Comparative Study on the Vasorelaxant Effects of Three Harmala Alkaloids in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Study on the Vasorelaxant Effects of Three Harmala Alkaloids in Vitro Jpn. J. Pharmacol. 85, 299 – 305 (2001) Comparative Study on the Vasorelaxant Effects of Three Harmala Alkaloids In Vitro Chuen-Chao Shi1, Jyh-Fei Liao1,* and Chieh-Fu Chen1,2 1Department and Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan 2National Research Institute of Chinese Medicine, Taipei 112, Taiwan Received November 6, 2000 Accepted December 19, 2000 ABSTRACT—Three psychological active principles from the seeds of Peganum harmala L., harmine, har- maline and harmalol, showed vasorelaxant activities in isolated rat thoracic aorta preparations precontracted by phenylephrine or KCl with rank order of relaxation potency of harmine > harmaline > harmalol. The vasorelaxant effects of harmine and harmaline (but not harmalol) were attenuated by endothelium removal or pretreatment with a nitric oxide (NO) synthase NM-nitro-L-arginine methyl ester. In cultured rat aortic endothelial cells, harmine and harmaline (but not harmalol) increased NO release, which was dependent on the presence of external Ca2+. In endothelium-denuded preparations, pretreatment of harmine, harmaline or harmalol (3 – 30 mM) inhibited phenylephrine-induced contractions in a non-competitive manner. Receptor binding assays indicated that all 3 compounds interacted with cardiac a 1-adrenoceptors with comparable affinities (Ki value around 31 – 36 mM), but only harmine weakly interacted with the cardiac 1,4-dihydro- 2+ pyridine binding site of L-type Ca channels (Ki value of 408 mM). Therefore, the present results suggested that the vasorelaxant effects of harmine and harmaline are attributed to their actions on the endothelial cells to release NO and on the vascular smooth muscles to inhibit the contractions induced by the activation of receptor-linked and voltage-dependent Ca2+ channels. The vasorelaxant effect of harmalol was not endothe- lium-dependent. Keywords: Harmine, Harmaline, Harmalol, Vasorelaxant, Nitric oxide Harmala alkaloids harmine, harmaline and harmalol frequently followed by a secondary increase; and the effects (Fig. 1) are the psychological active principles from the of harmalol on these two parameters are inconsistent (18). seeds of Peganum harmala L., which are also distributed Recently, we reported the in vivo cardiovascular effect and widely in other medicinal plants and found endogenously in in vitro vasorelaxant effect of harman (Fig. 1), another har- mammalian tissues (1, 2). These harmala alkaloids have a mala alkaloid (19). Our results suggested that the vasore- wide spectrum of pharmacological actions in the central laxant effect of harman may be involved in its hypotensive nervous system such as tremorogenesis (3, 4), hypothermia effect, and the vasorelaxant effect is attributed to its actions (5), hallucinogenesis (6, 7), central monoamine oxidase in- on the endothelial cells to release nitric oxide (NO) and on hibition (8 – 10), convulsive or anticonvulsive actions (11) the vascular smooth muscles to inhibit the contractions and binding to various receptors including 5-HT receptors induced by the activation of receptor-linked and voltage- 2+ and the benzodiazepine binding site of GABAA receptors dependent Ca channels. Although the cardiovascular effects (12 – 14). In addition, these compounds also have antioxi- of these harmala alkaloids may not be of practical impor- dative (15), platelet aggregation inhibitory (16) and immu- tance (or for clinical use), the related information for these nomodulatory effects (17). There are also some reports potential hallucinogens should be important for their toxi- concerning the cardiovascular actions of these harmala cology. Because the chemical structures of these 4 com- alkaloids. For example, it has been reported that harmine pounds are very similar, the present study was carried out reduces systemic arterial blood pressure and total periph- to compare harmine, harmaline and harmalol in terms of eral vascular resistance; harmaline-evoked decreases are vasorelaxant effects on the isolated rat thoracic aorta preparations and stimulating effects on NO release from *Corresponding author. FAX: +886-2-28264372 cultured rat aortic endothelial cells. To compare with har- E-mail: [email protected] man (19), their affinities for cardiac a 1-adrenoceptors and 299 300 C.