A CONCEPTUAL ECOLOGICAL MODEL of FLORIDA BAY Author(S): David T

Total Page:16

File Type:pdf, Size:1020Kb

A CONCEPTUAL ECOLOGICAL MODEL of FLORIDA BAY Author(S): David T A CONCEPTUAL ECOLOGICAL MODEL OF FLORIDA BAY Author(s): David T. Rudnick, Peter B. Ortner, Joan A. Browder, and Steven M. Davis Source: Wetlands, 25(4):870-883. 2005. Published By: The Society of Wetland Scientists DOI: http://dx.doi.org/10.1672/0277-5212(2005)025[0870:ACEMOF]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1672/0277-5212%282005%29025%5B0870%3AACEMOF %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. WETLANDS, Vol. 25, No. 4, December 2005, pp. 870±883 q 2005, The Society of Wetland Scientists A CONCEPTUAL ECOLOGICAL MODEL OF FLORIDA BAY David T. Rudnick1, Peter B. Ortner2, Joan A. Browder3, and Steven M. Davis4 1 Coastal Ecosystems Division South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida, USA 33406 E-mail: [email protected] 2 Atlantic Oceanographic and Meteorological Laboratory National Oceanic and Atmospheric Administration 4301 Rickenbacker Causeway Miami, Florida, USA 33149 3 Southeast Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 75 Virginia Beach Drive Miami, Florida, USA 33149 4 RECOVER Section South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida, USA 33406 Abstract: Florida Bay is a large and shallow estuary that is linked to the Everglades watershed and is a target of the Greater Everglades ecosystem restoration effort. The conceptual ecological model presented here is a qualitative and minimal depiction of those ecosystem components and linkages that are considered essential for understanding historic changes in the bay ecosystem, the role of human activities as drivers of these changes, and how restoration efforts are likely to affect the ecosystem in the future. The conceptual model serves as a guide for monitoring and research within an adaptive management framework. Historic changes in Florida Bay that are of primary concern are the occurrence of seagrass mass mortality and subsequent phytoplankton blooms in the 1980s and 1990s. These changes are hypothesized to have been caused by long-term changes in the salinity regime of the bay that were driven by water management. However, historic ecological changes also may have been in¯uenced by other human activities, including occlusion of passes between the Florida Keys and increased nutrient loading. The key to Florida Bay res- toration is hypothesized to be seagrass community restoration. This community is the central ecosystem element, providing habitat for upper trophic level species and strongly in¯uencing productivity patterns, sediment resuspension, light penetration, nutrient availability, and phytoplankton dynamics. An expectation of Everglades restoration is that changing patterns of freshwater ¯ow toward more natural patterns will drive Florida Bay's structure and function toward its pre-drainage condition. However, considerable uncertainty exists regarding the indirect effects of changing freshwater ¯ow, particularly with regard to the potential for changing the export of dissolved organic matter from the Everglades and the fate and effects of this nutrient source. Adaptive management of Florida Bay, as an integral part of Everglades restoration, requires an integrated program of monitoring, research to decrease uncertainties, and development of quantitative models (especially hydrodynamic and water quality) to synthesize data, develop and test hypotheses, and improve predictive capabilities. Understanding and quantitatively predicting changes in the nature of watershed-es- tuarine linkages is the highest priority scienti®c need for Florida Bay restoration. Key Words: ecosystem restoration, estuaries, Florida Bay, Everglades, adaptive management, seagrass, freshwater ¯ow, salinity effects 870 Rudnick et al., FLORIDA BAY CONCEPTUAL ECOLOGICAL MODEL 871 BACKGROUND restoration are presented in Ogden et al. (2005) and Sklar et al. (2005). The format and symbols of the Florida Bay is a triangularly shaped estuary, with Florida Bay model follows that of Ogden et al. (2005) 2 an area of about 2200 km that lies between the south- and the other