Model Mice for Mild-Form Glycine Encephalopathy: Behavioral And

Total Page:16

File Type:pdf, Size:1020Kb

Model Mice for Mild-Form Glycine Encephalopathy: Behavioral And 0031-3998/08/6403-0228 Vol. 64, No. 3, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. ARTICLES Model Mice for Mild-Form Glycine Encephalopathy: Behavioral and Biochemical Characterizations and Efficacy of Antagonists for the Glycine Binding Site of N-Methyl D-Aspartate Receptor KANAKO KOJIMA-ISHII, SHIGEO KURE, AKIKO ICHINOHE, TOSHIKATSU SHINKA, AYUMI NARISAWA, SHOKO KOMATSUZAKI, JUNNKO KANNO, FUMIAKI KAMADA, YOKO AOKI, HIROYUKI YOKOYAMA, MASAYA ODA, TAKU SUGAWARA, KAZUO MIZOI, DAIICHIRO NAKAHARA, AND YOICHI MATSUBARA Department of Medical Genetics [K.K.-I., S.K., A.I., T.S., A.N., S.K., J.K., F.K., Y.A., Y.M.], Department of Pediatrics [H.Y.], Tohoku University School of Medicine, Miyagi, 980-8574, Japan; Department of Neurosurgery [M.O., T.S., K.M.], Akita University School of Medicine, Akita, 010-8502, Japan; Department of Psychology [D.N.], Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan ABSTRACT: Glycine encephalopathy (GE) is caused by an inher- genase, which are encoded by GLDC, AMT, GCSH and GCSL, ited deficiency of the glycine cleavage system (GCS) and character- respectively (2). A defect of any component can lead to ized by accumulation of glycine in body fluids and various neuro- defective overall activity of the GCS. GLDC, AMT and GCSH logic symptoms. Coma and convulsions develop in neonates in mutations have been reported in GE patients (3,4). Patients typical GE while psychomotor retardation and behavioral abnormal- with typical GE have severe symptoms such as convulsions, ities in infancy and childhood are observed in mild GE. Recently, we have established a transgenic mouse line (low-GCS) with reduced respiratory failure and lethargy in the neonatal period, fre- GCS activity (29% of wild-type (WT) C57BL/6) and accumulation quently leading to death. Patients with mild GE do not expe- of glycine in the brain (Stroke, 2007; 38:2157). The purpose of the rience coma or convulsive seizures in the neonatal period, but present study is to characterize behavioral features of the low-GCS manifest developmental delay and behavioral abnormalities in mouse as a model of mild GE. Two other transgenic mouse lines infancy and childhood (5–7). They tend to be hyperirritable, were also analyzed: high-GCS mice with elevated GCS activity and hyperactive and aggressive characteristics, which are often low-GCS-2 mice with reduced GCS activity. As compared with problematic for their families. Patients with mild GE are controls, low-GCS mice manifested increased seizure susceptibility, thought to have increased susceptibility to seizures. Mild GE aggressiveness and anxiety-like activity, which resembled abnormal behaviors reported in mild GE, whereas high-GCS mice were less tends to be characterized by higher GCS residual activity than sensitive to seizures, hypoactive and less anxious. Antagonists for the typical GE (8,9). No effective therapy has been established for glycine-binding site of the N-methyl-D-aspartate receptor signifi- either typical or mild GE. cantly ameliorated elevated locomotor activity and seizure suscepti- Glycine is a major neurotransmitter, which plays a dual role bility in the low-GCS mice. Our results suggest the usefulness of in CNS. It acts on the inhibitory glycine receptor in spinal cord low-GCS mice as a mouse model for mild GE and a novel therapeutic and brainstem (10), as well as a coagonist of N-methyl-D- strategy. (Pediatr Res 64: 228–233, 2008) aspartate-sensitive (NMDA) glutamate receptors in the cortex, hippocampus, cerebellum and brainstem (11). Enzymatic ac- lycine encephalopathy (GE) is an inborn error of