Annual and Perennial Forage Clovers for Arkansas

Total Page:16

File Type:pdf, Size:1020Kb

Annual and Perennial Forage Clovers for Arkansas DIVISION OF AGRICULTURE R E S E A R C H & E X T E N S I O N University of Arkansas System Agriculture and Natural Resources FSA3137 Annual and Perennial Forage Clovers for Arkansas ruminants. Not all clovers cause bloat, Dirk Philipp Introduction and the problem is unlikely even Assistant Professor ­ Clovers and other legumes are with bloat­inducing types unless the Animal Science highly desirable species in pastures proportion of clover in the stand is greater than 50 percent. A few clovers and hay meadows. First, legumes synthesize estrogen­like compounds John Jennings are able to obtain nitrogen from air called phytoestrogens that can cause Professor ­ through their symbiotic relationship Animal Science with Rhizobium bacteria and, there­ reproductive problems in livestock, especially sheep. Sheep should not be fore, are not dependent on nitrogen fertilizer. The fixed nitrogen is grazed on these clovers during the Paul Beck primarily used to support clover breeding season. On rare occasions, Professor ­ Animal Science growth, but parts of it become avail­ some clovers become infected with able to neighboring grass plants when a fungus that causes “slobbers” or clover tissue dies. A second valuable excessive salivation in cattle and role of clovers is to increase forage horses. If this occurs, animals should quality of pastures, hays or silages. be removed from the offending forage. Legumes are higher in crude protein and digestibility than most grasses In summary, clovers are beneficial commonly used in Arkansas. Animals additions to many forage programs usually consume diets higher in because of improved forage growth quality than grass alone when pas­ distribution, increased forage yield, tured on grass/legume mixtures or increased forage quality and reduced fed grass/legume hays. As a result, nitrogen fertilizer costs. These animal performance often improves benefits lead to increased animal when a clover is included in pastures, performance and profitability of the even though total forage yield may not livestock enterprise. Winter annual increase. Adding clovers to endophyte­ clovers are considered better adapted infected tall fescue pastures also to soil and environmental conditions improves performance of cattle by in southern Arkansas than perennial diluting the toxicity of the endophyte. clovers. Perennial clovers are slower A third advantage is that clovers can to establish than annuals and are not help even out the forage supply over very long­lived in the hot, humid the grazing season by providing Coastal Plains region of southern Arkansas Is grazing time when other forages are Arkansas. Our Campus not as active or dormant. In this fact sheet, the characteris­ Clovers are implicated in some tics of annual and perennial clovers health problems for livestock. Many are described including procedures for Visit our web site at: s .uada clovers can cause bloat in grazing establishment. http ://www.uaex .edu University of Arkansas, United States Department of Agriculture, and County Governments Cooperating excellent cold tolerance. Like white clover, it will go Perennial Clovers dormant during the summer heat, but it flowers later than white clover during a more defined period. Red White Clover clover is not tolerant of frequent close grazing and is White and ladino clover are the same species. best suited to hay meadows or paddocks that are The only difference is that ladino­type cultivars have rotationally stocked. Red clover is reasonably shade­ been selected for a taller plant and higher yields. tolerant and is particularly well­suited to mixtures These traits make ladino more suitable for hay than with tall grasses like tall fescue and dallisgrass. It common or wild­type white clover (also called Dutch has the best seedling vigor of any perennial clover, white clover). Common white clover grows very close which makes it a good choice for overseeding into to the ground and is perfectly adapted for use under cool­season perennial grasses. Natural reseeding is continuous grazing systems or for livestock species unlikely to be sufficient to maintain stands. It has that graze close to the ground, such as sheep or excellent forage quality and contains a higher propor­ horses. It is difficult for animals to kill common tion of bypass protein than most other forages. As a white clover through overgrazing. result, cattle sometimes perform surprisingly well on this forage. White clover is cold­tolerant throughout the state and is among the most tolerant clovers for wet Red clover can cause bloat. It contains phytoestro­ soil conditions. However, it will not tolerate summer gens that can impair the fertility of sheep but is not heat and drought very well. In northern parts of the likely to cause fertility problems if grown in mixed state, plants go dormant during summer. In southern grass/legume stands. Red