conceptual models published in this issue ern tip of the Florida mainland and the Florida Keys of Wetlands. Furthermore, the organization of this pa- (Figure 1). About 80% of this estuary is within the per follows the conceptual model diagram, with major boundaries of Everglades National Park and much of sections on drivers and stressors, and ecological attri- the remainder is within the Florida Keys National Ma- butes (generally structural components of the ecosys- rine Sanctuary. A de®ning feature of the bay is its tem) and their links to stressors. A ®nal section con- shallow depth, which averages about 1 m (Schomer siders expectations and uncertainties regarding future and Drew 1982). Light suf®cient to support photosyn- responses to restoration efforts. thesis can reach the sediment surface in almost all ar- This simple model does not address spatial com- eas of the bay, resulting in dominance of seagrass beds plexity in Florida Bay. Florida Bay is, indeed, not so as both a habitat and a source of primary production. much a singular estuary, but a complex array of more The shallowness of Florida Bay also affects its circu- than forty basins, with distinct characteristics, that are lation and salinity regime. Except for basins near the partitioned by a network of mud banks and islands northern coast (near freshwater sources), the bay's wa- ter column is vertically well-mixed and usually iso- (Schomer and Drew 1982, Fourqurean and Robblee haline. In contrast, its complex network of shallow 1999). The structure of vegetative habitats, as well as mud banks restricts horizontal water exchange among water quality and ecosystem processes, vary distinctly the bay's basins and between these basins and the Gulf with this spatial variation. Nevertheless, only a single, of Mexico (Smith 1994, Wang et al. 1994). In areas generic model is described and intended to summarize with long residence times, the salinity of Florida Bay the main characteristics and trends of the bay. While water can rise rapidly during drought periods due to the structure of this model is appropriate for most areas excess of evaporation over precipitation and freshwa- of the bay, the relative importance of model compo- ter in¯ow (Nuttle et al. 2000). Salinity levels as high nents differ considerably among subregions. Any ap- as twice that of seawater have been measured (McIvor plication of this model (e.g., recommendations for a et al. 1994). Another de®ning feature of the bay is that speci®c set of monitoring parameters and guidelines) its sediments are primarily composed of carbonate must accommodate the degree of spatial variability of mud, which can scavenge inorganic phosphorus from the bay. bay waters (DeKanel and Morse 1978). Until the 1980s, Florida Bay was perceived by the public and environmental managers as being a healthy EXTERNAL DRIVERS AND ECOLOGICAL and stable system, with clear water, lush seagrass beds, STRESSORS and highly productive ®sh and shrimp populations. In the mid-1980s, however, catches of pink shrimp de- Following observations of Florida Bay's dramatic creased dramatically (Browder et al. 1999), and in ecological changes in the 1980s, it was commonly as- 1987, a mass mortality of turtle grass (Thalassia tes- sumed that a direct cause of these changes was a long- tudinum Banks & Soland ex. Koenig) beds began term increase in salinity, which in turn was caused by (Robblee et al. 1991). By 1992, the ecosystem ap- the diversion of freshwater away from Florida Bay via peared to change from a clear water system, dominated South Florida Water Management District canals. by benthic primary production, to a turbid water sys- However, subsequent research has indicated that these tem, with algae blooms and resuspended sediments in ecological changes may not be attributable to a single the water column. The conceptual ecological model cause. While decreased freshwater in¯ow and resultant presented here focuses on these changes in seagrass increased salinity have been part of the problem, it communities and water quality as central issues to be appears that other human activities, as well as natural considered by environmental managers. forces, may have also played a role (Boesch et al. The Florida Bay Conceptual Ecological Model is 1993, Armentano et al. 1997, Fourqurean and Robblee one of eleven regional models that are being used as 1999). The conceptual ecological model presented tools for synthesis, planning, assessment, and com- here includes both natural and anthropogenic sources munication
