Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids PHYSICAL REVIEW LETTERS week ending VOLUME 90, NUMBER 4 31 JANUARY 2003 Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids L. O. Eastgate Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853 J. S. Langer and L. Pechenik Department of Physics, University of California, Santa Barbara, California 93106 (Received 19 June 2002; published 31 January 2003) We use the shear transformation zone (STZ) theory of dynamic plasticity to study the necking instability in a two-dimensional strip of amorphous solid. Our Eulerian description of large-scale deformation allows us to follow the instability far into the nonlinear regime. We find a strong rate dependence; the higher the applied strain rate, the further the strip extends before the onset of instability. The material hardens outside the necking region, but the description of plastic flow within the neck is distinctly different from that of conventional time-independent theories of plasticity. DOI: 10.1103/PhysRevLett.90.045506 PACS numbers: 62.20.Fe, 46.05.+b, 46.35.+z, 83.60.Df Conventional descriptions of plastic deformation in when the strip is loaded slowly. One especially important solids consist of phenomenological rules of behavior, element of our analysis is our ability to interpret flow and with qualitative distinctions between time-independent hardening in terms of the internal STZ variables. and time-dependent properties, and sharply defined yield To make this problem as simple as possible, we consi- criteria. Plasticity, however, is an intrinsically dynamic der here only strictly two-dimensional, amorphous mate- phenomenon. Practical theories of plasticity should con- rials. By ‘‘strictly,’’ we mean that elastic and plastic sist not of intricate sets of rules, but of equations of displacement rates are separately planar as in two- motion for material velocities, stress fields, and other dimensional molecular dynamics simulations. The two- variables that might characterize internal states of solids. dimensional STZ equations presented in this paper are Roughly speaking, a theory of plasticity, especially for an based on earlier work by Falk, Langer, and Pechenik amorphous solid, should resemble the Navier-Stokes [7,11,12]. We use Eulerian coordinates in which, as in equation for a fluid, with the pressure replaced by a stress fluid dynamics, the variables xi denote the current physi- tensor, and the viscous forces replaced by a constitutive cal positions of material elements. Let the system lie law relating the rate of plastic deformation to the stresses in the x1 x, x2 y plane, and write the stress tensor 1 and internal state variables. That constitutive law should in the form: ij ÿpij sij;pÿ2 kk, where p is contain phenomenological constants, analogous to the the pressure and sij is the deviatoric stress — a trace- bulk and shear viscosities, that are measurable and, in less, symmetric tensor. In analogy to fluid dynamics, principle, computable from molecular theories. Yield cri- let vi x; y; t denote the material velocity at the physi- teria, work hardening, hysteretic effects, and the like cal position x; y, and time t. Then the acceleration equa- would emerge naturally in such a formulation. tion is [13] The goal of the STZ (shear transformation zone) dvi @ij @p @sij theory of plasticity [1–7], from its inception, has been ÿ : (1) dt @x @x @x to carry out the above program. In this paper we show j i j how the STZ theory describes a special case of large- Here, is the density which, because we shall assume a scale yielding, specifically, the necking instability of a very small elastic compressibility and volume conserving strip of material subject to tensile loading. There is a large plasticity, we shall take to be a constant. The symbol d=dt literature on the necking problem. References that we denotes the material time derivative acting on a scalar or a have found particularly valuable include papers by vector field: Hutchinson and Neale [8], McMeeking and Rice [9], d @ @ and Tvergaard and Needleman [10]. Our purpose here is vk : (2) dt @t @x to explore possibilities for using the STZ theory to in- k vestigate a range of failure mechanisms in amorphous Our first main assumption is that the rate of deforma- solids, possibly including fracture. We are able to follow tion tensor can be written as the sum of linear elastic and the necking instability far into the nonlinear regime plastic contributions: where the neck appears to be approaching plastic failure 1 @v @vj D sij p while the outer regions of the strip become hardened and Dtotal i ÿ Dplast; ij 2 @x @x t 2 2K ij ij remain intact. We find that necking in the STZ theory is j i D rate dependent; the instability occurs at smaller strains (3) 045506-1 