clover is the clover most parts of the state, they likely will die in summer. commonly implicated in cases of slobbers, but this is However, common white clover is a prolific reseeder, an unusual problem that should not discourage use of so stands will probably regenerate each fall. White the clover. clover is generally a very good reseeder, but some ladino types are poor reseeders. White clover is Planting rate for red clover is 10­12 lb/acre. shade­tolerant but can be shaded out of mixtures ‘Cherokee’, ‘Kenland’, ‘Kenstar ’ and ‘Redland II’ are by taller grasses if canopy height is not carefully proven varieties for Arkansas. There are many others managed by hay cutting or grazing management. that may also work well. It does not generally persist well in mixtures with tightly sodded grasses like bermudagrass or bahia­ Alsike Clover grass. White clover spreads laterally via aboveground stems called stolons. Bloat potential of white clover Alsike clover is better suited for the northern tier is considered high. counties of Arkansas than for more southern ones. It has better tolerance of wet and acid soils than most Planting rate is 2­3 lb/acre. Proven white clover clovers. Alsike clover is not tolerant of shade. It varieties for Arkansas include ‘Osceola’, ‘Louisiana should not be used for horse pastures because it has a S­1’, ‘Regal’, ‘Patriot’ and ‘Durana’, and there are tendency to cause photosensitization, or sun scald, in many newer varieties that may also work well. When that livestock species. Seeding rate is 4­6 lb/acre. testing newer, unproven varieties, producers should start by seeding a small area to check for local adaptability. Sweetclover The two sweetclover species (yellow and white) are not true clovers. These are biennial plants that Red Clover reseed well to form “perennial” stands. Sweetclover is Red clover is classified as a perennial but is extremely tall, up to 8 feet. They are winter­hardy generally considered to act like a biennial with a throughout Arkansas and tolerant of drought but do useful stand life of only two to three years. In south not tolerate acid soils. Sweetclover contains a bitter Arkansas, it often acts like an annual and does not compound called coumarin which is extremely survive through extremely hot summers. It has distasteful to animals. In moldy sweetclover hay, coumarin is converted into the toxic compound dicumarol which causes sweetclover poisoning in Arrowleaf Clover cattle. Low­coumarin sweetclover varieties are avail­ Arrowleaf clover is a tall clover that holds its able (white ‘Polara’ and yellow ‘Norgold’). Planting quality well for a longer period of time than most rate is 10­15 lb/acre. annual clovers. It is among the latest­maturing clovers and may produce forage into June. Its late maturity makes it a good match to be grown with annual ryegrass. Arrowleaf clover will germinate at Annual Clovers cooler temperatures than crimson clover. It is not In Arkansas, all the annual clover species tolerant of infertile, acid soils. Animals rarely bloat perform best as winter annuals, meaning that they on arrowleaf clover. Periodic grazing to a height of germinate in fall, grow through the winter, flower 2 to 4 inches promotes new growth and reduces plant and set seed in spring or early summer and then die. disease outbreaks. The purplish­red color of arrowleaf For some species, the seeds that were naturally pro­ clover leaves is a symptom that the plant is stressed duced will continue the cycle in the following year, by something such as nutrient deficiency, insects, while others must be replanted every year. Annual diseases or weather. Arrowleaf reseeds well under clovers can be overseeded onto dormant warm­season grazing, but much of the seed it produces is hard, grasses, either alone or in combination with small which makes year­to­year stand regeneration some­ grains and annual ryegrass. what unpredictable. Regrowth (and reseeding) should not be expected after a hay crop is harvested. Plant­ Because annual clovers complete their life cycle ing rate is 5­7 lb/acre. Standard varieties are ‘Yuchi’ each year, they must be re­established from seed. and the disease­tolerant ‘Apache.’ The clover stand can be re­established either by replanting each year or relying on natural reseeding. Reliance solely on natural reseeding increases risk of Ball Clover establishment failure, because the producer depends Ball clover is another low­growing clover with on good conditions in late spring for clover seed pro­ excellent tolerance of close grazing. It also has good duction as well as in the fall for seed germination and tolerance of wet, clay or loam soils. Ball clover toler­ seedling development. For natural reseeding to occur, ates lower soil acidity than crimson clover. Ball clover grazing and hay harvest should be managed to allow has poor cold tolerance and is best suited to southern some of the clover to mature in late spring for seed Arkansas. Bloat is a serious concern with this clover, production.
