microspore in distal and equa­ torial views. Geological Survey of Sweden, Stockholm, slide Eriksdal 53/12. Fig. 3: Leptolepidites equatibossus (Couper) emend. Microspore in distal and equatorial views. Geological Survey of Sweden, Stockholm, slide Eriksdal 53/9. BOT ANICAL INVEST!GA TIONS IN ERIKSDAL 149

PLATE VIII 150 HANS TRALAU

PLATE IX

Fig. l: Cyathidites australis Couper. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 45A/1. Fig. 2: Coniopteris hymenophylloides (Brngn.) Seward. Microspore in proximal view. This spore has been found in situ (cf Tralau 1966, fig. 3 e). Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/IV. Fig. 3: Cyathidites concavus (Bolkh.) Dettmann. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/6. Fig. 4: Todisporites minor Couper. Compressed microspore. Swedish Museum of Natural History, Stockholm, slide Eriksdal 39/3. Fig. 5: Todisporites major Couper. Microsporc in proximal view. Geological Survey of Sweden, Stockholm, slide Eriksdal 44/11. Fig. 6: Foveotriletes scanicus spec. nov. (Type specimen). Microspore in proximal v1ew. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/3. BOTANICAL INVESTIGATIONS IN ERIKSDAL 151

2

3 4

5 _6 ,

PLATE IX 152 HANS TRALAU

PLATE X

Fig. 1: Leiotriletes cf varius Bolkh. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 39/3. Fig. 2: Concavisporites subgranulosus Couper. Microspore in distal view. Swedish Mu­ seum of Natural History, Stockholm, slide Eriksdal 58/2. Fig. 3: Concavisporites granufo sus spec. nov. (Type specimen). Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide 57/5. Figs. 4-5: Gleicheniidites conspiciendus (Bolkh.) W. Kr. Microspore in distal and equa­ torial views. Geological Survey of Sweden, Stockholm, slide Eriksdal 55/9. Figs. 6, 7: Gleicheniidites senonicus Ross. Microspores in distal, equatorial, and proximal views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 52/6 (fig. 6), Geological Survey of Sweden, Stockholm, slide Eriksdal 53/8 (fig. 7). Fig. 8: Cyathidites minor Couper. Microspore in proximal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 41A/3. Figs. 9, 10: Stereisporites cicatricosus (Rogalska) Danze-Corsin et Laveine. Microspore in distal and proximal views respecrively. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4. BOTANICAL INVESTIGATIONS IN ERIKSDAL 153

3

8 9 lO

PLATE X 154 HANS TRALAU

PLATE XI

Fig. l: Tsugaepollenites triangularis (Levet-Carette) cornb. nov. Pollen grain. Geological Survey of Sweden, Stockholm, slide Eriksdal 53/9. Fig. 2: Polycingulatisporites triangularis (Bolkh.) Playf. et Dettmann. Microspore in proxi­ rnal and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 36!5. Fig. 3: Sestrosporites acutus spec. nov. (Type specimen). Microspore in distal and equa­ torial views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2. BOTANICAL INVESTIGATIONS IN ERIKSDAL 155

PLATE XI 156 HANS TRALAU

PLATE XII

Fig. l: Densoisporites scanicus spec. nov. (Type specimen). Microspore in distal and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriks­ dal 55/4. Fig. 2: Pilularia globulifera, recent microspore in distal and equatorial views. Palynolo­ gical Laboratory, Solna, slide nr 3043. Fig. 3: Densoisporites erassus spec. nov. (Type specimen). M icrospore in equatorial view. Magnification 800 X. Geological Survey of Sweden, Stockholm, slide Eriksdal 56/9. BOTANICAL INVESTIGAT!ONS IN ERIKSDAL 157

PLATE XII 158 HANS TRALAU

PLATE XIII

Fig. l: Tsugaepollenites dampieri (Balm e) Dettmann. Pollen grain in proximal view. Swedish Museum of Natural History, Stockho/m, slide Eriksdal 55/4. Fig. 2: Tsugaepollenites dampieri (Balme) Dettmann. Part of pollen grain in equatorial view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 53/3. Fig. 3: Tsugaepollenites dubius (Couper) Dettmann. Pollen grain in distal view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/2. Fig. 4: Tsugaepollenites minus spec. nov. (Type specimen). Poll en grain samewhat com­ pressed. Geological Survey of Sweden, Stockholm, sli de Eriksdal 55/9. BOTANICAL INVESTIGATIONS IN ERIKSDAL 159