0031-9007=03=90(4)=045506(4)$20.00 2003 The American Physical Society 045506-1 PHYSICAL REVIEW LETTERS week ending VOLUME 90, NUMBER 4 31 JANUARY 2003 where is the shear modulus, K 1 = 1 ÿ is yield stress.We also have assumed that the local density of the two-dimensional inverse compressibility (or bulk STZs is always at its equilibrium value so that we do not modulus), and is the two-dimensional Poisson ratio. need to solve an extra equation of motion for that field The symbol D=Dt denotes the material time derivative (denoted by the symbol in earlier papers). acting on any tensor, say Aij: The important exception alluded to above is the pres- ence of the absolute-value bars in Eq. (7). The expression DAij @Aij @Aij vk Aik !kj ÿ !ik Akj; (4) inside the bars is proportional to the rate at which plastic Dt @t @xk work is being done on the system, a quantity which appears in the original theory as a non-negative factor and !ij is the spin: in the STZ annihilation and creation rates. A negative 1 @vi @vj value of this quantity would be unphysical. In earlier !ij ÿ : (5) 2 @xj @xi studies of spatially uniform systems, this quantity always remained positive; however, we have observed negative The plastic part of the rate-of-deformation Dplast,like ij values in the present calculations. The absolute value s , is a traceless symmetric tensor, thus the plastic defor- ij prevents such unphysical behavior and is consistent with mations are area conserving. For present purposes, we use the intent of the original theory.We emphasize, however, a simple, quasilinear form of the STZ theory in which that this term contains some of the principal assumptions plast of the STZ theory. There are other possibilities for it (see, Dij 0 qij s; ; qij s; sij ÿ ij; (6) for example, [2]); and it will be interesting to explore the and 0 is a material-specific constant. The traceless, sym- physical significance of these variations of the model. metric tensor ij is the internal state variable mentioned To understand the transition between viscoelastic and earlier. It is proportional to a director matrix that specifies viscoplastic behaviors at the yield stress, and the role the orientation of the STZs; its magnitude is a measure played by the state variable , it is easiest to look of the degree of their alignment. The equation of motion first at a uniform system under pure shear. Let sxx for ij is ÿsyy s, sxy 0, xx ÿyy , xy 0; and con- sider a situation in which s is held constant. Equations (3) D 1 ij q ÿ jq s j : (7) and (7) become Dt ij 2 km km ij "_ s ÿ ; (8) In Eq. (6), plays—very roughly—the role of the ‘‘back 0 stress’’ or ‘‘hardening’’ parameter in conventional theo- _ s ÿ 1 ÿ s; (9) ries of plasticity [14–16], a major difference being that emerges directly from a rate equation governing the where "_ is the total strain rate. At s 1, these equations population of STZs and is, in principle, a directly mea- exhibit an exchange of stability between the nonflowing surable quantity [1,17]. If the second term on the right- steady-state solution with "_ 0, s for s<1, and the hand side of Eq. (7) were missing, then would be flowing solution with "_ Þ 0, 1=s for s>1.Asex- proportional to the integrated plastic strain. This second plained in earlier publications, the steady-state system is term, however, which is produced by the creation and ‘‘jammed’’ or ‘‘hardened’’ in the direction of the applied annihilation of STZs, is a crucial element of the STZ stress for s<1; whereas, for s>1, new STZs are being theory. As we shall show briefly below, this term produces created as fast as existing ones transform, and there is a the exchange of dynamic stability between viscoelastic nonzero plastic strain rate. and viscoplastic states that replaces the conventional as- Our goal now is to see how this exchange of stability sumptions of yield surfaces and other purely phenomeno- occurs in a dynamic, spatially nonuniform situation. logical rules of behavior. Consider a rectangle with straight grips at x L t. With one important exception, Eqs. (6) and (7) con- The upper and lower surfaces, at y Y x; t, are free stitute a tensorial version of the original STZ theory boundaries. We assume symmetry about both the x and y obtained by linearizing the stress dependence of the axes so that we need to consider only the first quadrant of rate factors and rescaling. Because of the linearization, the system. On the free upper boundary, the relation these equations do not properly describe memory effects between the material velocities and the motion of the present in the full theory that are important when the surface is system is unloaded or reloaded, but this will not affect @Y @Y our results until the system reaches the necking instabil- vy x; Y; tÿvx x; Y; t : (10) ity.