-C. Shi, J.-F. Liao & C.-F. Chen 37°C. The composition of Krebs’ solution was as follows: 118 mM NaCl, 4.7 mM KCl, 25 mM NaHCO3, 1.2 mM KH2PO4, 2.5 mM MgSO4, 2.5 mM CaCl2 and 11.1 mM glucose. Isometric tension change was measured with a Grass FT03 force transducer and recorded on a 4-channel polygraph (Gould RS3400 polygraph; Oxnard, CA, USA). Before starting the experiment, all preparations were al- lowed to equilibrate for 60 min, during which time Krebs’ solution was replaced at least twice. Vasorelaxant effects To evaluate the vasorelaxant and endothelium-dependent effects of test compounds, endothelium-intact and -denuded preparations were pretreated with phenylephrine (PE, 0.3 mM) or KCl (60 mM) to produce sustained contractions (19). Lack of functional vascular endothelium was confirmed by the loss of relaxant response to 3 mM acetylcholine before the experiment began. After the contraction had reached a stable plateau, cumulative concentrations of test compound were added. The vasorelaxant effect of test compound was expressed as a percentage of relaxation, and the IC50 (the concentration to produce a 50% maximal relaxation) value was determined from the concentration-response curve by data fitting with computer software GraFit (Erithacus Soft- ware, Staines, Middlessex, UK). The involvement of the mediator for endothelium-related vasorelaxation induced by test compound was examined by pretreatment of preparations with NM-nitro-L-arginine methyl ester (a NO synthase inhibitor), tetraethylammonium (a K+ channel blocker) or indomethacin (a cyclooxygenase inhibitor). A series of experiments was designed to assess the in- volvement of a 1-adrenoceptors in the vasorelaxant effect of test compound in endothelium-denuded aortic preparations. m Fig. 1. Chemical structures of harmala alkaloids. Various concentrations of test compound (3, 10, 30 M) were added 10 min before the construction of cumulative concentration-response curves with PE. The results were expressed as the percentage of the maximum contractile the 1,4-dihydropyridine (DHP) binding site of L-type Ca2+ tension to PE before and after pretreatment with test com- channels were also studied with receptor binding assays. pound. MATERIALS AND METHODS NO measurement The culture of rat aortic endothelial cells and the mea- Isolated thoracic aorta preparations surement of NO in the medium were according to the meth- Sprague-Dawley rats weighing 180 – 280 g were sacri- ods of Wang et al. (20, 21). In brief, endothelial cells were ficed by decapitation. The thoracic aorta was excised and grown in 35-mm2 dishes in 1 ml of Dulbecco’s modified adhesive connective tissues were carefully cleared away. Eagle’s medium supplemented with 10% fetal calf serum The aorta was cut into approximately 3 – 4-mm-long ring and antibiotics. Upon reaching confluence in about 4 days, segments. Denuded aorta ring segments were obtained by the medium was changed to 1 ml of Hanks’ balanced salt gently rubbing with the finger tip. The isolated aorta ring solution (HBSS) with L-arginine (100 mM) and added was suspended under a basal tension of 1 g in a 10 ml organ CaCl2 (to 2.5 mM). The changing over to HBSS was neces- bath containing Krebs’ solution continuously aerated with a sary because it provided the least interference in the assay. 