Recommended publications
  • Ovarian Development of the Mud Crab Scylla Paramamosain in a Tropical Mangrove Swamps, Thailand
    Available Online JOURNAL OF SCIENTIFIC RESEARCH Publications J. Sci. Res. 2 (2), 380-389 (2010) www.banglajol.info/index.php/JSR Ovarian Development of the Mud Crab Scylla paramamosain in a Tropical Mangrove Swamps, Thailand M. S. Islam1, K. Kodama2, and H. Kurokura3 1Department of Aquaculture and Fisheries, Jessore Science and Technology University, Jessore- 7407, Bangladesh 2Marine Science Institute, The University of Texas at Austin, Channel View Drive, Port Aransas, Texas 78373, USA 3Laboratory of Global Fisheries Science, Department of Global Agricultural Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan Received 15 October 2009, accepted in revised form 21 March 2010 Abstract The present study describes the ovarian development stages of the mud crab, Scylla paramamosain from Pak Phanang mangrove swamps, Thailand. Samples were taken from local fishermen between June 2006 and December 2007. Ovarian development was determined based on both morphological appearance and histological observation. Ovarian development was classified into five stages: proliferation (stage I), previtellogenesis (II), primary vitellogenesis (III), secondary vitellogenesis (IV) and tertiary vitellogenesis (V). The formation of vacuolated globules is the initiation of primary vitellogenesis and primary growth. The follicle cells were found around the periphery of the lobes, among the groups of oogonia and oocytes. The follicle cells were hardly visible at the secondary and tertiary vitellogenesis stages. Yolk granules occurred in the primary vitellogenesis stage and are first initiated in the inner part of the oocytes, then gradually concentrated to the periphery of the cytoplasm. The study revealed that the initiation of vitellogenesis could be identified by external observation of the ovary but could not indicate precisely.
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • The Effects of Altered Hydrology on the Everglades
    Everglades Interim Report Chapter 2: Hydrologic Needs Chapter 2: Hydrologic Needs: The Effects of Altered Hydrology on the Everglades Fred Sklar, Chris McVoy, Randy Van Zee, Dale Gawlik, Dave Swift, Winnie Park, Carl Fitz, Yegang Wu, Dave Rudnick, Thomas Fontaine, Shili Miao, Amy Ferriter, Steve Krupa, Tom Armentano, Ken Tarboton, Ken Rutchey, Quan Dong, and Sue Newman Summary This chapter is an overview of historic hydrologic patterns, the effects of altered hydrology on the ecology of the Everglades, and the tools needed to assess and predict the impacts of water management. This is an anthology of historical information and hydrologic studies conducted over the last 100 years, covering millions of hectares, and includes scientific studies of Everglades soils, plants, and animals. The synthesis of this information, for setting hydrologic targets for restoration, is the goal of the Central and South Florida (C&SF) Restudy (see Chapter 10). This ecosystem assessment of the Everglades in relation to only hydrology is difficult because hydrology is strongly linked to water quality constituents, whose utilization, mobilization, and degradation in the Everglades is in turn, linked to hydrologic events and management. Although this chapter disassociates water quality from hydrology, in an attempt to address water management needs, and to meet the obligations set by the Everglades Forever Act, it is important to understand these linkages for sustainable management and restoration. Historic Hydrologic Change Drainage of the Everglades began in 1880 and in some locations, reduced water tables up to nine feet, reversed the direction of surface water flows, altered vegetation, created abnormal fire patterns, and induced high rates of subsidence.