Recommended publications
  • 10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
    EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch.
    [Show full text]
  • Mechanics of Materials Plasticity
    Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Reference Module in Materials Science and Materials Engineering, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Lubarda V.A., Mechanics of Materials: Plasticity. In: Saleem Hashmi (editor-in-chief), Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier; 2016. pp. 1-24. ISBN: 978-0-12-803581-8 Copyright © 2016 Elsevier Inc. unless otherwise stated. All rights reserved. Author's personal copy Mechanics of Materials: Plasticity$ VA Lubarda, University of California, San Diego, CA, USA r 2016 Elsevier Inc. All rights reserved. 1 Yield Surface 1 1.1 Yield Surface in Strain Space 2 1.2 Yield Surface in Stress Space 2 2 Plasticity Postulates, Normality and Convexity
    [Show full text]
  • Necking True Stress – Strain Data Using Instrumented Nanoindentation
    CORRECTION OF THE POST – NECKING TRUE STRESS – STRAIN DATA USING INSTRUMENTED NANOINDENTATION by Iván Darío Romero Fonseca A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Charlotte 2014 Approved by: Dr. Qiuming Wei Dr. Harish Cherukuri Dr. Alireza Tabarraei Dr. Carlos Orozco Dr. Jing Zhou ii ©2014 Iván Darío Romero Fonseca ALL RIGHTS RESERVED iii ABSTRACT IVÁN DARÍO ROMERO FONSECA. Correction of the post-necking True Stress-Strain data using instrumented nanoindentation. (Under the direction of DR. QIUMING WEI) The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material’s behavior after the onset of necking The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress- strain curve.
    [Show full text]
  • Analysis of Post-Necking Behavior in Structural Steels Using a One-Dimensional Nonlocal Model
    Engineering Structures 180 (2019) 321–331 Contents lists available at ScienceDirect Engineering Structures journal homepage: www.elsevier.com/locate/engstruct Analysis of post-necking behavior in structural steels using a one- dimensional nonlocal model T ⁎ Yazhi Zhua, Amit Kanvindeb, , Zuanfeng Pana a Department of Structural Engineering, Tongji University, Shanghai 200092, China b Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, United States ARTICLE INFO ABSTRACT Keywords: In modeling necking in steel bars subjected to uniaxial tension using a classical one-dimensional elastoplastic Diffuse necking continuum, numerical results exhibit strong mesh dependency without convergence upon mesh refinement. The Strain localization strain localization and softening with respect to necking in structural steels is induced by hybrid material and Mesh sensitivity geometric nonlinearities rather than material damage. A one-dimensional nonlocal model is proposed to address Nonlocal formulations these numerical difficulties and to provide an enhanced numerical representation of necking-induced localiza- Characteristic length tion in structural steels for the potential implementation in fiber-based formulations. By introducing a char- Structural steels acteristic length and a nonlocal parameter to the standard constitutive model, the enhanced nonlocal continuum provides a well-posed governing equation for the necking problem. The finite element calculations based on this one-dimensional nonlocal model give rise to objective solutions, i.e., numerical results converge under mesh refinement. In addition, the size of the necking region also exhibits mesh-independence. The characteristic length and nonlocal parameter significantly influence the post-necking response and the dimension of the necked region. Comparison of the local and global response of necking between one-dimensional analysis and 3D si- mulations demonstrates that the proposed model is capable of accurately characterizing the post-necking be- havior.