2+ gas mixture of 95% O2 and 5% CO2 and maintained at However, additional Ca was required to make the final Vasorelaxation of Harmala Alkaloids 301 concentration comparable to that in normal Krebs’ solution. (CaCl2), potassium chloride (KCl), EGTA, sodium chloride The cells were then equilibrated for 60 min at 37°C. Ali- (NaCl), magnesium sulfate heptahydrate (MgSO4 · 7H2O), quots (250 ml) of the supernatant were collected for analy- monopotassium phosphate (KH2PO4), sodium bicarbonate sis of nitrite by chemiluminescence, and the total content (NaHCO3), and D-glucose were purchased from Sigma of NO in the medium before test compound treatment was (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medi- calculated and taken as basal 100%. Vehicle (HBSS with- um, fetal calf serum, and HBSS were purchased from out Ca2+) or test compound (1, 10, 100 mM) was then added Gibco Life Technologies (Grand Island, NY, USA). Vana- for 30 min, and then the cell supernatants (100 ml) were dium chloride was purchased from Aldrich (Milwaukee, collected for analysis of nitrite to examine the change of WI, USA). Radioligands [7-methoxy-3H]-prazosin (76.2 Ci NO content. Similar experiments also were carried out in /mmol) and [isopropyl-1,3-3H]-nimodipine (121.1 Ci/mmol) Ca2+-free HBSS to examine the role of external Ca2+. were purchased from NEN, Du Pont (Boston, MA, USA). Samples (100 ml) containing nitrite were measured by add- ing a reducing agent (0.8% VCl3 in HCl) to the purge vessel RESULTS to convert nitrite to NO, which was then carried by a flow of helium to the NO analyzer (Model 280; Sievers Re- As shown in Fig. 2, harmine, harmaline and harmalol search, Boulder, CO, USA). Nitrite concentrations were cal- (0.3 – 100 mM) concentration-dependently relaxed endo- culated by comparison with a standard solution of sodium thelium-intact rings precontracted with PE (0.3 mM), and nitrite. the vasorelaxant responses to harmine and harmaline, but not harmalol, were significantly depressed in endothelium- Receptor binding assays denuded preparations. The IC50 (the concentration to pro- According to previous reports (22, 23), the interaction of duce a 50% maximal relaxation) values of harmine and test compound with a 1-adrenoceptors or the DHP binding harmaline for PE-induced contractions were significantly site of L-type Ca2+ channels was assessed in rat heart mem- increased to 2.1-fold and 1.3-fold, respectively, in endo- brane preparations. In brief, binding assays were initiated thelium-denuded preparations as compared with that in en- by the addition of a receptor membrane preparation in an dothelium-intact preparations (Table 1).
Recommended publications
  • Basic Hypothesis and Therapeutics Targets of Depression: a Review
    ISSN: 2641-1911 DOI: 10.33552/ANN.2021.10.000738 Archives in Neurology & Neuroscience Review Article Copyright © All rights are reserved by Anil Kumar Basic Hypothesis and Therapeutics Targets of Depression: A Review Monika Kadian, Hemprabha Tainguriya, Nitin Rawat, Varnika Chib, Jeslin Johnson and Anil Kumar* Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh 160014, India *Corresponding author: Dr. Anil Kumar, PhD, Professor of Pharmacology, Phar- Received Date: May 11, 2021 macology division, University Institute of Pharmaceutical Sciences, Panjab Univer- sity, Chandigarh 160014, India. Published Date: June 07, 2021 Abstract Depression is a psychological disorder marked by emotional symptoms such as melancholy, anhedonia, distress mood, loss of interest in daily life activities, feeling of worthlessness, sleep disturbances and destructive tendencies. According to WHO, more than 264 million people from all randomage groups processes are suffering during with brain depression development. thus, Depression it is become is mainlya leading due cause to neurotransmitter of disability and imbalances, infirmity worldwide. HPA disturbances, It is estimated increased that oxidative 40% of riskand nitrosativefor depression damage, is genetic impairment and the in other glucose 60% metabolism, is non-genetic and whichmitochondrial involved dysfunction, acute & chronic etc. The stress, monoamine childhood hypothesis trauma, viral is based infections on attenuation and even of monoamines such as serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in the brain regions (hippocampus, limbic system and frontal cortex) that can cause depression like symptoms. Depression is also marked by increased level of corticotrophin-releasing hormone (CRH) and and impaired responsiveness to glucocorticoid hormone.
    [Show full text]
  • Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
    CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).