Recommended publications
  • Cover Crops for Home Gardens West of the Cascades
    Cover Crops for Home Gardens West of the Cascades WASHINGTON STATE UNIVERSITY EXTENSION FACT SHEET • FS111E This fact sheet is one of a three-part series on cover crops for home gardeners. It focuses on choosing the best cover crops for gardens in Washington and Oregon, west of the Cascades. A companion fact sheet, Cover Crops for Home Gardens East of the Cascades, focuses on choosing the best cover crops for gardens in Washington and Oregon, east of the Cascades. The third fact sheet in this series, Methods for Successful Cover Crop Management in Your Home Garden, covers the management of garden cover crops, including planning, planting, managing nutrients, and terminating plants. What Is a Cover Crop? Table 1. Benefits of cover crops. • Replace soil organic matter Cover crops are plants grown to both cover and improve • Recycle nutrients the soil. They may be used as a living or dead mulch on the • Supply nitrogen (legumes only) soil surface, or they can be tilled into the soil as a “green manure.” Gardeners usually plant cover crops in the fall • Protect soil from rain and wind erosion for winter cover, but some gardeners also use cover crops • Reduce runoff and water erosion as part of a summer rotation. Cover crops can be any type • Reduce leaching of nutrients of plant but are generally grasses (including cereal grains), • Suppress weeds legumes, or grass/legume mixtures. Some non-legume • Break up compacted soil broadleaf plants can also be used. • Attract beneficial insects by providing pollen and nectar Why Grow a Cover Crop? • Reduce disease and nematodes Cover crops serve the gardener in many ways, typically by Cold-hardy cover crops protecting and improving the soil, suppressing weeds, and Gardeners usually plant these species in the fall as winter attracting beneficial insects (Table 1).
    [Show full text]
  • Alfalfa and Cool-Season Clovers1 A
    SS-AGR-173 Alfalfa and Cool-Season Clovers1 A. R. Blount and R. L. Stanley2 Cool-season legumes make the most of their growth in the observers and are environmentally acceptable as a source winter and spring when temperatures are too low for warm- of “natural,” slow-release nitrogen to reduce the potential of season forages to grow. Their growth is highly dependent nitrates in groundwater. on soil moisture, and therefore they can be grown in areas of the state where rainfall is sufficient to maintain good soil Alfalfa moisture—especially on soils with better-than-average soil Alfalfa (Medicago sativa) is popularly known as “the moisture-holding capacity or where irrigation is available queen of forages” and is often the forage by which all and affordable. Use of adapted cool-season legumes in a other forages are judged. It is an erect, upright-growing livestock enterprise can reduce the need for stored feed perennial with many leafy stems arising from large crowns during the winter months when warm-season forages are at the soil surface. Alfalfa (Figure 1) has a long taproot, dormant. Cool-season legumes are high in quality and making it drought tolerant, and it may grow as tall as 24–36 result in improved animal performance, including growth, inches. Although called a warm-season legume by some milk production, conception rate, weaning weight, and (top growth is killed by a freeze), it has been placed with weaning percentages. Legumes have the ability to “fix” the cool-season legumes because in Florida it is planted nitrogen, and those adapted to Florida can add from 50 to at the same time as other cool-season legumes, and its 200 lb per acre of nitrogen for use by grasses growing in best production occurs during the spring.