    [Show full text]
  • Measuring the Ductility of Metals
    Measuring the Ductility of Metals By Richard Gedney ADMET, Inc. Ductility is defined as the ability of a material to deform plastically before fracturing. Its measurement is of interest to those conducting metal forming processes; to designers of machines and structures; and to those responsible for assessing the quality of a material that it is being produced. Measures of Ductility Two measures of ductility are Elongation and Reduction of Area. The conventional means by which we obtain these measures is by pulling a specimen in tension until fracture. ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials governs the determination of Elongation and Reduction of Area for metals. Elongation is defined as the increase in the gage length of a test piece subjected to tensile forces divided by the original gage length. Elongation is expressed as a percentage of the original gage length and is given by: ∆푳 푷풆풓풄풆풏풕 푬풍풐풏품풂풕풊풐풏 = × ퟏퟎퟎ Eq. 1 푳ퟎ Where: 푳ퟎ is the original gage length. ∆푳 is the change in length of the original gage length. Measured after the specimen fractures and the specimen is fitted together (see Figure 2). The original gage length, 퐿0, as specified in ASTM E8 is usually 1.0 in, 2.0 in, 4.0 in or 8.0 inches and is dependent on the size of the specimen. A punch is often used to apply the gage marks to each specimen (see Figure 1). The change in gage length, L, is determined by carefully fitting the ends of the fractured specimen together and measuring the distance between the gage marks (see Figure 2).
    [Show full text]
  • ME 4733: Deformation and Fracture of Engineering Materials Problem Set 1
    ME 4733: Deformation and Fracture of Engineering Materials Spring 2002 Problem Set 1 1) Hertzberg, 1.3 A 200-mm-long rod with a diameter of 2.5mm is loaded with a 2000-N weight. If the diameter decreases to 2.2 mm, compute the following: (a) The final length of the rod. (b) The true stress and true strain at this load. (c) The engineering stress and strain at this load. Solution: = = (a) Initial state: diameter do 25.mm, l0 200mm = Final state: diameter d f 22.mm, lf Assume this is a constant-volume process d 2 d 2 ππ0 ⋅=l f ⋅l 440 f 2 2 d 25. ⇒ The final length of the rod is l = 0 ⋅=l ⋅=200mm 258. 26 mm f 0 d f 22. P 2000N (b) The true stress is σ = = = 526. 4MPa; true d 22(.22mm ) π ⋅ f 314. ⋅ 4 4 l ε ==f 258. 26 = The true strain is true ln ln 0. 2556. l0 200 P 2000N (c) The engineering stress is σ = = = 407. 4MPa; true d 22(.25mm ) π ⋅ 0 314. ⋅ 4 4 ll− − ε = f 0 = 258. 26 200 = The engineering strain is true 0. 2913. l0 200 Note: (1) In tensile test, the true stress is always higher than engineering stress. How about in compressive state? (2) In tensile test, the true strain is always lower than engineering strain. 2) Hertzberg, 1.8 A 5-cm-long circular rod of 1080 as-rolled steel (diameter=1.28cm) is loaded to failure in tension. What was the load necessary to break the sample? If 80% of the total elongation was uniform in character prior to the onset of localized deformation, computer the true stress at the point of incipient necking.
    [Show full text]
  • Effect of the Specimen Size on Necking Development in Metals and Alloys During Superplastic Deformation A.G
    Materials Physics and Mechanics 46 (2020) 1-6 Received: October 27, 2020 EFFECT OF THE SPECIMEN SIZE ON NECKING DEVELOPMENT IN METALS AND ALLOYS DURING SUPERPLASTIC DEFORMATION A.G. Sheinerman* Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, St. Petersburg 199178, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia *e-mail: [email protected] Abstract. A model is proposed that describes the development of individual and multiple necks in superplastically deformed materials. Within the model, the examined samples have the form of round bars and are subjected to tensile superplastic deformation without strain hardening. It is demonstrated that neck development and necking-induced failure occur faster with a decrease in strain rate sensitivity and/or an increase in the fraction of the sample length occupied by necks. This means that high values of strain to failure observed in small specimens of superplastically deformed ultrafine-grained metals and alloys, where diffuse necking happens in the whole specimen, can be significantly reduced in larger specimens where the necking regions occupy only a small part of the sample. Keywords: superplastic deformation, necking, ductility, failure, ultrafine-grained materials 1. Introduction It is known that the ductility of metals and alloys under superplastic deformation is often limited by cavitation or diffuse necking (e.g., [1]). In particular, diffuse necking is often observed in ultrafine-grained (ufg) alloys demonstrating superplastic deformation or superplastic behavior (e.g., [2,3]). Due to the difficulty in making nanostructured materials large enough for standard mechanical testing, to measure the mechanical properties of such materials, many researchers have been using small samples [4].
