IEEE 802.11 HIPERLAN, WATM, BRAN, HIPERLAN2 Bluetooth RF Comparison

Total Page:16

File Type:pdf, Size:1020Kb

IEEE 802.11 HIPERLAN, WATM, BRAN, HIPERLAN2 Bluetooth RF Comparison 7. Wireless Local Area Networks Characteristics IEEE 802.11 HIPERLAN, WATM, BRAN, HIPERLAN2 Bluetooth RF Comparison © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 1 Characteristics of Wireless LANs Advantages: – Very flexible within the reception area – Ad-hoc networks without previous planning possible – (Almost) no wiring difficulties: •E.g., historic buildings, firewalls – More robust against disasters like: • E.g., earthquakes, fire - or users pulling a plug – Quite cheap networking infrastructures possible Drawbacks: – Typically very low bandwidth compared to wired networks: 1-10 Mbit/s and error rates of about 10-4 instead of 10-12 – Many proprietary solutions, especially for higher bit-rates: • Standards take their time, e.g., IEEE 802.11 – Products have to follow many national restrictions if working wireless: • It takes a vary long time to establish global solutions like, e.g., IMT-2000 – Lack of security, “open” air interface, War Driving © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 2 1 Design Goals for Wireless LANs Global, seamless operation Low power for battery use No special permissions or licenses needed to use the LAN Robust transmission technology Simplified spontaneous co-operation at meetings Easy to use for everyone, simple management Protection of investment in wired networks Security: – No one should be able to read my data Privacy: – No one should be able to collect user profiles Safety, low radiation Transparency concerning applications and higher layer protocols, but also location awareness if necessary © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 3 Comparison: Infrared vs. Radio Transmission Infrared: Radio: – Uses IR diodes, multiple reflections, – Typically using the license free ISM diffuse light, e.g., walls or furniture band at 2.4 GHz Advantages: Advantages: – Simple, cheap, available in many mobile – Experience from wireless WAN and devices mobile phones can be used – No licenses needed – coverage of larger areas possible, – Simple shielding possible e.g., radio can penetrate walls, furniture Drawbacks: – Interference by sunlight, heat sources Drawbacks: – Many things shield/absorb IR light, LoS – Very limited license free frequency – Low bandwidth (115 kbit/s … 4 Mbit/s) bands – Shielding more difficult, interference Example: with other electrical devices – IrDA (Infrared Data Association) interface available everywhere at Examples: 900 nm wave length – WaveLAN, HIPERLAN, Bluetooth © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 4 2 Comparison: Infrastructure vs. Ad-hoc Nets Infrastructure-based Network AP: Access Point AP AP Wired Network AP Ad-hoc Network © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 5 IEEE 802.11 — Architecture of an Infrastructure Network Station (STA): 802.11 LAN 802.x LAN – Terminal with access mechanisms to the wireless medium and radio contact to the access point STA1 BSS1 Basic Service Set (BSS): Access Portal – Group of stations using the same Point radio frequency Distribution System Access Point: Access – Station integrated into the wireless ESS Point LAN and the distribution system Portal: BSS2 – Bridge to other (wired) networks Distribution System: – Interconnection network to form one STA STA 2 802.11 LAN 3 logical network (ESS: Extended Service Set) based on several BSS © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 6 3 IEEE 802.11 — Architecture of an Ad-hoc Network Direct communication within a 802.11 LAN limited range: – Station (STA): STA1 • Terminal with access mechanisms STA IBSS1 3 to the wireless medium – Independent Basic Service Set (IBSS): • Group of stations using the same STA2 radio frequency IBSS2 STA5 STA4 802.11 LAN © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 7 IEEE Standard 802.11 Fixed Terminal Mobile Terminal Infrastructure Network Access Point Application Application TCP TCP IP IP LLC LLC LLC 802.11 MAC 802.11 MAC 802.3 MAC 802.3 MAC 802.11 PHY 802.11 PHY 802.3 PHY 802.3 PHY © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 8 4 IEEE 802.11 — Layers and Functions MAC: MAC Management: – Access mechanisms, fragmentation, – Authentication, synchronization, encryption roaming, MIB, power management PLCP Physical Layer Convergence Protocol: PHY Management: – Clear Channel Assessment (CCA) – Channel selection, MIB signal (carrier sense) Station Management: PMD Physical Medium Dependent: – Coordination of all management – Modulation, coding functions LLC MAC MAC Management PLCP PHY Management PHY DLC PMD