Quick viewing(Text Mode)

Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae)

Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae)

Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: )

By

Mansoureh Malekian (M.Sc.)

A thesis submitted in the fulfilment of the degree of Doctor of Philosophy of Science (Ph.D.) in the Department of Ecology and Evolutionary Biology

June 2007

Table of content

Table of content II

List of figures VII

List of tables X

Declaration XII

Abstract XIII

Acknowledgments XV

1 General introduction 1

1.1 Preamble 1

1.2 Introduction 1

1.3 Current and distribution of gliding petaurids 2

1.4 Conservation status 3

1.5 Phylogeny and evolution of gliders 5

1.6 Phylogeography and population structure 6

1.7 Genetic variability and habitat fragmentation 7

1.8 Study aims 9

2 Molecular systematics of the genus (Marsupialia: Petauridae) in and New Guinea 11

2.1 Introduction 11

2.2 Material and methods 15 2.2.1 Taxa sampling 15

II 2.2.2 Genetic analyses 16 2.2.3 Choice of outgroups 16 2.2.4 DNA isolation, PCR- amplification and sequencing 17 2.2.5 Sequence analysis 18 2.2.6 Phylogenetic analyses 19 2.2.7 Molecular clock and divergence time estimates 20

2.3 Results 22 2.3.1 Sequence analyses 22 2.3.1.1 Mitochondrial regions 22 2.3.1.2 Nuclear marker 23 2.3.2 Phylogenetic analyses 24 2.3.2.1 Mitochondrial gene analyses 24 2.3.2.2 Nuclear gene analyses 25 2.3.3 Molecular clock and divergence time estimates 28

2.4 Discussion 31 2.4.1 Phylogenetic relationships 31 2.4.2 Divergence time and biogeography 35

3 Phylogeography of the ( Petaurus breviceps ) in Australia 37

3.1 Introduction 37

3.2 Material and methods 39 3.2.1 Population sampling 39 3.2.2 PCR- amplification and sequence analyses 40 3.2.3 Phylogenetic analyses 40 3.2.4 Population structure 42

3.3 Results 42 3.3.1 Variation and distribution of haplotypes 42 3.3.2 Phylogenetic relationships 43 3.3.3 Population structure 44 3.3.3.1 Mitochondrial region 44 3.3.3.2 Omega-globin gene 49

III 3.4 Discussion 50 3.4.1 Phylogeography and genetic structure 50 3.4.2 Taxonomy 51 3.4.3 Implications for conservation 53

4 Nest box-use, social structure and mating system of P. breviceps 55

4.1 Introduction 55

4.2 Material and methods 57 4.2.1 Study area 57 4.2.2 Sampling methods 57 4.2.3 Comparison between small and large patches 60 4.2.4 DNA extraction and microsatellite analysis 60 4.2.5 Parentage analysis and mating system 61 4.2.5.1 Relatedness analysis 63

4.3 Results 64 4.3.1 Nest box occupancy 64 4.3.1.1 , Occupancy rate and pattern of use 64 4.3.1.2 Comparison between small and large patches 64 4.3.2 Parentage analyses 69 4.3.3 Mating system 74 4.3.4 Relatedness and kinship 75

4.4 Discussion 78 4.4.1 The effects of patch size on nest-box use, group size and structure 78 4.4.2 Mating system of P. breviceps 80 4.4.3 Relatedness and Kin structure of P. breviceps 81 4.4.4 Inbreeding avoidance 82

5 Genetic diversity and population structure of P. breviceps 84

5.1 Introduction 84

5.2 Materials and methods 86

IV 5.2.1 Study populations and molecular data 86 5.2.2 Genetic diversity 86 5.2.3 Population structure 87

5.3 Results 88 5.3.1 Genetic diversity 88 5.3.2 Population structure 90

5.4 Discussion 92

6 An extension to the known distribution of the ( Petaurus norfolcensis ) in Australia 95

6.1 Preamble 95

6.2 Introduction 95

6.3 Material and methods 97 6.3.1 Genetic investigation 97 6.3.2 Field investigations 98 6.3.3 Morphometric assessments 98