    [Show full text]
  • Study on True Stress Correction from Tensile Tests Choung, J
    Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1039~1051 www.springerlink.com/content/1738-494x Study on true stress correction from tensile tests Choung, J. M.1,* and Cho, S. R.2 1Hyundai Heavy Industries Co., LTD, Korea 2School of Naval Architecture and Ocean Engineering, University of Ulsan, Korea (Manuscript Received June 5, 2007; Revised March 3, 2008; Accepted March 6, 2008) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Abstract Average true flow stress-logarithmic true strain curves can be usually obtained from a tensile test. After the onset of necking, the average true flow stress-logarithmic true strain data from a tensile specimen with round cross section should be modified by using the correction formula proposed by Bridgman. But there have been no firmly established correction formulae applicable to a specimen with rectangular cross section. In this paper, a new easy-to-use formula is presented based on parametric finite element simulations. The new formula requires only incremental plastic strain and hardening exponents of the material, which are simply presented from a tensile test. The newly proposed formula is verified with experimental data for high strength steel DH32 used in the shipbuilding and offshore industry and is proved to be effective during the diffuse necking
    [Show full text]
  • UNIVERSITY of CALIFORNIA Department of Materials Science & Engineering
    Date: 10/31/2013 UNIVERSITY OF CALIFORNIA Department of Materials Science & Engineering Professor Ritchie MSE 113 Mechanical Behavior of Materials Midterm Exam #2 Name: ________________________________________________________________________ SID #: ________________________________________________________________________ Problem Total Score 1 35 2 40 3 25 1) Deformation (35 points) You are given a uniaxial tensile specimen, with in a uniform cross-sectional area, of a ductile polycrystalline material that behaves according to the following constitutive law: where and are, respectively, the normal true stress and strain, n is the strain hardening coefficient and k is a scaling constant. a) On the uniaxial tensile stress-strain diagram below, draw and label the following: i. engineering stress vs. engineering strain ii. true stress vs. true strain iii. where necking occurs iv. the ultimate tensile strength, Su b) Briefly explain (3 sentences or less) the difference between true stress-strain and engineering stress-strain diagrams. c) Briefly describe (3 sentences or less) what occurs at the microscopic and macroscopic scales at the onset of: i. plastic deformation ii. necking d) Derive i. an expression relating true stress to engineering stress and engineering strain only ii. an expression relating true strain to engineering strain only iii. expressions for the true and engineering strains at necking Clearly state the assumptions that you make in the derivations Solution 1a) σ ε 1b) True stress-strain compensates for changing cross sectional area, while engineering stress-strain uses the original area. 1c) i. Microscopically, plastic deformation results from dislocation motion and bond breaking. On a macroscopic scale, this results in permanent deformation when the load is removed.