    [Show full text]
  • Small Broomrape Orobanche Minor
    Small broomrape Other common names: none noted USDA symbol: ORMI Orobanche minor ODA rating: B Introduction: Small broomrape is one species in a large group of parasitic plants that attack a wide diversity of host species. Small broomrape is important because it attacks economically important legume crops. Broomrape seeds are like dust and easily contaminate seed lots that are shipped around the world. It is present in the Willamette Valley. Distribution: The first documented site in Oregon was in 1923 in Multnomah County. It can be found in several north Willamette Valley counties wherever clover seed crops are grown. Description: Annual; blooms within a week of plant emergence. Grows 6 to 12 inches tall. Like other parasitic plants, small broomrape lacks chlorophyll. The flower stalk is yellowish-brown, unbranched with a purplish tint. Leaves look like small triangular scales. Flowers pinkish, yellow or white in color and arranged in an elongated spike. Impacts: Upon germination, the first root attaches to and penetrates the root of the host plant, usually clover and other legumes, disrupting nutrients and water transport in the host root system. It has the ability to produce up to 500,000 seeds per plant that are dispersed by wind, tillage equipment, harvesters, commodity movement and animals. An uprooted flowering plant will continue to produce seed. Heavy infestations can cause severe crop damage that may result in nearly total crop failure. It is especially problematic in clover crops where the Orbanche seeds are hard to detect or remove during mechanical cleaning of harvested seed. Biological controls: None identified. Oregon Department of Agriculture Noxious Weed Control Program Photos by Tom Forney, ODA 635 Capitol Street NE Salem, OR 97301 503-986-4621 www.oregon.gov/ODA/programs/Weeds/Pages/Default.aspx Oct 2014 .
    [Show full text]
  • Characterising Forages for Ruminant Feeding**
    116 Characterising Forages for Ruminant Feeding** R. A. Dynes*, D. A. Henry and D. G. Masters CSIRO Livestock Industries, Private Mail Bag 5, Wembley, WA 6913, Australia ABSTRACT : Forages are the most important feed resource for ruminants worldwide, whether fed as pastures, forage crops or conserved hay, silage or haylage. There is large variability in the quality of forages so measurement and prediction of feeding value and nutritive value are essential for high levels of production. Within a commercial animal production system, methods of prediction must be inexpensive and rapid. At least 50% of the variation in feeding value of forages is due to variation in voluntary feed intake. Identification of the factors that constrain voluntary feed intake allows these differences to be managed and exploited in forage selection. Constraints to intake have been predicted using combinations of metabolic and physical factors within the animal while simple measurements such as the energy required to shear the plant material are related to constraints to intake with some plant material. Animals respond to both pre- and post-ingestive feedback signals from forages. Pre-ingestive signals may play a role in intake with signals including taste, odour and texture together with learned aversions to nutrients or toxins (post-ingestive feedback signals). The challenge to forage evaluation is identification of the factors which are most important contributors to these feedback signals. Empirical models incorporating chemical composition are also widely used. The models tend to be useful within the ranges of the datasets used in their development but none can claim to have universal application.
    [Show full text]
  • FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa
    FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Minnesota Agricultural Jared J. Goplen Experiment Station Station Bulletin 608-2018 Forage Legumes Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Jared J. Goplen Station Bulletin 608-2018 Minnesota Agricultural Experiment Station University of Minnesota Saint Paul, Minnesota The University of Minnesota shall provide equal access to and opportunity in its programs, facilities, and employment without regard to race, color, creed, religion, national origin, gender, age, marital status, disability, public assistance status, veteran status, sexual orientation, gender identity, or gender expression. Editors Craig Sheaffer, Nancy Ehlke, and Jacob Jungers are agronomists with the University of Minnesota Department of Agronomy and Plant Genetics in the College of Food, Agricultural and Natural Resource Sciences, Saint Paul, Minnesota. Jared Goplen is an Extension Educator in Crops for University of Minnesota Extension. Kenneth Albrecht is an agronomist with the University of Wisonsin’s Department of Agronomy. Acknowledgments This publication is a revision of Minnesota Agricultural Experiment Station Bulletin 597-1993, Forage Le- gumes, orginally issued in 1993 and then updated in 2003 and then again in 2018. The editors of this third edition gratefully acknowledge the contributions of the coauthors of the original publication: Harlan Ford, Neal Martin, Russell Mathison, David Rabas and Douglas Swanson. Publications editing, design and development for the Minnesota Agricultural Experiment Station is by Shelly Gustafson, experiment station communications specialist. Photos are by Dave Hansen or Don Breneman.