6.4 Results 100 6.4.1 Genetic investigation 100 6.4.2 Field investigation 101 6.4.3 Morphometric assessments 103

6.5 Discussion 107

7 Concluding discussion 109

7.1 Review of aims 109

7.2 Evolutionary relationships of Petaurus species 109

7.3 Phylogeography and population differentiation within P. breviceps in Australia. 110

V 7.4 Nest box-use social structure and mating system of P. breviceps in fragmented habitats 111

7.5 Genetic diversity and population structure of P. breviceps 112

7.6 Limitations of the study 113

7.7 Further research 113

References 116

Appendix 1 137

Appendix 2 139

Appendix 3 159

Appendix 4 168

Appendix 5 170

Appendix 6 188

Appendix 7 195

Appendix 8 208

VI List of figures

Figure 2.1 Distribution map of the glider species in Australia and New Guinea...... 13

Figure 2.2 Current distribution of subspecies of P. breviceps in Australia and New Guinea...... 15

Figure 2.3 Phylogenetic relationships of Petaurus species in comparison with the representatives from other genera of Petauridae, using Maximum Parsimony analyses of ND2 sequence data...... 26

Figure 2.4 Phylogeny of the genus Petaurus based on combined mitochondrial ND2 and ND4 genes...... 27

Figure 2.5 Distribution map of the mitochondrial lineages within P. breviceps in Australia and New Guinea...... 29

Figure 2.6 ω-globin gene tree inferred using a partitioned mixed-model in MrBayes... 30

Figure 2.7 50% posterior probability Bayesian consensus tree using all three genes (ND2 , ND4 and ω-globin gene) with model partitioning, implemented in MRBAYES.31

Figure 2.8 The distribution of morphological subspecies and evolutionary lineages from genetic data obtained in the present study...... 35

Figure 3.1 Omega-globin gene tree of P. breviceps inferred using a partitioned mixed- model in MrBayes...... 46

Figure 3.2 Maximum Parsimony tree of combined mtDNA ( ND2 and ND4 ) from P. breviceps in Australia ...... 47

Figure 3.3 Unrooted network of mtDNA haplotypes from P. breviceps haplotypes inferred using statistical parsimony and associated nested clade design...... 48

Figure 3.4 Haplotype network of ω-globin gene generated under 95% statistical limit of parsimony...... 49

Figure 3.5 Distribution of the current subspecies of P. breviceps in Australia and the two mtDNA clades found in the current study...... 53

VII Figure 4.1 Location of 23 patches surveyed in this study...... 59

Figure 4.2 Seasonal use of nest boxes by P. breviceps ...... 65

Figure 4.3 The percentage of the total of nest box checks where a nest box was occupied by at least one P. breviceps individual in five small and five large patches...... 66

Figure 4.4 The mean number of individual P. breviceps per nest box in small and large patches...... 66

Figure 4.5 Frequency histogram of the number of P. breviceps inhabiting nest boxes at one time in small and large patches...... 67

Figure 4.6 The mean number of reproductively active adult male and female P. breviceps per nesting group in small and large patches...... 68

Figure 4.7 The mean number of juvenile and sub-adult male and female P. breviceps per nesting group in small and large patches...... 68

Figure 4.8 Average coefficient of relatedness of nesting adult individuals in nest groups ...... 76

Figure 4.9 Average coefficient of relatedness for nesting individuals nesting together. 77

Figure 5.1 Log likelihood probability of data (Ln P(X/K) as a function of K for P. breviceps samples from 16 populations...... 92

Figure 6.1 Distribution map of P. norfolcensis in Australia prior to this study...... 95

Figure 6.2 Sketch map of upper south-east of South Australia...... 96

Figure 6.3 Parameters used in morphometric analysis ...... 99

Figure 6.4 Neighbour-Joining phylogram from 700 base pairs of ND2 sequenced from four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown and Western Flat...... 101

Figure 6.5 The first live suspected squirrel glider in South Australia...... 102

Figure 6.6 Roadside habitat in Western Flat...... 103

VIII Figure 6.7 Bivariate plot of Condylobasal length (CBL) over maximum zygomatic breadth (MZB) for P. breviceps and P. norfolcensis ...... 105

Figure 6.8 Relationship between the first (PCA1) and second (PCA2) components of the Principle Component Analysis for P. breviceps and P. norfolcensis...... 105