    [Show full text]
  • Landcover Change and Population Dynamics of Florida Scrub-Jays and Florida Grasshopper Sparrows" (2009)
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Landcover Change And Population Dynamics Of Florida Scrub- jays And Florida Grasshopper Sparrows David Breininger University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Breininger, David, "Landcover Change And Population Dynamics Of Florida Scrub-jays And Florida Grasshopper Sparrows" (2009). Electronic Theses and Dissertations, 2004-2019. 3820. https://stars.library.ucf.edu/etd/3820 LANDCOVER CHANGE AND POPULATION DYNAMICS OF FLORIDA SCRUB-JAYS AND FLORIDA GRASSHOPPER SPARROWS by DAVID R. BREININGER B.S. Florida Institute of Technology, 1978 M.S. Florida Institute of Technology, 1981 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Science in the College of Science at the University of Central Florida Orlando, Florida Spring Term 2009 Major Professor: Reed F. Noss ABSTRACT I confronted empirical habitat data (1994-2004) and population data (1988-2005) with ecological theory on habitat dynamics, recruitment, survival, and dispersal to develop predictive relationships between landcover variation and population dynamics. I focus on Florida Scrub-Jays, although one chapter presents a model for the potential influence of habitat restoration on viability of the Florida Grasshopper Sparrow.
    [Show full text]
  • Bothin Marsh 46
    EMERGENT ECOLOGIES OF THE BAY EDGE ADAPTATION TO CLIMATE CHANGE AND SEA LEVEL RISE CMG Summer Internship 2019 TABLE OF CONTENTS Preface Research Introduction 2 Approach 2 What’s Out There Regional Map 6 Site Visits ` 9 Salt Marsh Section 11 Plant Community Profiles 13 What’s Changing AUTHORS Impacts of Sea Level Rise 24 Sarah Fitzgerald Marsh Migration Process 26 Jeff Milla Yutong Wu PROJECT TEAM What We Can Do Lauren Bergenholtz Ilia Savin Tactical Matrix 29 Julia Price Site Scale Analysis: Treasure Island 34 Nico Wright Site Scale Analysis: Bothin Marsh 46 This publication financed initiated, guided, and published under the direction of CMG Landscape Architecture. Conclusion Closing Statements 58 Unless specifically referenced all photographs and Acknowledgments 60 graphic work by authors. Bibliography 62 San Francisco, 2019. Cover photo: Pump station fronting Shorebird Marsh. Corte Madera, CA RESEARCH INTRODUCTION BREADTH As human-induced climate change accelerates and impacts regional map coastal ecologies, designers must anticipate fast-changing conditions, while design must adapt to and mitigate the effects of climate change. With this task in mind, this research project investigates the needs of existing plant communities in the San plant communities Francisco Bay, explores how ecological dynamics are changing, of the Bay Edge and ultimately proposes a toolkit of tactics that designers can use to inform site designs. DEPTH landscape tactics matrix two case studies: Treasure Island Bothin Marsh APPROACH Working across scales, we began our research with a broad suggesting design adaptations for Treasure Island and Bothin survey of the Bay’s ecological history and current habitat Marsh.
    [Show full text]
  • MUD CREATURE STUDY Overview: the Mudflats Support a Tremendous Amount of Life
    MUD CREATURE STUDY Overview: The mudflats support a tremendous amount of life. In this activity, students will search for and study the creatures that live in bay mud. Content Standards Correlations: Science p. 307 Grades: K-6 TIME FRAME fOR TEACHING THIS ACTIVITY Key Concepts: Mud creatures live in high abundance in the Recommended Time: 30 minutes mudflats, providing food for Mud Creature Banner (7 minutes) migratory ducks and shorebirds • use the Mud Creature Banner to introduce students to mudflat and the endangered California habitat clapper rail. When the tide is out, Mudflat Food Pyramid (3 minutes) the mudflats are revealed and birds land on the mudflats to feed. • discuss the mudflat food pyramid, using poster Mud Creature Study (20 minutes) Objectives: • sieve mud in sieve set, using slough water Students will be able to: • distribute small samples of mud to petri dishes • name and describe two to three • look for mud creatures using hand lenses mud creatures • describe the mudflat food • use the microscopes for a closer view of mud creatures pyramid • if data sheets and pencils are provided, students can draw what • explain the importance of the they find mudflat habitat for migratory birds and endangered species Materials: How THIS ACTIVITY RELATES TO THE REFUGE'S RESOURCES Provided by the Refuge: What are the Refuge's resources? • 1 set mud creature ID cards • significant wildlife habitat • 1 mud creature flannel banner • endangered species • 1 mudflat food pyramid poster • 1 mud creature ID book • rhigratory birds • 1 four-layered sieve set What makes it necessary to manage the resources? • 1 dish of mud and trowel • Pollution, such as oil, paint, and household cleaners, when • 1 bucket of slough water dumped down storm drains enters the slough and mudflats and • 1 pitcher of slough water travels through the food chain, harming animals.