PLATE XIII 160 HANS TRALAU

PLATE XIV

Fig. 1: Todisporites cladothecoides spec. nov. (Type specimen). Campressed microspore. Swedish Museum of Natural History, Stockholm, slide Eriksdal 58/7. Fig. 2: Baculatisporites comaumensis (Cookson) Potonie. Campressed microspore. Swe­ dish Museum of Natural History, Stockholm, slide Eriksdal 56/7. Fig. 3: Coptospora perforata spec. nov. Campressed spore. Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/3. Magnification 800 X. BOTANICAL INVESTIGATIONS IN ERIKSDAL 161

2

3

PLATE XIV 162 HANS TRALAU

PLATE XV

F i g. l: Tsugaepollenites trilobatus (Ba lme) Dettmann. Pollen grain. Swedish Museum of Natural History, Stockholm, slide Eriksdal 52/5. Magnification 800 X. F i g. 2: Coptospora aequalis spec. nov. (Type specimen). Microspore. Swedish of Natural History, Stockholm, slide Eriksdal 45A/2. Fi g. 3: Sestro sporites pseudoalveolatus (Couper) Dettmann. Microspore. Swedish of Natural History, Stockholm, slide Eriksdal .55/2. BOTAN!CAL !NVEST!GAT!ONS !N ER!KSDAL 163

PLATE XV 164 HANS TRALAU

PLATE XVI

Fig. 1: Tsugaepollenites dettmannae (Drugg) comb. nov. Pollen grain . Geological Survey of Sweden, Stockholm, slide Eriksdal 47/18. Fig. 2: Monolites couperi spec. nov. (Type specimen). Microspore. Swedish Museum of Natural History, Stockholm, slide Eriksdal 56/2. Fig. 3: Spheripollenites scabratus Couper. Pollen grain. Swedish Museum of Natural His­ tory, Stockholm, slide Eriksdal 43B/6. Fig. 4: Spheripollenites scabratus Couper. Pollen grain. Swedish Museum of Natural His­ tory, Stockholm, slide Eriksdal 55 /2. Fig. 5: Spheripollenites sub granulatus Couper. Pollen grain. Swedish Museum of Natural History, Stockho/m, slide Eriksdal 45A/3 . Fig. 6: Spheripollenites psilatus Couper. Pollen grain. Geological Survey of Sweden, Stock­ holm, slide Eriksdal 45 A/9. Fig. 7: Spheripollenites psilatus Couper. Pollen grain. Geological Survey of Sweden, Stock­ holm, slide Eriksdal 45A/9. BOTANICAL INVESTIGATIONS IN ERIKSDAL 165 .,

3 4

5 6

PLATE XVI 166 HANS TRALAU

PLATE XVII

Fi g. 1: Tsugaepollenites tri/abatus (Balme) Dettmann. Pollen grain m proximal view. Geological Survey of Sweden, Stockholm, slide Eriksdal 55/9. F i g. 2: Araucariacites australis Cookson. Pollen grain. Swedish Museum of Natural His­ tory, Stockholm, slide Eriksdal 55/1. Fig. 3: Tsugaepollenites mesozoicus Couper. Pol"len grain in lateral view. Geological Sur­ vey of Sweden, Stockholm, slide Eriksdal 55/9. Fi g. 4: Tsugaepollenites mesozoicus Couper. Pollen grain in proximal view. Swedish Mu­ seum of Natural History, Stockholm, slide Eriksdal 55/1. BOTANICAL INVESTIGATIONS IN ERIKSDAL 167

PLATE XVII 168 HANS TRALAU

PLATE XVIII

Fig. 1: Perinopollenites elatoides Couper. Pollen grain in surface and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4. Fig. 2: Perinopollenites elatoides Couper. Pollen grain in surface and equatorial views. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/1. Fig. 3: Perinopollenites elatoides Couper. Pollen grain in equatorial view. Swedish Mu­ seum of Natural History, Stockholm, slide Eriksdal 55/1. Fig. 4: Densoisporites velatus Weyland et Krieger. M icrospore in proximal view. Swe­ dish Museum of Natural History, Stockholm, slide Eriksdal 55/2. BOTANICAL INVESTIGATIONS IN ERIKSDAL 169