Station Management © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 9 IEEE 802.11 — Physical layer 3 versions: 2 radio (typical 2.4 GHz), 1 IR: – Data rates of 1 Mbit/s mandatory and 2 Mbit/s optional FHSS (Frequency Hopping Spread Spectrum): – Spreading, de-spreading, signal strength, typical 1 Mbit/s, 79 channels US/EU – Min. 2.5 frequency hops/s (USA), two-level GFSK (Gauß FSK) modulation DSSS (Direct Sequence Spread Spectrum): – DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK) – Preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s – Chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code), 11 Mhz chipping rate – Max. radiated power 1 W (USA), 100 mW (EU), min. 1mW Infrared: – 850-950 nm, diffuse light, typical 10 m range – Carrier detection, energy detection, synchronization © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 10 5 IEEE 802.11 — FHSS PHY Packet Format Synchronization: – Synchronization with 010101... pattern SFD (Start Frame Delimiter): – 0000110010111101 start pattern PLW (PLCP_PDU Length Word): – Length of payload including 32 bit CRC of payload, PLW < 4096 byte PSF (PLCP Signaling Field): – Data of payload (1 or 2 Mbit/s): 0 = 1 Mbit/s, 10 = 2 Mbit/s etc. HEC (Header Error Check) – CRC with x16+x12+x5+1 80 16 12 4 16 variable bit Synchronization SFD PLW PSF HEC Payload PLCP Preamble PLCP Header © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 11 IEEE 802.11 — DSSS PHY Packet Format Synchronization: – Synchronization, gain setting, energy detection, frequency offset compensation SFD (Start Frame Delimiter): – 1111001110100000 Signal: – Data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK) Service: – Future use, 00: 802.11 compliant Length: – Length of the payload (measured in ms) HEC (Header Error Check) – Protection of signal, service, and length, x16+x12+x5+1, ITU-T-CRC-16 standard 128 16 8 816 16 variable bit Synchronization SFD Signal Service Length HEC Payload PLCP Preamble PLCP Header © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 12 6 IEEE 802.11 — MAC Layer DFWMAC (1) Traffic services (Roaming, Authentication, Energy Savings): – Asynchronous Data Service (mandatory): • Exchange of data packets based on “best-effort” • Support of broadcast and multicast, however, no QoS support – Time-Bounded Service (optional): • Implemented using PCF 3 Access methods: – DFWMAC-DCF CSMA/CA (mandatory) (Distributed Foundation Wireless MAC): • Collision avoidance via randomized „back-off“ mechanism • Minimum distance between consecutive packets • ACK packet for acknowledgements (not for broadcasts) – DFWMAC-DCF with RTS/CTS (optional): • Avoids hidden terminal problem DCF: Distributed Coordination Function – DFWMAC- PCF (optional): PCF: Point Coordination Function • Access point polls terminals according to a list © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 13 IEEE 802.11 — MAC Layer DFWMAC (2) Priorities (determine waiting time before medium access): – Defined through different Inter Frame Spaces (IFS) – No guaranteed, hard priorities – SIFS (Short Inter Frame Spacing): • Highest priority, for ACK, CTS, polling response: DSSS 10 ms, FHSS 28 ms – PIFS (Point Coordination Function IFS): • Medium priority, for time-bounded service using PCF, polling of terminals, PIFS = SIFS plus time slot duration – DIFS (Distributed Coordination Function IFS): • Lowest priority, for asynchronous data service, DIFS = SIFS plus 2 time slots DIFS DIFS PIFS SIFS Medium Busy Contention Next Frame t Direct access if Clear Channel Assessment (CCA) medium is free ≥ DIFS © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 14 7 IEEE 802.11 — CSMA/CA Access Method (1) Contention Window DIFS DIFS (randomized back-off mechanism) Medium Busy Next Frame Direct Access if t medium is free ≥ DIFS Slot Time – Station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) – If the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) – If the medium is busy, the station has to wait for a free IFS, then the station must wait additionally a random back-off time (collision avoidance, multiple of slot-time) – If another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness) © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 15 IEEE 802.11 — Competing Stations/Simple DIFS DIFS DIFS DIFS boe bor boe bor boe busy Station1 boe busy Station2 busy Station3 boe busy boe bor Station4 boe bor boe busy boe bor Station 5 t Medium not idle (frame, ack etc.) Busy boe Elapsed back-off time Packet arrival at MAC bor Residual back-off time © 2005 Burkhard Stiller and Jochen Schiller FU Berlin M7 – 16 8 IEEE 802.11 — CSMA/CA Access Method (2) Sending unicast packets:
Recommended publications