    [Show full text]
  • 6. Geotechnical, Sea Level Rise and Shoreline Improvements
    6. GEOTECHNICAL, SEA LEVEL RISE AND SHORELINE IMPROVEMENTS 6.1 GEOTECHNICAL DOCUMENTS 233 6.2 TREASURE ISLAND AND CAUSEWAY GEOTECHNICAL IMPROVEMENTS 234 6.3 YERBA BUENA ISLAND GEOTECHNICAL IMPROVEMENTS 238 6.4 SEA LEVEL RISE STRATEGY AND SHORELINE IMPROVEMENTS 240 TREASURE ISLAND & YERBA BUENA ISLAND MAJOR PHASE 1 APPLICATION 6 - GEOTECHNICAL AND SHORELINE IMPROVEMENTS 231 6.1 GEOTECHNICAL DOCUMENTS The documents noted below were separately distributed to agency representatives from the Department of Public Works (DPW) and the Department of Building Inspection (DBI) on February, 3, 2015, and they are also included herein as Appendix E. 1. Treasure Island Geotechnical Conceptual Design Report, February 2, 2009 2. Treasure Island Geotechnical Conceptual Design Report Appendix 4, February 2, 2009 3. Treasure Island Sub-phase 1A Geotechnical Data Report; Draft, December 31, 2014 4. Technical Memorandum 1, Preliminary Foundation Design Parameters Treasure Island Ferry Terminal Improvements, January 2, 2015 5. Technical Memorandum 2, Preliminary Geotechnical Design for Sub-Phase 1A Shoreline Stabilization, January 2, 2015 6. Treasure Island Sub-phase 1A Interim Geotechnical Characterization Report; Draft, January 5, 2015 TREASURE ISLAND & YERBA BUENA ISLAND MAJOR PHASE 1 APPLICATION 6 - GEOTECHNICAL AND SHORELINE IMPROVEMENTS 233 6.2 TREASURE ISLAND AND CAUSEWAY GEOTECHNICAL IMPROVEMENTS GEOLOGIC SETTING AND DEPOSITIONAL HISTORY into the Bay. The grain-size distribution of windblown sands on Yerba Buena Island is essentially the same as fine silty sands The San Francisco Bay around Treasure Island is underlain interbedded with Young Bay Mud below Treasure Island. The by rocks of the Franciscan Complex of the Alcatraz Terrain, erosion of the windblown sand from Yerba Buena Island and consisting mainly of interbedded greywacke sandstone and surrounding areas is likely the source for both the historic sandy shale.