metab- tivity of the GCS is high in the forebrain and cerebellum and G olism characterized by glycine accumulation in plasma, low in the spinal cord, while the inhibitory glycine receptors cerebrospinal fluid and various organs including the brain (1). are mainly distributed in the brainstem and spinal cord, sug- The fundamental defect of GE lies in the mitochondrial gly- gesting that the GCS is co-localized with NMDA receptors cine cleavage system (GCS). The GCS is an enzyme complex, (12,13). Therefore, the GCS would play a role in regulation of which breaks down glycine to carbon dioxide, ammonia and extracellular glycine concentration in the vicinity of NMDA one-carbon units. The GCS is composed of four individual receptors, rather than the inhibitory glycine receptors. proteins: glycine decarboxylase (GLDC), aminomethyl trans- Recently, we generated a transgenic mouse line, designated ferase, aminomethyl carrier protein, and lipoamide dehydro- as low-GCS, expressing dominant-negative GLDC cDNA to reduce GCS activity (14). The low-GCS mouse has 29% of Received November 6, 2007; accepted April 3, 2008. normal GCS activity in CNS, and shows elevated glycine Corresponding Author: Shigeo Kure, M.D., Department of Medical Genetics, Tohoku concentration in extracellular fluid. A transgenic mouse line University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, over expressing normal glycine decarboxylase cDNA, desig- Japan, Tel: ϩ81-22-717-8138, Fax: ϩ81-22-717-8142. e-mail: [email protected] Financial support: This work was supported by a grant from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and a grant from the Ministry of Health, Abbreviations: GCS, glycine cleavage system; GE, glycine encephalopathy; Labour, and Public Welfare in Japan. GLDC, glycine decarboxylase; NMDA, N-methyl-D-aspartate; 5-HT, serotonin 228 MILD GLYCINE ENCEPHALOPATHY MODEL MICE 229 nated as high-GCS, was also established, which showed ele- Experimental mice were kept in a controlled environment at 21 Ϯ 2°C and vated GCS activity and a lower extracellular concentration of 40–60% air humidity in a 12/12 h light/dark cycle with food and water ad libitum. C57BL/6 mice were purchased from Japan SLC Co. Ltd. glycine in CNS. Using these two mouse lines, we have found (Hamamatsu, Japan). Each transgenic mouse line was backcrossed with that ischemic injury depends on the extracellular level of C57BL/6 mice more than 10 generations and used for behavioral studies. glycine. We have also demonstrated that an antagonist for the Measurement of locomotor activity. The locomotor activity of the mice was measured by sensor, which detected infrared energy emitted by the mouse glycine site of the NMDA receptor significantly ameliorates (Supermex; Muromachi Kikai, Tokyo, Japan). The mice were placed in a the ischemic injury in low-GCS mice. novel test cage (30 ϫ 20 ϫ 13 cm) with paper-chip bedding, and measure- The purpose of this study is to characterize the behavioral ment was commenced 30 min later. Spontaneous locomotor activity of 6 to 8 wk-old female mice was measured for 24 h. Data were expressed as mean Ϯ features of the low-GCS mouse as a model for mild GE by SD and analyzed by one-way analysis of variance (ANOVA) with the post examining locomotor activity, seizure susceptibility, aggres- hoc Fisher’s PLSD test. siveness and anxiety-related behavior, which are reported as Seizure induced by an electroshock. Seizure susceptibility was evaluated by measuring the durations of each phase of convulsion induced by electro- behavioral features associated with patients with mild GE. We shock (15). The tonic phase was regarded as the period between the onset of compared the low-GCS mice not only with wild-type (WT) hind-limb extension and the beginning