    [Show full text]
  • Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion and Pharmacokinetics
    TESI DOCTORAL HUMAN PHARMACOLOGY OF AYAHUASCA JORDI RIBA Barcelona, 2003 Director de la Tesi: DR. MANEL JOSEP BARBANOJ RODRÍGUEZ A la Núria, el Marc i l’Emma. No pasaremos en silencio una de las cosas que á nuestro modo de ver llamará la atención... toman un bejuco llamado Ayahuasca (bejuco de muerto ó almas) del cual hacen un lijero cocimiento...esta bebida es narcótica, como debe suponerse, i á pocos momentos empieza a producir los mas raros fenómenos...Yo, por mí, sé decir que cuando he tomado el Ayahuasca he sentido rodeos de cabeza, luego un viaje aéreo en el que recuerdo percibia las prespectivas mas deliciosas, grandes ciudades, elevadas torres, hermosos parques i otros objetos bellísimos; luego me figuraba abandonado en un bosque i acometido de algunas fieras, de las que me defendia; en seguida tenia sensación fuerte de sueño del cual recordaba con dolor i pesadez de cabeza, i algunas veces mal estar general. Manuel Villavicencio Geografía de la República del Ecuador (1858) Das, was den Indianer den “Aya-huasca-Trank” lieben macht, sind, abgesehen von den Traumgesichten, die auf sein persönliches Glück Bezug habenden Bilder, die sein inneres Auge während des narkotischen Zustandes schaut. Louis Lewin Phantastica (1927) Agraïments La present tesi doctoral constitueix la fase final d’una idea nascuda ara fa gairebé nou anys. El fet que aquest treball sobre la farmacologia humana de l’ayahuasca hagi estat una realitat es deu fonamentalment al suport constant del seu director, el Manel Barbanoj. Voldria expressar-li la meva gratitud pel seu recolzament entusiàstic d’aquest projecte, molt allunyat, per la natura del fàrmac objecte d’estudi, dels que fins al moment s’havien dut a terme a l’Àrea d’Investigació Farmacològica de l’Hospital de Sant Pau.
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • Effect of Harmine on Nicotine‑Induced Kidney Dysfunction in Male Mice
    [Downloaded free from http://www.ijpvmjournal.net on Tuesday, June 25, 2019, IP: 94.199.136.196] Original Article Effect of Harmine on Nicotine‑Induced Kidney Dysfunction in Male Mice Abstract Mohammad Reza Background: The nicotine content of cigarettes plays a key role in the pathogenesis of kidney Salahshoor, disease. Harmine is a harmal‑derived alkaloid with antioxidant properties. This study was Shiva Roshankhah, designed to evaluate the effects of harmine against nicotine‑induced damage to the kidneys of mice. Methods: In this study, 64 male mice were randomly assigned to eight groups: saline and Vahid Motavalian, nicotine‑treated groups (2.5 mg/kg), harmine groups (5, 10, and 15 mg/kg), and nicotine (2.5 mg/ Cyrus Jalili kg) + harmine‑treated groups (5, 10, and 15 mg/kg). Treatments were administered intraperitoneally Department of Anatomical daily for 28 days. The weights of the mice and their kidneys, kidney index, glomeruli characteristics, Sciences, Medical School, thiobarbituric acid reactive species, antioxidant capacity, kidney function indicators, and serum Kermanshah University of nitrite oxide levels were investigated. Results: Nicotine administration significantly improved kidney Medical Sciences, Daneshgah Ave., Taghbostan, malondialdehyde (MDA) level, blood urea nitrogen (BUN), creatinine, and nitrite oxide levels and Kermanshah, Iran decreased glomeruli number and tissue ferric reducing/antioxidant power (FRAP) level compared to the saline group (P < 0.05). The harmine and harmine + nicotine treatments at all doses significantly reduced BUN, kidney MDA level, creatinine, glomerular diameter, and nitrite oxide levels and increased the glomeruli number and tissue FRAP level compared to the nicotine group (P < 0.05). Conclusions: It seems that harmine administration improved kidney injury induced by nicotine in mice.
    [Show full text]
  • Harmine and Imipramine Promote Antioxidant Activities in Prefrontal Cortex and Hippocampus
    RESEArcH PAPER RESEArcH PAPER Oxidative Medicine and Cellular Longevity 3:5, 325-331; September/October 2010; © 2010 Landes Bioscience Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus Gislaine Z. Réus,1 Roberto B. Stringari,1 Bruna de Souza,2 Fabrícia Petronilho,2 Felipe Dal-Pizzol,2 Jaime E. Hallak,3 Antônio W. Zuardi,3 José A. Crippa3 and João Quevedo1,* 1Laboratório de Neurociências; and 2Laboratório de Fisiopatologia Experimental; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM); Programa de Pós-Graduação em Ciências da Saúde; Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma, SC Brazil; 3Departamento de Neurociências e Ciências do Comportamento; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM); Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP Brazil Key words: harmine, imipramine, reactive oxygen species, antioxidants activity, depression A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the β-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus.