    [Show full text]
  • Stress-Strain Concepts Revisited-Part 2-Issue 46-October 2012
    Issue No. 46 – October 2012 Updated from Original May 2004 Publication Stress-Strain Concepts Revisited – Part 2 More stress in your life! – A continued discussion Last month’s edition of Technical Tidbits started to explore the concepts of properties that can that goes back to the be obtained from a material’s stress-strain curve. This is a continuation of that discussion. basics with an in-depth discussion of stress and After the yield strength is exceeded, the stress-strain curve continues to rise to a maximum point strain concepts. known as the tensile strength or the ultimate tensile strength. The strain up to this point is referred to as uniform strain, since the deformation in the specimen is uniform. However, once the tensile strength is exceeded, the test specimen begins to thin down, or neck, at some location along the length. All of the rest of the deformation to failure occurs at this point as the stress is . Tensile concentrated in this area of reduced cross section. Since the engineering stress is determined by Strength dividing the force load by the original cross sectional area, the engineering stress-strain curve begins to slope downward at this point, despite the fact that the actual stress in the specimen . Necking continues to increase. The curve continues until the specimen breaks when the fracture stress is . reached. True Stress & Strain True stress is determined by dividing the load by the smallest actual minimum cross sectional area of the specimen at any given time. The corresponding true strain at each point of the .
    [Show full text]
  • A Theory of Necking in Semi-Crystalline Polymers
    A theory of necking in semi-crystalline polymers A. I. Leonov Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, USA. Abstract Necking or cold drawing is a smoothed jump in cross-sectional area of long and thin bars (filaments or films) propagating with a constant speed. The necks in polymers, first observed about seventy years ago, are now commonly used in modern processing of polymer films and fibers. Yet till recently there was a lack in fundamental understanding of necking mechanism(s). For semi-crystalline polymers with co-existing amorphous and crystalline phases, recent experiments revealed that such a mechanism is related to unfolding crystalline blocks. Using this idea, this paper develops a theoretical model and includes it in a general continuum framework. Additionally, the paper explains the “forced” (reversible) elasticity observed in slowly propagating polymeric necks, and also briefly analyses the viscoelastic effects and dissipative heat generation when polymer necks propagate fast enough. Keywords: Necking; Elongation; Semi-crystalline polymers; Propagation speed; Stretch ratio; Forced elasticity 1. Introduction The necking phenomena usually occur when a homogeneous solid polymeric bar (film or filament), with a non-monotonous dependence of axial force S on stretching ratio λ , is stretched uniaxially in the region of S()λ non-monotony. In this case the polymer bar is not deformed homogeneously. Instead, two almost uniform sections occur in the sample: one being nearly equal to its initial thickness and another being considerably thinner in the cross-sectional dimensions. These sections are jointed by a relatively short transition (necking) zone that propagates with a constant speed along the bar as a stepwise wave in the direction of the bar’s thick end (Fig.1).
    [Show full text]
  • Chapter 3: Tensile Testing Introduction
    OHP 1 Mechanical Properties of Materials Chapter 3: Tensile Testing Prof. Wenjea J. Tseng (曾文甲) Department of Materials Engineering National Chung Hsing University [email protected] Reference: W.F. Hosford (Cambridge, 2010) ); N.E. Dowling (Pearson, 2007); G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, 1988) Introduction • Tensile properties are used in selecting materials for various applications. Material specifications often include minimum tensile properties to ensure quality. Tensile tests must be made to ensure that materials meet these specifications. The tensile stress-strain curves can be used to predict a material’s behavior under loading forms other than the uni-axial tension. 1 Tensile-testing Machine ‧ A modern tensile-testing machine allows users to select force, strain, strain rate, stroke motion that can be enforced upon a test specimen. Linear variable differential transformers (LVDTs) are used to measure displacements accurately. Load Cell Extensometer LVDT Standard Test Methods • The measured values of materials properties require that everyone who makes these measurements does so in a consistent way; therefore, the safety and reliability of engineering materials can be defined quantitatively. • The American Society for Testing and Materials (ASTM) • International Organization for Standardization (ISO) • Japanese Industrial Standards (JIS) • CNS國家標準 Typical grips for a tension test from ASTM E8 / E8M – 09: Standard Test Methods for Tension Testing of Metallic Materials. 2 Tensile Specimens • The figure below shows a typical tensile specimen. The cross- sectional area of the gauge section is less than that of the shoulders and grip section, so the deformation will occur in the gauge section. According to St. Venant’s principle, the gauge section should be long compared to the diameter (typically four times).
    [Show full text]