  • Structure of IEEE 802.11 Packets at Various Physical Layers
    Appendix A: Structure of IEEE 802.11 Packets at Various Physical Layers This appendix gives a detailed description of the structure of packets in IEEE 802.11 for the different physical layers. 1. Packet Format of Frequency Hopping Spread-spectrum Physical Layer (FHSS PHY) The packet is made up of the following elements (Figure A.1): 1.1 Preamble It depends on the physical layer and includes: – Synch: a sequence of 80 bits alterning 0 and 1, used by the physical circuits to select the correct antenna (if more than one are in use), and correct offsets of frequency and synchronization. – SFD: start frame delimiter consists of a pattern of 16 bits: 0000 1100 1011 1101, used to define the beginning of the frame. 1.2 Physical Layer Convergence Protocol Header The Physical Layer Convergence Protocol (PLCP) header is always transmitted at 1 Mbps and carries some logical information used by the physical layer to decode the frame: – Length of word of PLCP PDU (PLW): representing the number of bytes in the packet, useful to the physical layer to detect correctly the end of the packet. – Flag of signalization PLCP (PSF): indicating the supported rate going from 1 to 4.5 Mbps with steps of 0.5 Mbps. Even though the standard gives the combinations of bits for PSF (see Table A.1) to support eight different rates, only the modulations for 1 and 2 Mbps have been defined. – Control error field (HEC): CRC field for error detection of 16 bits (or 32 bits). The polynomial generator used is G(x)=x16 + x12 + x5 +1.
    [Show full text]
  • The Spirit of Wi-Fi
    Rf: Wi-Fi_Text Dt: 09-Jan-2003 The Spirit of Wi-Fi where it came from where it is today and where it is going by Cees Links Wi-Fi pioneer of the first hour All rights reserved, © 2002, 2003 Cees Links The Spirit of Wi-Fi Table of Contents 0. Preface...................................................................................................................................................1 1. Introduction..........................................................................................................................................4 2. The Roots of Wi-Fi: Wireless LANs...................................................................................................9 2.1 The product and application background: networking ..............................................................9 2.2 The business background: convergence of telecom and computers? ......................................14 2.3 The application background: computers and communications ...............................................21 3. The original idea (1987 – 1991).........................................................................................................26 3.1 The radio legislation in the US .................................................................................................26 3.2 Pioneers .....................................................................................................................................28 3.3 Product definition ......................................................................................................................30
    [Show full text]
  • A Comparison of HIPERLAN/2 and IEEE 802.11A Physical and MAC Layers
    Doufexi, A. , Armour, SMD., Nix, AR., & Bull, DR. (2000). A comparison of HIPERLAN/2 and IEEE 802.11a physical and MAC layers. In IEEE Symposium of Communications and Vehicular Technology (SCVT 2000), Leuven, Belgium (pp. 14 - 20). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/SCVT.2000.923334 Peer reviewed version Link to published version (if available): 10.1109/SCVT.2000.923334 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ A Comparison of HIPERLAN/2 and IEEE 802.11a Physical and MAC Layers Angela Doufexi, Simon Armour, Andrew Nix, David Bull Centre for Communications Research, University of Bristol, UK E-mail: A.Doufexi@ bristol.ac.uk, [email protected] Keywords: HIPERLAN/2, IEEE 802.1 1, Wireless LANs, OFDM Abstract This paper compares the HIPERLAN/2 and 802.11a standards and identifies their similarities and differences. At present, Wireless Local Area Networks (WLANs) The two standards differ primarily in the Medium Access supporting broadband multimedia communication are Control (MAC) [6,7] but some differences also occur in being developed and standardized. Two such standards are the physical layers. HIPERLAND, defined by ETSI BRAN and the IEEE’s 802.11a. These WLAN standards will provide data rates up The HIPERLh/2 radio network is defined in such a to 54 Mbps (in a channel spacing of 20 MHz) in the way that there are core independent Physical (I“)and 5.2GHz band.