1

2

3 4

PLATE XVIII 170 HANS TRALAU

PLATE XIX

Fig. 1: Clavatipollenites hughesii Couper. Pollen grain. Geological Survey of Sweden, Stockholm, slide Eriksdal 53/8. Figs. 2-4: Clavatipololenites hughesii Couper. Pollen grains. Swedish Museum of Natural History, Stockholm, slides Eriksdal 55/1 (fig. 2), 57/5 (fig. 3), 55/7 (fig. 4). Fig. 5: Monosulcites cotidianus (T. Nilsson) comb. nov. Pollen grain. Geological Sur­ vey of Sweden, Stockholm, slide Eriksdal 53/10. Fig. 6: Monosulcites cotidianus (T. Nilsson) comb. nov. Pollen grain. Swedish Mu­ seum of Natural History, Stockholm, slide Eriksdal 45/2. Figs. 7-10: Ginkgocycadophytus nitidus (Balme) de Jersey. Pollen grains. Swedish Museum of Natural History, Stockholm, slides Eriksdal 55/1 (fig. 7), 53/11 (fig. 8), 53/10 (fig. 9), 36/3 (fig. 10). BOTANICAL INVESTIGATIONS IN ERIKSDAL 171

1 2 3 4

5 . 6

7 8 9 . 1 o

PLATE XIX 172 HANS TRALAU

PLATE XX

Fig. l: Ca)'tonipollenites pallidus (Reissinger) Couper. Pollen grains. Swedish Museum of Natural Histor)', Stockholm, slides Eriksdal 55/5, 55/7. Fig. 2: Tsugaepollenites mesozoicus Couper. Pollen grain in lateral view. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/7. Fig. 3: Ca)'tonipollenites pallidus (Reissinger) Couper. Pollen grain. Swedish Museum of Natural Histor)', Stockholm, slide Eriksdal 55/7. Fig. 4: Tsugaepollenites mesozoicus Couper. Pollen grain. Geological Surve)' of Sweden, Stockholm, slide Eriksdal 55/10. Fig. 5: Tsugaepollenites mesozoicus Couper. Pollen grain. Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/1. BOTANICAL INVESTIGATIONS IN ERIKSDAL 173

2 3

4

PLATE XX 174 HANS TRALAU

PLATE XXI

Fig. 1: Alisporites robustus T. Nilsson. Pollen grain. Swedish Museum of N atural History, Stockholm, slide Eriksdal 47/3. Fig. 2: Brachysaccus microsaccus Couper. Pollen grain. Swedish Museum of Natural History, Stockholm, slide Eriksdal 47/7. Fig. 3: Pityosporites scaurus (Nilsson) Schulz. Pollen grain. Geological Survey of Sweden, Stockholm, slide Eriksdal 55/9. BOTANICAL INVESTIGATIONS IN ERIKSDAL 175

3

PLATE XXI 176 HANS TRALAU

PLATE XXII

Fig. l: Protapinus d scanicus T. Nilsson. Pollen grain. Swedish Museum of Natural History, Stockholm, slide Eriksdal 43B/ l. Figs. 2-3: Pratapinus scanicus T. Nilsson. Pollen grain. Swedish Museum of Natural His­ tory, Stockholm, slide Eriksdal 55/ 1. BOTANICAL !NVESTIGATIONS IN ERIKSDAL 177

PLATE XXII 178 HANS TRALAU

PLATE XXIII

Fig. 1: Chasmatosporites d hians T. Nilsson. Pollen grain. Swedish Museum of Natural History, Stockholm, slide Eriksdal 55/4. Fig. 2: Chasmatosporites apertus (Rogalska) T. Nilsson. Pollen grain. Geological Survey of Sweden, Stockholm, slide Eriksdal 45A/11. Fig. 3: Classopal/is classoides (Pflug) Pocock et Jansonius. Pollen tetrad. Swedish Museum of Natural History, Stockholm, slide Eriksdal 36/1. Fig. 4: Eucommiidites granufosus Schulz. Pollen grain. Swedish Museum of Natural His­ tory, Stockholm, slide Eriksdal 45A/3. BOTANICAL INVESTIGATIONS IN ERIKSDAL 179 ....