    [Show full text]
  • Alternative Monitoring Approaches for Large Bay-Delta Estuarine Wetland Restoration Projects Adapting to Uncertainty Or Novelty During Accelerated Climate Change
    Alternative Monitoring Approaches for Large Bay-Delta Estuarine Wetland Restoration Projects Adapting to Uncertainty or Novelty during Accelerated Climate Change Montezuma Wetlands 2015 Sears Point Wetlands 2015 Peter R. Baye Coastal Ecologist [email protected] Delta Science Program Brown Bag Lunch – February 17, 2016 Estuarine Wetland Restoration San Francisco Bay Area historical context ERA CONTEXT “First-generation” SFE marsh restoration • Regulatory permit & policy (CWA, (1970s-1980s) McAteer-Petris Act, Endangered Species Act • compensatory mitigation • USACE dredge material marsh creation national program; estuarine sediment surplus “Second-generation” SFE marsh restoration • Goals Project era transition to regional planning and larger scale restoration • Wetland policy conflict resolution • Geomorphic pattern & process emphasis 21st century SFE marsh restoration • BEHGU (Goals Project update) era: • Accelerated sea level rise • Estuarine sediment deficit • Climate event extremes, species invasions as “new normal” • advances in wetland sciences Estuarine Wetland Restoration San Francisco Bay Area examples ERA EXAMPLES First-generation SFE marsh restoration • Muzzi Marsh (MRN) (1970s-1980s) • Pond 3 Alameda (ALA) Second-generation SFE marsh restoration • Sonoma Baylands (SON) (1990s) • Hamilton Wetland Restoration (MRN) • Montezuma Wetlands (SOL) 21st century SFE marsh restoration • Sears Point (SON) (climate change) • Aramburu Island (MRN) • Cullinan Ranch (SOL) • Oro Loma Ecotone (“horizontal levee”) (ALA) • South Bay and Napa-Sonoma
    [Show full text]
  • Trophic State and Metabolism in a Southeastern Piedmont Reservoir
    TROPHIC STATE AND METABOLISM IN A SOUTHEASTERN PIEDMONT RESERVOIR by Mary Callie Mayhew (Under the direction of Todd C. Rasmussen) Abstract Lake Sidney Lanier is a valuable water resource in the rapidly developing region north of Atlanta, Georgia, USA. The reservoir has been managed by the U.S Army Corps of Engineers for multiple purposes since its completion in 1958. Since approximately 1990, Lake Lanier has been central to series of lawsuits in the “Eastern Water Wars” between Georgia, Alabama and Florida due to its importance as a water-storage facility within the Apalachicola-Chattahoochee-Flint River Basin. Of specific importance is the need to protect lake water quality to satisfy regional water supply demands, as well as for recreational and environmental purposes. Recently, chlorophyll a levels have exceeded state water-quality standards. These excee- dences have prompted the Georgia Environmental Protection Division to develop Total Max- imum Daily Loads for phosphorus in Lake Lanier. While eutrophication in Southeastern Piedmont impoundments is a regional problem, nutrient cycling in these lakes does not appear to behave in a manner consistent with lakes in higher latitudes, and, hence, may not respond to nutrient-abatement strategies developed elsewhere. Although phosphorus loading to Southeastern Piedmont waterbodies is high, soluble reac- tive phosphorus concentrations are generally low and phosphorus exports from the reservoir are only a small fraction of input loads. The prevailing hypothesis is that ferric oxides in the iron-rich, clay soils of the Southeastern Piedmont effectively sequester phosphorus, which then settle into the lake benthos. Yet, seasonal algal blooms suggest the presence of internal cycling driven by uncertain mechanisms.
    [Show full text]
  • To Secretary of the Interior Ken Salazar and the U.S
    To Secretary of the Interior Ken Salazar and the U.S. Fish and Wildlife Service Petition for Rule-making: Critical Habitat Designation for the Endangered Florida Panther Center for Biological Diversity, Public Employees for Environmental Responsibility, Council of Civic Associations i Before the Department of the Interior U.S. Fish and Wildlife Service WASHINGTON, D.C. 20240 In Re: Florida panther recovery, Florida. ) Petition for rule-making to designate ) critical habitat and ensure recovery of ) the endangered Florida panther, in ) accordance with Florida Panther ) Recovery Plan and scientific findings. ) TO THE SECRETARY OF THE INTERIOR AND THE DIRECTOR, U.S. FISH AND WILDLIFE SERVICE Petition for Rule-making Michael J. Robinson Center for Biological Diversity P.O. Box 53166 Pinos Altos, NM 88053 September 17, 2009 ii Red-shouldered hawks cruise the low cypress and the marshlands, marsh hawks balance and tip, showing white rump marks, and far over at the edge of a thicket a deer feeds, and flicks his white- edged tail before he lifts his head and stares. From high in a plane at that time of year the Big Cypress seems an undulating misted surface full of peaks and gray valleys changing to feathering green. East of it, sharply defined as a river from its banks, move the vast reaches of the saw grass. The brown deer, the pale-colored lithe beautiful panthers that feed on them, the tuft-eared wildcats with their high-angled hind legs, the opossum and the rats and the rabbits have lived in and around it and the Devil’s Garden and the higher pinelands to the west since this world began.