    [Show full text]
  • Short-Range Wireless Communication This Page Intentionally Left Blank Short-Range Wireless Communication
    Short-range Wireless Communication This page intentionally left blank Short-range Wireless Communication Alan Bensky Newnes is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States © 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.
    [Show full text]
  • Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link
    NASA/CR—2014-216675 Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link Steven C. Bretmersky MTI Systems, Inc., Cleveland, Ohio William D. Bishop Verizon Federal Network Systems, LLC., Arlington, Virginia Justin E. Dailey MTI Systems, Inc., Cleveland, Ohio Christine T. Chevalier Vantage Partners, LLC, Brook Park, Ohio June 2014 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION.
    [Show full text]
  • HIPERSIM: a Sense Range Distinctive Simulation Environment for Hiperlan Systems
    This is a repository copy of HIPERSIM: A Sense Range Distinctive Simulation Environment for HiperLAN Systems. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116437/ Version: Accepted Version Article: Papadimitriou, G.I., Lagkas, T.D. orcid.org/0000-0002-0749-9794 and Pomportsis, A.S. (2003) HIPERSIM: A Sense Range Distinctive Simulation Environment for HiperLAN Systems. Simulation, 79 (8). pp. 462-481. ISSN 0037-5497 https://doi.org/10.1177/0037549703040235 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ HIPERSIM: A Sense Range Distinctive Simulation Environment for HiperLAN Networks G. I. Papadimitriou T. Lagkas A. S. Pomportsis Department of Informatics, Aristotle University, Box 888, 54124 Thessaloniki, Greece. Abstract This paper presents the simulator “HIPERSIM” which was developed and used to examine the behavior of HIPERLAN.
    [Show full text]
  • On IEEE 802.11: Wireless LAN Technology
    Preprint: http://arxiv.org/abs/1307.2661 Original Publication: International Journal of Mobile Network Communications & Telematics (IJMNCT) Vol. 3, Issue. 4, 2013. [DOI: 10.5121/ijmnct.2013.3405] On IEEE 802.11: Wireless LAN Technology Sourangsu Banerji1, Rahul Singha Chowdhury2 1, 2 Department of Electronics & Communication Engineering, RCC-Institute of Information Technology, India ABSTRACT: Network technologies are WMAN: Wireless Metropolitan Area Network; traditionally based on wireline solutions. But generally cover wider areas as large as entire cities. the introduction of the IEEE 802.11 standards WWAN: Wireless Wide Area Network with a cell have made a huge impact on the market such radius about 50 km, cover areas larger than a city. that laptops, PCs, printers, cellphones, and However out of all of these standards, WLAN VoIP phones, MP3 players in our homes, in and recent developments in WLAN technology offices and even in public areas have would be our main area of study in this paper. The incorporated the wireless LAN technology. IEEE 802.11 is the most widely deployed WLAN Wireless broadband technologies nowadays technology as of today. Another well known is the provide unlimited broadband access to users HiperLAN standard by ETSI. Both these which were previously offered only to wireline technologies are united under the Wireless Fidelity users. In this paper, we review and summarize (Wi-fi) alliance. In literature though, IEEE802.11 one of the emerging wireless broadband and Wi-fi is used interchangeably and we will also technology i.e. IEEE 802.11,which is a set of follow the same convention in this paper.