    [Show full text]
  • Sweet Clover Poisoning
    Beef Cattle Handbook BCH-3415 Product of Extension Beef Cattle Resource Committee Adapted from the Cattle Producer’s Library Sweet Clover Poisoning I. A. Schipper, Veterinarian, North Dakota State University Sweet clover poisoning is a problem of varying frequen- dicoumarin will interfere with the metabolism and syn- cy and intensity in livestock wherever sweet clover thesis of vitamin K. Vitamin K is essential to liver synthe- grows. The toxic compound produced in sweet clover sis of four components (prothrombin, and factors VII, IX, prevents normal blood clotting resulting in hemorrhages X) necessary to the prevention of seepage of blood from and associated symptoms. the circulatory system and to establish the clotting of The preliminary symptoms include stiffness, lame- blood expelled by injury or surgery. ness, dull attitude, and swellings beneath the skin Vitamin K1 is found in green plants such as alfalfa. (hematomas or blood clots) over all parts of the body, Vitamin K2 is formed by the microflora of the digestive but primarily at the hips, brisket, or neck. The mucous tract. These two sources are normally sufficient to pro- membranes may be pale—indicating that anemia exists. vide the requirements of cattle. Menadione (vitamin K3) Hemorrhage decreases the quantity of red blood cells is a synthetic compound that may be used as a feed available to transport oxygen to the body and carbon supplement or injectable product to counteract vitamin dioxide to the lungs. This results in varying degrees of K deficiency. respiratory stress, depending on the amount of red Not all moldy sweet clover is toxic, and the absence blood cell loss and physical exertion of the animal.
    [Show full text]
  • Forage Oat Variety Guide 2015 Forage Oats Is the Preferred Winter Forage Crop for Beef and Prior to Planting
    Department of Agriculture, Fisheries and Forestry Forage oat variety guide 2015 Forage oats is the preferred winter forage crop for beef and prior to planting. There are approximately 50 000 seeds per dairy cattle in Queensland, due to its ability to produce good- kilogram, but always check the seed container for the correct quality feed when most pastures are dormant. Many farmers seed size and germination rate. rely on oats to fatten livestock during the period from The optimum soil temperature for the germination and autumn to early spring. Leaf rust is the most serious disease establishment of oats is between 15 °C and 25 °C. Avoid of forage oats, reducing yield, quality and palatability. The planting into warm or hot soils, as soil temperatures above use of improved varieties and better management practices 25 °C during the period from January to March will reduce are the key factors to increasing the level of productivity of seed germination and result in poor crop establishment. oat crops. Oat seed is best sown at 5–7.5 cm depth in row spacing of This guide discusses the recommended management 18–25 cm, into moist soil in a well-prepared seedbed. practices for growing oats for forage and strategies to minimise leaf rust infection. The current varieties of forage oats available for commercial sale in Queensland and Nutrition northern New South Wales are described in Table 3 on the Ensure the crop receives adequate fertiliser and weed last page. control. Forage oats will grow on most soils but will not provide good recovery on strongly acidic soils or wet soils Planting that develop aluminium and manganese toxicities.