of myoclonic jerks, the clonic phase as C57BL/6 mice, but also with high-GCS mice and another that during myoclonic jerks and the convulsive coma phase as that between transgenic mouse line with low GCS activity designated as the the end of myoclonic jerks and the recovery of the righting reflex. Data were expressed as mean Ϯ SD and analyzed by one-way ANOVA with the post hoc low-GCS-2 mouse line. Results of an experimental therapy in Fisher’s PLSD test. which antagonists of the NMDA glutamate receptor were Resident-intruder test. A resident-intruder test has been developed for applied to those model mice suggest the possibility of a novel evaluation of male aggressiveness (16). Male mice, 12–18 wk of age (resi- dents) were kept isolated in separate cages for at least 2 wk. The home cages treatment of mild GE. of the resident mice were not changed during isolation. A group-housed Balb/c male mouse was used as an intruder. Residents were previously MATERIALS AND METHODS exposed to an intruder twice a week for a total of four 15-min confrontations. When an intruder was introduced into the home cage of the resident at the fifth This study was performed according to fundamental guidelines of proper confrontation, the latency to the first attack bite was noted and the total conduct of animal experiment and related activities in Academic Research number of attack bites was recorded for 15 min. A mouse that had had no Institutions of Japan. Animal experiment committee of Tohoku University previous contact with the resident was used as the intruder at each confron- School of Medicine approved this study (approval number, 8-26, 1998). tation. We defined latency less than 30s as short latency and more than 30 Transgenic mice. Establishment and characterization of two transgenic attacks as frequent attack. The proportion of short latency and frequent attacks mouse lines, high-GCS and low-GCS, have been previously reported (14). In in each mouse line was compared with that of the WT mice by Fisher’s exact this study we used another mouse line with transgenic expression of a test. dominant-negative GLDC, designated as low-GCS-2, which was established Elevated-plus maze. The elevated-plus maze test is widely used for by injection of the same transgenic vector with the low-GCS mouse (Fig.
Recommended publications
  • GCSH Rabbit Pab
    Leader in Biomolecular Solutions for Life Science GCSH Rabbit pAb Catalog No.: A3880 Basic Information Background Catalog No. Degradation of glycine is brought about by the glycine cleavage system, which is A3880 composed of four mitochondrial protein components: P protein (a pyridoxal phosphate- dependent glycine decarboxylase), H protein (a lipoic acid-containing protein), T protein Observed MW (a tetrahydrofolate-requiring enzyme), and L protein (a lipoamide dehydrogenase). The 28kDa protein encoded by this gene is the H protein, which transfers the methylamine group of glycine from the P protein to the T protein. Defects in this gene are a cause of nonketotic Calculated MW hyperglycinemia (NKH). Two transcript variants, one protein-coding and the other 18kDa probably not protein-coding,have been found for this gene. Also, several transcribed and non-transcribed pseudogenes of this gene exist throughout the genome. Category Primary antibody Applications WB Cross-Reactivity Human Recommended Dilutions Immunogen Information WB 1:500 - 1:1000 Gene ID Swiss Prot 2653 P23434 Immunogen A synthetic peptide of human GCSH Synonyms GCSH;GCE;NKH Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at 4℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide, pH7.3. Validation Data Western blot analysis of extracts of T47D cells, using GCSH antibody (A3880). Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes.