    [Show full text]
  • Bluetooth and Wi-Fi Wireless Protocols: a Survey and a Comparison Erina Ferro and Francesco Potorti`, Institute of the National Research Council (Isti—Cnr)
    ACCEPTED FROM OPEN CALL BLUETOOTH AND WI-FI WIRELESS PROTOCOLS: A SURVEY AND A COMPARISON ERINA FERRO AND FRANCESCO POTORTI`, INSTITUTE OF THE NATIONAL RESEARCH COUNCIL (ISTI—CNR) ABSTRACT ging. Another advantage lies in the way new wireless users can dynamically join or leave the Bluetooth and IEEE 802.11 (Wi-Fi) are two network, move among different environments, communication protocol standards that define a create ad hoc networks for a limited time, and physical layer and a MAC layer for wireless then leave. Wireless networks are simple to communications within a short range (from a deploy, and in some cases cost less than wired few meters up to 100 m) with low power con- LANs. Nevertheless, the technological chal- sumption (from less than 1 mW up to 100 mW). lenges involved in wireless networks are not triv- Bluetooth is oriented to connecting close devices, ial, leading to disadvantages with respect to serving as a substitute for cables, while Wi-Fi is cabled networks, such as lower reliability due to oriented toward computer-to-computer connec- interference, higher power consumption, data tions, as an extension of or substitution for security threats due to the inherent broadcast cabled LANs. In this article we offer an overview properties of the radio medium, worries about of these popular wireless communication stan- user safety due to continued exposition to radio Bluetooth and IEEE dards, comparing their main features and behav- frequency, and lower data rates. iors in terms of various metrics, including Currently the wireless scene is held by two 802.11 (Wi-Fi) are capacity, network topology, security, quality of standards: the Bluetooth and IEEE 802.11 pro- service support, and power consumption.
    [Show full text]
  • TR 101 683 V1.1.1 (2000-02) Technical Report
    ETSI TR 101 683 V1.1.1 (2000-02) Technical Report Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; System Overview 2 ETSI TR 101 683 V1.1.1 (2000-02) Reference DTR/BRAN-00230002 Keywords access, broadband, HIPERLAN, LAN, radio ETSI Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Internet [email protected] Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: [email protected] Important notice This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2000. All rights reserved. ETSI 3 ETSI TR 101 683 V1.1.1 (2000-02) Contents Contents..............................................................................................................................................................3
    [Show full text]
  • Design Comparison Between Hiperlan/2 and IEEE802.11A Services
    Examensarbete LITH-ITN-ED-EX--01/01--SE Design comparison between HiperLAN/2 and IEEE802.11a services Emil Edbom Henrik Henriksson 2001-12-14 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings Universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LITH-ITN-ED-EX--01/01--SE Design comparison between HiperLAN/2 and IEEE802.11a services Examensarbete utfört i trådlös kommunikation vid Tekniska Högskolan i Linköping, Campus Norrköping Emil Edbom Henrik Henriksson Handledare: Fredrik Olsson Examinator: Qin-Zhong Ye Norrköping den 14 december 2001 Datum Avdelning, Institution Date Division, Department Institutionen för teknik och naturvetenskap 2001-12-14 Department of Science and technology Språk Rapporttyp ISBN Language Report category _____________________________________________________ Svenska/Swedish Licentiatavhandling ISRN LITH-ITN-ED-EX--01/01--SE X Engelska/English X Examensarbete _________________________________________________________________ C-uppsats Serietitel och serienummer ISSN D-uppsats Title of series, numbering ___________________________________ _ ________________ Övrig rapport _ ________________ URL för elektronisk version Titel Design comparison between HiperLAN/2 and IEEE802.11a services Författare Emil Edbom Henrik Henriksson Sammanfattning Abstract This paper is a study and comparison between the two Wireless LAN (WLAN) standards HiperLAN/2 and IEEE 802.11a. WLANs are used instead or together with ordinary LANs to increase mobility in for example an office. HiperLAN/2 is an European standard developed by ETSI and the IEEEs standard is American. A WLAN-card consists roughly of a Medium Access Control (MAC), Physichal layer (PHY) and an antenna. The antenna is the same for the different standards. Both standards operates at 5.4 GHz with a maximum transmission rate at 54 Mbit/s and they use OFDM to modulate the signal.