    [Show full text]
  • Integrating Demography and Fire Management
    CSIRO PUBLISHING www.publish.csiro.au/journals/ajar Australian Journal of Botany, 2007, 55, 261–272 Integrating demography and fire management: an example from Florida scrub Eric S. Menges Archbold Biological Station, PO Box 2057, Lake Placid, FL 33862, USA. Email: [email protected] Abstract. In this work, I have used life-history and demographic data to define fire return intervals for several types of Florida scrub, a xeric shrubland where fire is the dominant ecological disturbance but where fire suppression is a major issue. The datasets combine chronosequence and longitudinal approaches at community and population levels. Resprouting shrubs, which dominate most types of Florida scrub, recover rapidly after fires (although their limits under frequent fires are not well known) and also increasingly dominate long-unburned areas. These dominant shrubs can prosper over a range of fire return intervals. Obligate-seeding scrub plants, which often have persistent seed banks, can be eliminated by frequent fire but often decline with infrequent fire. Population viability analyses of habitat specialists offer more precision in suggesting ranges of appropriate fire return intervals. For two types of Florida scrub (rosemary scrub and oak–hickory scrub), plant-population viability analyses narrow the interval and suggest more frequent fires than do previous recommendations, at intervals of 15–30 and 5–12 years, respectively. Variation in fire regimes in time and space (pyrodiversity) is recommended as a bet-hedging fire-management strategy and to allow co-existence of species with disparate life histories. Introduction Replicated experiments have advantages in controlling for With so many of the world’s habitats having fire as a factors other than the manipulated components of fire regimes, dominant ecological disturbance (Pyne 1997; Bond and Keeley but they can rarely be done at the landscape scale over 2005), management of these habitats is crucial to maintaining which fire operates (but see Andersen et al.
    [Show full text]
  • Some Population Biology Aspects of Edible Orange Mud Crab Scylla Olivacea (Herbst, 1796) of Kotania Bay, Western Seram District, Indonesia 1,2,3Johannes M
    Some population biology aspects of edible orange mud crab Scylla olivacea (Herbst, 1796) of Kotania Bay, western Seram District, Indonesia 1,2,3Johannes M. S. Tetelepta, 1,2Yuliana Natan, 1,2Ong T. S. Ongkers, 1,2Jesaja A. Pattikawa 1 Department of Aquatic Resource Management, Faculty of Fishery and Marine Science, Pattimura University, Ambon, Indonesia; 2 Maritime and Marine Science Center of Excellence, Pattimura University, Ambon, Indonesia; 3 Learning Centre EAFM, Pattimura University, Ambon, Indonesia. Corresponding author: J. M. S. Tetelepta, [email protected] Abstract. Population biology aspects of the orange mud crab Scylla olivacea of Kotania Bay mangrove swamp, Western Seram District of Indonesia was investigated to derive information for its management. Sampling was carried out on a monthly basis during January to June 2016. The result showed that there was high correlation between carapace width and weight relationship (r = 0.9884) for both sexes. The large crabs have a carapace width greater than 10 cm, the weight of male is greater than that of female. The mud crabs of the carapace width size between 12-14 cm of both male and female accounted for the major catches while the smallest mud crab caught was 8.8 cm. The proportion of males to females sex ratio was not significantly different with a ratio of 1.14:1. The relative condition factor of this mud crab varied over time but not significantly different for both sexes. Key Words: mud crab, population parameter, management, Maluku. Introduction. Kotania Bay Waters of Western Seram District is a semi enclosed coastal area with high in marine resources productivity since surrounded by three main tropical ecosystems i.e.
    [Show full text]