    [Show full text]
  • Clinical Issues in Neonatal Care
    Linda Ikuta , MN, RN, CCNS, PHN , and Ksenia Zukowsky, PhD, APRN, NNP-BC ❍ Section Editors Clinical Issues in Neonatal Care 2.5 HOURS Continuing Education Deconstructing Black Swans An Introductory Approach to Inherited Metabolic Disorders in the Neonate Nicholas Ah Mew , MD ; Sarah Viall , MSN, PPCNP ; Brian Kirmse , MD ; Kimberly A. Chapman , MD, PhD ABSTRACT Background: Inherited metabolic disorders (IMDs) are individually rare but collectively common disorders that frequently require rapid or urgent therapy. Purpose: This article provides a generalized approach to IMDs, as well as some investigations and safe therapies that may be initiated pending the metabolic consult. Methods/Search Strategy: An overview of the research supporting management strategies is provided. In addition, the newborn metabolic screen is reviewed. Findings/Results: Caring for infants with IMDs can seem difficult because each of the types is rarely seen; however, collectively the management can be seen as similar. Implications for Practice: When an IMD is suspected, a metabolic specialist should be consulted for expert advice regarding appropriate laboratory investigations and management. Because rapid intervention of IMDs before the onset of symptoms may prevent future irreversible sequelae, each abnormal newborn screen must be addressed promptly. Implications for Research: Management can be difficult. Research in this area is limited and can be difficult without multisite coordination since sample sizes of any significance are difficult to achieve. Key Words:
    [Show full text]
  • Inherited Metabolic Disease
    Inherited metabolic disease Dr Neil W Hopper SRH Areas for discussion • Introduction to IEMs • Presentation • Initial treatment and investigation of IEMs • Hypoglycaemia • Hyperammonaemia • Other presentations • Management of intercurrent illness • Chronic management Inherited Metabolic Diseases • Result from a block to an essential pathway in the body's metabolism. • Huge number of conditions • All rare – very rare (except for one – 1:500) • Presentation can be non-specific so index of suspicion important • Mostly AR inheritance – ask about consanguinity Incidence (W. Midlands) • Amino acid disorders (excluding phenylketonuria) — 18.7 per 100,000 • Phenylketonuria — 8.1 per 100,000 • Organic acidemias — 12.6 per 100,000 • Urea cycle diseases — 4.5 per 100,000 • Glycogen storage diseases — 6.8 per 100,000 • Lysosomal storage diseases — 19.3 per 100,000 • Peroxisomal disorders — 7.4 per 100,000 • Mitochondrial diseases — 20.3 per 100,000 Pathophysiological classification • Disorders that result in toxic accumulation – Disorders of protein metabolism (eg, amino acidopathies, organic acidopathies, urea cycle defects) – Disorders of carbohydrate intolerance – Lysosomal storage disorders • Disorders of energy production, utilization – Fatty acid oxidation defects – Disorders of carbohydrate utilization, production (ie, glycogen storage disorders, disorders of gluconeogenesis and glycogenolysis) – Mitochondrial disorders – Peroxisomal disorders IMD presentations • ? IMD presentations • Screening – MCAD, PKU • Progressive unexplained neonatal
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • AMT Gene Aminomethyltransferase
    AMT gene aminomethyltransferase Normal Function The AMT gene provides instructions for making an enzyme called aminomethyltransferase. This protein is one of four enzymes that work together in a group called the glycine cleavage system. Within cells, this system is active in specialized energy-producing centers called mitochondria. As its name suggests, the glycine cleavage system breaks down a molecule called glycine by cutting (cleaving) it into smaller pieces. Glycine is an amino acid, which is a building block of proteins. This molecule also acts as a neurotransmitter, which is a chemical messenger that transmits signals in the brain. The breakdown of excess glycine when it is no longer needed is necessary for the normal development and function of nerve cells in the brain. The breakdown of glycine by the glycine cleavage system produces a molecule called a methyl group. This molecule is added to and used by a vitamin called folate. Folate is required for many functions in the cell and is important for brain development. Health Conditions Related to Genetic Changes Nonketotic hyperglycinemia Mutations in the AMT gene account for about 20 percent of all cases of nonketotic hyperglycinemia. This condition is characterized by abnormally high levels of glycine in the body (hyperglycinemia). Affected individuals have serious neurological problems. The signs and symptoms of the condition vary in severity and can include severe breathing difficulties shortly after birth as well as weak muscle tone (hypotonia), seizures, and delayed development of milestones. More than 70 mutations have been identified in affected individuals. Most of these genetic changes alter single amino acids in aminomethyltransferase.
    [Show full text]
  • Amino Acid Disorders
    471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue.