    [Show full text]
  • PAPER Monoamine Oxidase Inhibition Is Unlikely to Be Relevant To
    International Journal of Obesity (2001) 25, 1454–1458 ß 2001 Nature Publishing Group All rights reserved 0307–0565/01 $15.00 www.nature.com/ijo PAPER Monoamine oxidase inhibition is unlikely to be relevant to the risks associated with phentermine and fenfluramine: a comparison with their abilities to evoke monoamine release{ IC Kilpatrick1*, M Traut2 and DJ Heal1 1Knoll Limited Research and Development, Nottingham, UK; and 2Knoll GmbH, 50 Knollstrasse, D-67061, Ludwigshafen, Germany OBJECTIVE AND DESIGN: It has been proposed that the anti-obesity agent, phentermine, may act in part via inhibition of monoamine oxidase (MAO). The ability of phentermine to inhibit both MAOA and MAOB in vitro has been examined along with that of the fenfluramine isomers, a range of selective serotonin reuptake inhibitors and sibutramine and its active metabolites. RESULTS: In rat brain, harmaline and lazabemide showed potent and selective inhibition of MAOA and MAOB, their respective target enzymes, with IC50 values of 2.3 and 18 nM. In contrast, all other drugs examined were only weak inhibitors of MAOA and MAOB with IC50 values for each enzyme in the moderate to high micromolar range. For MAOA, the IC50 for phentermine was estimated to be 143 mM, that for S( þ )-fenfluramine, 265 mM and that for sertraline, 31 mM. For MAOB, example IC50s were as follows: phentermine (285 mM), S( þ )-fenfluramine (800 mM) and paroxetine (16 mM). Sibutramine was unable to inhibit either enzyme, even at its limit of solubility. CONCLUSION: We therefore suggest that MAO inhibition is unlikely to play a role in the pharmacodynamic properties of any of the tested drugs, including phentermine.
    [Show full text]
  • Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
    Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209
    [Show full text]
  • Chemical Composition of Traditional and Analog Ayahuasca
    Journal of Psychoactive Drugs ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujpd20 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini To cite this article: Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini (2020): Chemical Composition of Traditional and Analog Ayahuasca, Journal of Psychoactive Drugs, DOI: 10.1080/02791072.2020.1815911 To link to this article: https://doi.org/10.1080/02791072.2020.1815911 View supplementary material Published online: 08 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujpd20 JOURNAL OF PSYCHOACTIVE DRUGS https://doi.org/10.1080/02791072.2020.1815911 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik a, Rita C. Z. Souzab, Flávia S. Zandonadib, Luís Fernando Tófoli c, and Alessandra Sussulinib aSchool of Theology and Religious Studies; and Institute of Physics, University of Tartu, Tartu, Estonia; bLaboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; cInterdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil ABSTRACT ARTICLE HISTORY Traditional ayahuasca can be defined as a brew made from Amazonian vine Banisteriopsis caapi and Received 17 April 2020 Amazonian admixture plants. Ayahuasca is used by indigenous groups in Amazonia, as a sacrament Accepted 6 July 2020 in syncretic Brazilian religions, and in healing and spiritual ceremonies internationally.