    [Show full text]
  • Biological Activities of Trifolium Pratense: a Review
    Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 3 Issue 9 September 2019 Review Article Biological Activities of Trifolium Pratense: A Review Atiq-ur-Rehman1,2* 1University College of Pharmacy, University of the Punjab, Lahore, Pakistan 2Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan *Corresponding Author: Atiq-ur-Rehman, Faculty of Pharmacy, The University of Lahore and University College of Pharmacy, University of the Punjab, Lahore Pakistan. Received: July 25, 2019; Published: August 16, 2019 Abstract Trifolium pratense is an important plant of the Legume family. It has drawn the attention of several researchers around the globe. This plant was traditionally used as forage or as soil improver is now seen as the plant containing vast therapeutic activities which include anti-oxidative, anti-cancer, neuroprotective, anti-hyperglycemic, anti-hyperlipidemic, osteoprotective and cardio protective properties. The therapeutic properties are shown in various in vivo, in vitro and ex vivo experiments. The review highlights the Tri- forium pratense basic knowledge its extraction, components and their actions, major activities possessed by plant along with their mechanisms. Trifolium plant is mainmajorly used in menopausal women to reduce the discomfort and menopausal effects such as moderate cancer causing cells. Various strategies were applied and the plant is still under study for further development in its effects. hot flushes and increase in breast density. The plant is also majorly responsible for preventing breast cancer and other apoptosis of Keywords: Trifolium Pratense; Cancer; Trifolium Introduction Family The genus Trifolium comprises of almost 240 species each re- It belongs to the family Fabeaceae leguminosae. markable for its agricultural and therapeutic effects.
    [Show full text]
  • The Biology of Trifolium Repens L. (White Clover)
    The Biology of Trifolium repens L. (White Clover) Photo: Mary-Anne Lattimore, NSW Agriculture, Yanco Version 2: October 2008 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified forms of the species that may be released into the Australian environment. For information on the Australian Government Office of the Gene Technology Regulator visit <http://www.ogtr.gov.au> The Biology of Trifolium repens L. (white clover) Office of the Gene Technology Regulator TABLE OF CONTENTS PREAMBLE ...........................................................................................................................................1 SECTION 1 TAXONOMY .............................................................................................................1 SECTION 2 ORIGIN AND CULTIVATION ...............................................................................3 2.1 CENTRE OF DIVERSITY AND DOMESTICATION .................................................................................. 3 2.2 COMMERCIAL USES ......................................................................................................................... 3 2.3 CULTIVATION IN AUSTRALIA .......................................................................................................... 4 2.3.1 Commercial propagation ..................................................................................................5 2.3.2 Scale of cultivation ...........................................................................................................5
    [Show full text]
  • Forage Crop Production - Masahiko Hirata
    THE ROLE OF FOOD, AGRICULTURE, FORESTRY AND FISHERIES IN HUMAN NUTRITION – Vol. I - Forage Crop Production - Masahiko Hirata FORAGE CROP PRODUCTION Masahiko Hirata Faculty of Agriculture, Miyazaki University, Miyazaki, Japan Keywords: agricultural revolution, alternative agriculture, bio-diversity, cover crop, fallow, forage crop, grass, green manure, hay, legume, mixed farming, root crop, rotation system, seed industry, silage. Contents 1. Introduction 2. Early Recognition of the Importance of Forage 3. Early Use of Forage Crops 4. The Dark Ages 5. The Great Progress 5.1. The European Agricultural Revolution 5.2. The Contribution of Forage Crops to the Development of Mixed Farming 5.3. The Dispersion of Forage Crops throughout Europe 5.4. Global Dispersion of Forage Crops: the First Stage 5.4.1. Temperate Grasses 5.4.2. Temperate Legumes 5.4.3. Tropical and Subtropical Grasses 5.4.4. Tropical and Subtropical Legumes 5.5. The Rise of the Forage Seed Industry 6. The Modern Era 6.1. The Development of Plant Improvement 6.1.1. Temperate Forages in Great Britain 6.1.2. Buffelgrass in Australia 6.1.3. Bermudagrass in USA 6.1.4. Wheatgrasses and Wildryes in the USA and Canada 6.2. The Growth of the Forage Seed Industry 6.3. Global Dispersion of Forage Crops: the Second Stage 6.3.1. Temperate Grasses 6.3.2. Tropical and Subtropical Grasses 6.3.3. Tropical and Subtropical Legumes 6.4. ForagesUNESCO in the Growing Industrialized – Agriculture EOLSS 6.5. Forages in the Rise and Growth of Environmental Issues 7. The Future SAMPLE CHAPTERS Acknowledgements Glossary Bibliography Biographical Sketch Summary The history of forage crops can be traced back to about 1300 BC when alfalfa was cultivated in Turkey.