Figure 6.9 Relationship between the first (PCA1) and second (PCA2) components of the Principle Component Analysis of both sexes of P. breviceps ...... 106

IX List of tables

Table 1.1 Conservation status of the Australian gliding petaurids...... 5

Table 2.1 Primer name, Source and nucleotide sequences used for amplification and sequencing of ND2 , ND4 and ω-globin gene ...... 18

Table 2.2 Summary of nucleotide substitution models selected for data partitioning using the Akaike Information Criterion in Modeltest version 3.9...... 21

Table 2.3 Comparison of sequence statistics for all three genes used in the study...... 23

Table 2.4 MtDNA (combined ND2 and ND4 ) sequence divergence between Petaurus species...... 23

Table 2.5 Mitochondrial DNA sequence divergence between P. breviceps clades...... 28

Table 2.6 The estimated age of the Most Recent Common Ancestor already defined of P. breviceps lineages in Australia and New Guinea using the program BEAST ...... 29

Table 3.1 Summary of nucleotide substitution models selected for data partitioning using Akaike Information Criterion in Modeltest version 3.9...... 41

Table 3.2 Numbers of samples, mtDNA haplotypes and diversity indices of P. breviceps populations across Australia...... 44

Table 3.3 Pairwise sequence divergence comparisons between regions in Australia and New Guinea ...... 44

Table 3.4 Pairwise FST values for the populations of P. breviceps in Australia, using an analysis of molecular variance (AMOVA)...... 445

Table 4.1 Size, ownership and location for 23 native forest patches surveyed in the current study ...... 58

Table 4.2 Primer sequences, annealing temperatures and source of the nine polymorphic microsatellite loci used in screening of P. breviceps samples...... 61

Table 4.3 Number of adult male, female and offspring P. breviceps sampled from 12 populations...... 63

X Table 4.4 Species recorded using nest boxes, and the number of patches and nest boxes in which species were detected...... 65

Table 4.5 Frequency of the various combinations of adult sugar gliders nesting together in nest boxes in five small patches and five large patches...... 69

Table 4.6 Result of parentage assignments for juvenile and sub-adults sampled in this study by calculation of the most likely male and female parents...... 71

Table 4.7 Pairwise relatedness values for the most likely mated pairs from one small patch, two larger patches and a continuous forest ...... 78

Table 5.1 Summary statistics of genetic diversity for P. breviceps in south-eastern South Australia...... 89

Table 5.2 Pairwise F ST and probability values based on 10000 permutations between each pair of populations sampled in this study...... 91

Table 6.1 Pairwise distances between four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown and Western Flat...... 101

Table 6.2 Average and range of CBL: MZB ratio for P. breviceps and P. norfolcensis...... 104

Table 6.3 Average skull parameters and summary statistics for P. norfolcensis and P. breviceps ...... 106

XI Declaration

I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief it does not contain material that previously published or written by any other person, except where due reference has been acknowledge in this thesis. I give consent to this copy of my thesis being available for loan and photocopying.

Mansoureh Malekian

Date

XII Abstract

The gliding petaurids are small sized arboreal and nocturnal restricted to Australia and the New Guinean region. They have suffered range contractions since European settlement, and most of the species are of conservation concern, either nationally or at a state level. This study applied molecular approaches to investigate several questions involving Petaurus species which may provide valuable insights for their conservation and management of species. The objectives of this study included an examination of phylogenetic and evolutionary relationships among Petaurus species, an assessment of phylogeographic structure within P. breviceps and an investigation of genetic diversity, social structure and mating system of P. breviceps in fragmented habitats.

A broad molecular systematics study of the genus Petaurus was first undertaken. Two mitochondrial genes ( ND2 and ND4 ) and a nuclear gene marker ( ω-globin ) were screened for sequence variation in samples obtained from across the distribution of petaurid species, including Australia, New Guinea and its surrounding islands. Phylogenetic analyses confirmed the monophyly of the genus Petaurus and revealed that, with the exception of P. gracilis, the currently recognised species were associated with divergent mtDNA clades. It also revealed considerable mtDNA diversity within the widely distributed species P. breviceps . The existence of at least seven distinct and divergent mtDNA lineages within P. breviceps was supported, with two lineages located in Australia and at least five lineages in New Guinea. However, the distribution of these evolutionary lineages did not correspond with current morphological subspecies boundaries. Analyses of ω-globin sequence provided support for a number of these distinct populations, suggesting the possible presence of cryptic species within P. breviceps . Molecular analyses also suggested that squirrel gliders, P. norfolcensis , may occur in both South Australia and the Northern Territory, extending the current known range of the species. The presence of P. norfolcensis in SA was further verified by examining museum skins.