    [Show full text]
  • 5/1 (2005) 41 - 4541
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla Vol. 5/1 (2005) 41 - 4541 JOURNAL OF NATURAL REMEDIES Cytotoxic activity of methanolic extract and two alkaloids extracted from seeds of Peganum harmala L. Hicham Berrougui1,2*, Miguel López-Lázaro1, Carmen Martin-Cordero1, Mohamed Mamouchi2, Abdelkader Ettaib2, Maria Dolores Herrera1. 1. Department of Pharmacology School of Pharmacy. Séville, Spain. 2. School of Medicine and Pharmacy, UFR (Natural Substances), Rabat, Morocco. Abstract Objective: To study the cytotoxic activity of P. harmala. Materials and method: The alkaloids harmine and harmaline have been isolated from a methanolic extract from the seeds of P. harmala L. and have been characterized by spectroscopic-Mass and NMR methods. The cytotoxicity of the methanolic extract and both alkaloids has been investigated in the three human cancer cell lines UACC-62 (melanoma), TK- 10 (renal) and MCF-7 (breast) and then compared to the positive control effect of the etoposide. Results and conclusion: The methanolic extract and both alkaloids have inhibited the growth of these three cancer cell-lines and we have discussed possible mechanisms involved in their cytotoxicity. Keywords: Peganum harmala, harmine, harmaline, cytotoxicity, TK-10, MCF-7, UACC-62. 1. Introduction Peganum harmala L. (Zygophyllaceae), the so- convulsive or anticonvulsive actions and called harmal, grows spontaneously in binding to various receptors including 5-HT uncultivated and steppes areas in semiarid and receptors and the benzodiazepine binding site pre-deserted regions in south Spain and South- of GABAA receptors [10]. In addition, these East Morocco [1].
    [Show full text]
  • A Review of Serotonin Toxicity Data: Implications for the Mechanisms of Antidepressant Drug Action P
    ARTICLE IN PRESS REVIEW A Review of Serotonin Toxicity Data: Implications for the Mechanisms of Antidepressant Drug Action P. Ken Gillman Data now exist from which an accurate definition for serotonin toxicity (ST), or serotonin syndrome, has been developed; this has also lead to precise, validated decision rules for diagnosis. The spectrum concept formulates ST as a continuum of serotonergic effects, mediated by the degree of elevation of intrasynaptic serotonin. This progresses from side effects through to toxicity; the concept emphasizes that it is a form of poisoning, not an idiosyncratic reaction. Observations of the degree of ST precipitated by overdoses of different classes of drugs can elucidate mechanisms and potency of drug actions. There is now sufficient pharmacological data on some drugs to enable a prediction of which ones will be at risk of precipitating ST, either by themselves or in combinations with other drugs. This indicates that some antidepressant drugs, presently thought to have serotonergic effects in animals, do not exhibit such effects in humans. Mirtazapine is unable to precipitate serotonin toxicity in overdose or to cause serotonin toxicity when mixed with monoamine oxidase inhibitors, and moclobemide is unable to precipitate serotonin toxicity in overdose. Tricyclic antidepressants (other than clomipramine and imipramine) do not precipitate serotonin toxicity and might not elevate serotonin or have a dual action, as has been assumed. Key Words: Serotonin toxicity, monoamine oxidase inhibitors, se- do not, and cannot, cause ST (Gillman 2003c; Isbister and Whyte lective serotonin reuptake inhibitors, tricyclic antidepressants, mir- 2003). Such erroneous reports are still being published in tazapine, moclobemide prominent journals (Haddow et al 2004) and continue to main- tain the confused and inaccurate understanding of this toxidrome (Gillman 2005b; Isbister and Buckley 2005).
    [Show full text]
  • Metabolic Pathways of the Psychotropic-Carboline Alkaloids, Harmaline and Harmine, by Liquid Chromatography/Mass Spectrometry and NMR Spectroscopy
    Food Chemistry 134 (2012) 1096–1105 Contents lists available at SciVerse ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy Ting Zhao a, Shan-Song Zheng a, Bin-Feng Zhang a,b,c, Yuan-Yuan Li a, S.W. Annie Bligh d, ⇑ ⇑ Chang-Hong Wang a,b,c, , Zheng-Tao Wang a,b,c, a Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China b The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201210, China c Shanghai R&D Center for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China d Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK article info abstract Article history: The b-carboline alkaloids, harmaline and harmine, are present in hallucinogenic plants Ayahuasca and Received 3 June 2011 Peganum harmala, and in a variety of foods. In order to establish the metabolic pathway and bioactivities Received in revised form 25 January 2012 of endogenous and xenobiotic bioactive b-carbolines, high-performance liquid chromatography, coupled Accepted 6 March 2012 with mass spectrometry, was used to identify these metabolites in human liver microsomes (HLMs) Available online 16 March 2012 in vitro and in rat urine and bile samples after oral administration of the alkaloids. Three metabolites of harmaline and two of harmine were found in the HLMs.
    [Show full text]