    [Show full text]
  • Understanding Forage Quality
    Suggested retail price $3.50 Understanding forage quality Don Ball Mike Collins Garry Lacefield Neal Martin David Mertens Ken Olson Dan Putnam Dan Undersander Mike Wolf Contents Understanding forage quality 1 What is forage quality? 2 Factors affecting forage quality 3 Species differences 3 Temperature 3 Maturity stage 4 Leaf-to-stem ratio 4 Grass-legume mixtures 5 Fertilization 5 Daily fluctuations in forage quality 5 Variety effects 5 Harvesting and storage effects 6 Sensory evaluation of hay 7 Laboratory analysis of forage 8 Laboratory analytical techniques 8 Laboratory proficiency 10 Understanding laboratory reports 11 Matching forage quality to animal needs 12 Reproduction 12 Growth 13 Fattening 13 Lactation 13 Economic impacts of forage quality 14 Pasture forage quality 14 Hay quality 15 Other considerations 15 Key concepts to remember 15 Additional information 15 Glossary 16 Adequate animal nutrition is essential In recent years, advances in plant and Understanding for high rates of gain, ample milk pro- animal breeding, introduction of new duction, efficient reproduction, and products, and development of new forage quality adequate profits (see sidebar). management approaches have made orage quality is defined in various However, forage quality varies greatly it possible to increase animal perform- ways but is often poorly under- among and within forage crops, and ance. However, for this to be realized, Fstood. It represents a simple nutritional needs vary among and there must be additional focus on concept, yet encompasses much com- within animal species and classes. forage quality.The purpose of this plexity.Though important, forage Producing suitable quality forage for a publication is to provide information quality often receives far less consid- given situation requires knowing the about forage quality and forage eration than it deserves.
    [Show full text]
  • Trifolium Douglasii House Douglas' Clover Fabaceae - Pea Family Status: State Endangered, BLM Sensitive, USFS Sensitive Rank: G2 / S1
    Trifolium douglasii House Douglas' clover Fabaceae - pea family status: State Endangered, BLM sensitive, USFS sensitive rank: G2 / S1 General Description: Nonrhizomatous (occasionally reported to be rhizomatous) perennial from a thick taproot, usually hairless; stems generally several, erect, simple or with a few branches, 4-8 dm tall. Leaves compound; leaflets 3, linear to oblong-elliptic, 4-10 cm long, the margins very finely serrated to spiny. Petioles usually shorter than the stipules. Stipules oblong-lanceolate, 2-7 cm long, adnate to the petiole most of their length, the margins finely serrated. Floral Characteristics: Heads axillary as well as terminal and long-pedunculate, spherical to ovoid-cylindric, about 3 cm thick, as long to nearly twice as long, with 50-200 flowers, and not subtended by an involucre. Flowers erect, spreading, or the lowest reflexed, 14-20 mm long, reddish purple. Calyx 1/2 Illustration by Jeanne R. Janish, to 3/5 as long as the corolla, hairless, the tube with 17-25 ©1961 University of Washington nerves. Upper pair of calyx teeth broader than the lower 3 and Press usually conspicuously curved downward. Sinuses between the lateral teeth deeper than that between the upper pair. Blooms June to July. Fruits: Pods usually 1-seeded. Identification Tips: Distinguished from other species of Trifolium by its perennial habit, flowers lacking a true involucre, 3 leaflets, and hairless calyx tube generally with 20 prominent nerves. The plants are usually over 5 dm tall, and the flower heads are elongate, usually 3-5 cm long but not as thick. Range: Historically from Spokane Co., WA, to Baker Co., OR, east to adjacent ID.
    [Show full text]