    [Show full text]
  • Genetics Newborn Screening Program Health Professional Fact Sheet
    Genetics Newborn Screening Program Health Professional Fact Sheet Nonketotic Hyperglycinemia (NKH) also known as Glycine Encephalopathy Introduction Nonketotic hyperglycinemia (NKH) is an autosomal recessive inborn error of glycine degradation in which large quantities of glycine accumulate in all body tissues, including the central nervous system. The defect is in the glycine cleavage enzyme complex (GCS) which catalyzes the major reaction of glycine degradation and is composed of four proteins (P-, H-, T-, and L-Protein) encoded on four different chromosomes. Defects in the P, H, and T proteins have been identified in NKH. Over 80 percent of patients with the neonatal phenotype have a defect in the P-protein. Later onset cases are more likely to have defects in the H- or T-proteins. Although glycine plays many roles in intermediary metabolism, the symptoms of NKH seem to relate to glycine’s function as a neurotransmitter. Clinical Features Neonatal form: Most patients have the neonatal phenotype, presenting in the first few days of life with lethargy, hypotonia, and refusal to feed. Wandering eye movements and intermittent ophthalmoplegia are frequent. Most patients have normal to increased deep-tendon reflexes. As the encephalopathy progresses to coma, the infants develop frequent segmental myoclonic jerks, apneic episodes, and hiccups. Even with respiratory support, approximately 30 percent of patients die in the neonatal period. Those who regain spontaneous respiration develop intractable seizures and profound mental retardation. Routine laboratory studies of children with NKH are remarkably normal, given the severe neurologic abnormalities. The only consistent abnormality is elevation of glycine concentrations in urine, plasma, and cerebrospinal fluid.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
    US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Amino Acid Disorders Detected by Quantitative Amino Acid HPLC Analysis in Thailand: an Eight-Year Experience
    ارا ه ت ه از $&% #ت "! Clinica Chimica Acta 413 (2012) 1141–1144 Contents lists available at SciVerse ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Amino acid disorders detected by quantitative amino acid HPLC analysis in Thailand: An eight-year experience Nithiwat Vatanavicharn ⁎, Pisanu Ratanarak, Somporn Liammongkolkul, Achara Sathienkijkanchai, Pornswan Wasant Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand article info abstract Article history: Background: Amino acid disorders are a major group of inborn errors of metabolism (IEM) with variable clin- Received 13 October 2011 ical presentations. This study was aimed to provide the data of amino acid disorders detected in high-risk Received in revised form 16 March 2012 Thai patients referred to our metabolic lab from all over the country. Accepted 20 March 2012 Methods: From 2001 to 2009, we analyzed amino acids by HPLC in 1214 plasma and cerebrospinal fluid spec- Available online 23 March 2012 imens. These specimens were obtained from patients with clinical suspicion of IEM or with positive newborn screening. The clinical data of the patients with confirmed diagnoses of amino acid disorders were also ana- Keywords: lyzed. Amino acid disorders HPLC Results: Fifty-eight patients were diagnosed with amino acid disorders, including 20 cases (34.5%) with maple Thailand syrup urine disease, 13 (22.4%) with phenylketonuria and hyperphenylalaninemia, 13 (22.4%) with nonke- totic hyperglycinemia, 9 (15.5%) with urea cycle defects, 2 (3.4%) with classical homocystinuria, and 1 (1.7%) with ornithine aminotransferase deficiency. There was considerable delay in diagnoses which led to poor outcomes in most patients.
    [Show full text]
  • Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
    Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories.
    [Show full text]
  • The MER41 Family of Hervs Is Uniquely Involved in the Immune-Mediated Regulation of Cognition/Behavior-Related Genes
    bioRxiv preprint doi: https://doi.org/10.1101/434209; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The MER41 family of HERVs is uniquely involved in the immune-mediated regulation of cognition/behavior-related genes: pathophysiological implications for autism spectrum disorders Serge Nataf*1, 2, 3, Juan Uriagereka4 and Antonio Benitez-Burraco 5 1CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France. 2 University of Lyon 1, Lyon, France. 3Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France. 4Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, USA. 5Department of Spanish, Linguistics, and Theory of Literature (Linguistics). Faculty of Philology. University of Seville, Seville, Spain * Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/434209; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Interferon-gamma (IFNa prototypical T lymphocyte-derived pro-inflammatory cytokine, was recently shown to shape social behavior and neuronal connectivity in rodents. STAT1 (Signal Transducer And Activator Of Transcription 1) is a transcription factor (TF) crucially involved in the IFN pathway.
    [Show full text]