3

PLATE XXIII 180 HANS TRALAU

PLATE XXIV

Fig. l : Equisetites spec., (cf Equisetum la terale Philips), stem and leaf sheeths, l X. Eriksdal, "inner part of the tunnel". Palaeontological institute, University of Lund. COLL: S. Nilsson (Nilsson 1941, fig.l). Fig. 2: Marattia cf anglica, small pinna hearing some minute synangia, l X. Eriksdal, "inner part of the tunnel". Palaeontological Institutet, University of Lund. COLL.: S. Nilsson (Nilsson 194 1, fig. 5). Fig. 3: Coniopteris hymenophylloides (Brongniart) Seward, steril e and fertile pinnac, l X. Eriksdal, layer 36. Swedish Museum of Natural History, Stocl~holm SO. COLL.: Hans Tralau. Fif. 4: Coniopteris cf burejensis Zalessky, fertile pinna, l X. Eriksdal, exact origin un­ known. Palaeontological Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 9). Fig. 5: Coniopteris latungensis Sze, fertile pinna, l X. Eriksdal, "inner part of the tunnel". Palaeontological Institute, Uniuersity of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 10). Fig. 6: Hausmannia spec., sterile le af, l X. Eriksdal. Ekström's fossiliferous la ye rs (lay­ ers 117-122?). Palaeontological Institute, University of Lund. COLL.: G. Ekström (Nilsson 1941, fig. 11 ). Fig. 7: cf Eboracia lobifolia (Phillips) Thomas, sterile pinna, l X. Eriksdal, layer 36. Swedish Museum of Natural History, Stockholm SO. COLL.: Hans Tralau. Fig. 8: "Cladophlebis" spec. l, sterile pinna, l X. Eriksdal, exact o n gm unknown. Pa­ laeon!ological Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 17). Fig. 9: "Cladophlebis" spec. 2, sterile pinna, l X. Eriksdal, exact origin unknown. Pa­ laeontological Institute, Unh·ersity of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 18 ). Fig. 10: "Cladophlebis" spec. 3, sterile pinna, l X. Eriksdal, exact origin unknown. Pa­ laentological Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fi g. 19). BOTANICAL INVESTIGATJONS IN ERIKSDAL 181

PLATE XXIV 182 HANS TRALAU

PLATE XXV

Figs. 1-3: Nilssonia schaumburgensis (Dunker) Nathorst (sens. lat.), leaves, l X. Eriksdal, kaolin layers (layers 32-34?). Palaeontological Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, figs. 21 b, d, e). Fig. 4: Nilssonia spec. 3, leaf, l X. Eriksdal, "inner part of the tunnel". Palaeontologi­ cal Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941 fig. 24 ). Fig. 5: Otozamites bunburyanus Zigno, leaf, l X. Eriksdal, Ekström's fossiliferoous lay­ ers (layers 117-122?). Palaeontological Institute, University of Lund. COLL.: G. Ekström (Nilsson 1941, fig. 25 ). Fig. 6: Sagenopteris spec., leaf, l X. Eriksdal, "inner part of the tunnel". Palaeonto­ logical Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 26). Fig. 7: Baiera furcata (Lindi. et Hutton) F. Braun, leaf l X. Eriksdal, kaolin layers (lay­ ers 31-34?). Palaeontological Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 27). BOTANlCAL INVESTIGATIONS IN ERIKSDAL 183

PLATE XXV 184 HANS TRALAU

PLATE XXVI

Fig. l: Baiera gracilis Bunbury, leaf with fragmentary petiole, l X. Eriksdal, layer 36. Swedish Museum of Natural History, Stockholm SO. COLL: Hans Tralau. Fig. 2: Ginkgoites sibricus Heer, leaf, l X. Eriksdal, exact origin unknown. Palaeontolo ­ gical Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 35 ). Fig. 3: Ginkgoites regnel/ii H. T., leaf with fragmentary petiole, l X. Eriksdal, layer 36. Swedish Museum of Natural History, Stockholm SO. COLL.: Hans Tralau. Fig. 4: Pityophyl/um cf lindströmi Nathorst, detached Jeaf, l X. Eriksdal, layer 36. Geo­ logical Survey of Sweden, Stockholm SO. COLL.: Hans Tralau. Fig. 5: Conites spec., female cone impression, l X. Eriksdal, la ye r 36. Swedish Museum of Natural History, Stockholm 50. COLL.: Hans Tralau. Fig. 6: "Sphenolepidium sternbergianum (Dunker) Schenk", Jeafy twig, l X. Eriksdal, kaolin layers (layers 31- 34). Palaeontological Institute, University of Lund. COLL.: S. Nilsson (Nilsson 1941, fig. 39). Fig. 7: Elatocladus cf johnstrupi (Bartholin) H. T., leafy twig, l X. Eriksdal, layer 36. Swedish Museum of Natural History, Stockholm 50. COLL.: Hans Tralau. BOTANICAL INVESTIGATIONS IN ERIKSDAL 185

PLATE XXVI