    [Show full text]
  • Applicability of IEEE 802.11 and HIPERLAN/2 for Wirelesshuman
    2000-09-08 IEEE 802.16hc-00/09 Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16> Title Applicability of IEEE802.11 and HIPERLAN/2 for WirelessHUMAN Systems Date 2000-09-08 Submitted Source(s) Mika Kasslin Voice: +358-9-4376 6294 Nokia Research Center Fax: +358-9-4376 6856 Itamerenkatu 11-13 mailto:[email protected] FIN-00180 Helsinki, Finland Nico van Waes Nokia Networks Voice: +1-650-625 2201 313 Fairchild Dr. Fax: +1-650-625 2058 Mountain View, CA, USA mailto:[email protected] Re: This contribution is submitted in response to call for contributions from the WirelessHUMAN Study Group chair for submissions of contributions to develop the PAR request for a WirelessHUMAN standard. Abstract The contribution identifies the key parameters of the two WLAN standards, IEEE802.11a and HIPERLAN/2. Applicability of these two standards for WirelessHUMAN systems is analyzed. As the conclusion we propose a way to proceed from the basis of existing standards to a WirelessHUMAN PAR and new air interface standard. Purpose The purpose is to focus the coming PAR by limiting the number of possible standard candidates into minimum. The PAR written by the Study Group should emphasize the applicability of the systems most suitable for a WirelessHUMAN system. Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study.
    [Show full text]
  • Comprehensive Study of Hiperlan and Hiperman Family of Wireless Communication Standards
    HCTL Open International Journal of Technology Innovations and Research (IJTIR) http://ijtir.hctl.org Volume 18, Issue 2, February 2016 e-ISSN: 2321-1814, ISBN (Print): 978-1-944170-16-5 Comprehensive Study of HiperLAN and HiperMAN Family of Wireless Communication Standards Akash Gupta1 and Raj Gaurav Mishra2 [email protected] Abstract There has been a remarkable growth in the field of wireless communication standards and most of these standards find their roots back in 1996 (IEEE 802.11). These wireless standards are characterized based on their range, maximum signal rate, number of channels, channel bandwidth, data protection, frequency band, Quality of Service (QoS) and applications. The objective of this paper is the comprehensive study of High PErformance Radio Local Area Network (HiperLAN) and High PErformance Radio Metropolitan Area Network (HiperMAN) wireless standards created by the European Telecommunication Standards Institute’s (ETSI) project Broadband Radio Access Networks (BRAN). HiperLAN is the European alternative of the IEEE 802.11 WLAN while HiperMAN is the European alternative of the IEEE 802.16 WiMax. HiperLAN was proposed to obtain higher data rates than 802.11 and was launched in 1996 as HiperLAN/1 succeeded by HiperLAN/2 in 2000 to compete with IEEE 802.11a. HiperMAN was aimed to provide access in large area with ease of deployment and was developed on the basis of IEEE 802.16 and 802.16a. Keywords Wireless Communication, IEEE 802.11, HiperLAN, HiperMAN, QoS, ETSI, BRAN. Introduction Conventional communication network technologies are primarily wired and need of mobility in these networks has led to introduction of radio based wireless broadband networks [8-12].
    [Show full text]