Population structure and current pattern of gene flow within P. breviceps in Australia was examined further to elucidate phylogeographic structure within the species, and explore potential causes of geographic variation. Evidence for significant phylogeographic structuring across the range of the species in Australia was provided

XIII from population genetic (AMOVA) and phylogenetic analyses of both mitochondrial DNA and the ω-globin gene. In particular, there was evidence for the existence of two divergent clades that were distributed over distinct geographical regions. Divergence dates calculated for the two major mtDNA clades suggested that environment and climate changes which occurred during the Pliocene may have facilitated this diversification.

Habitat fragmentation is generally considered to be a major factor threatening the viability of forest dependent species such as gliders. Effects of habitat fragmentation were therefore investigated in P. breviceps in the highly disturbed landscape of south- eastern South Australia. Genetic mating system and social structure of the species in these fragmented habitats was explored in 13 populations, using nine polymorphic microsatellite loci. Social groups consisted of two to seven gliders, and these were often close relatives, including parents with their offspring. Parentage analyses provided some evidence for a polygamous mating system, with a number of males found to have fathered offspring from multiple female partners. Some direct evidence of inbreeding was also found within a small isolated patch. Genetic diversity within P. breviceps populations was moderate compared to the range reported in other species. Population structure analyses indicated that gene flow between some patches was restricted. Small patches surrounded by a matrix of pine were more likely to show inbreeding and potentially suffer from inbreeding depression, although further data are required to verify this result. Overall, results suggest that, although the species is still present in these small and isolated patches, it may face threats from a lack of dispersal and inbreeding. Maintaining the size of patches and establishing corridors between isolated populations needs to be considered in conservation and management of species in these fragmented habitats.

XIV Acknowledgments

This thesis and the work that it represents is not representative of my own effort alone, I need to acknowledge a multitude of people who have helped me through this journey.

First and foremost, I would like to thank my supervisors Dr Susan Carthew from the University of Adelaide and Dr Steve Cooper from the South Australian Museum for their ideas, supports, critical discussions and encouragement throughout the project. Without their continued intellectual encouragements and tireless editing skills this thesis would not be in the form it is in.

I am also grateful to those people who assisted me in the field in trapping, erecting nest boxes and collecting samples in the south-east of SA: Key Richardson, Michelle Le Duff, Darryl Funnell, Meredeth Brown, Benjamin Parkhurst, Josh Griffiths, and all volunteers who got to haul the ladder around the bush. I wish to thank Troy Horn from Forestry SA for his assistance with sampling nest boxes in Deadmans Swamp forest and providing me with digital maps of Native Forest Reserves in the south east. I also thank Justin Cook (Department of Sustainability and Environment, Victoria), Mark Bachman (Department for Environment and Heritage, South Australia) and private land-holders in south-eastern South Australia including Mr. and Mrs. Hill, the Paltridge family, the Peucker family, Mr. Bourne, Mr. Yeates and Mr. Mulligan who allowed access to their properties for this study.

I would like to express my gratitude to the following people and museum curators for providing the samples and specimens used in this study: Dennis O'Meally, Karen Gray and Sandy Ingleby (Australian Museum), David Stemmer and Cath Kemper (South Australian Museum), Claire Stevenson (Western Australian Museum), Gavin Dally (Museum & Art Gallery of the Northern Territory), Rory O'Brien (Museum Victoria), Heather Janetzki (Queensland Museum), Dan Harley, Trish Kendal, Andrea Taylor, Rodney van der Ree and Alexandra Pavlov. I also thank Kathy Saint, Leanne Wheaton and Terry Bertozzi, for their laboratory assistance and Mike Gardner for his help with microsatellite analysis.

This research has been supported and funded by various organizations, including the Wildlife Conservation Fund in South Australia, ANZ Holsworth Wildlife Research

XV Fund, Mark Mitchell Foundation, Hancock Victorian Timber Plantations, The University of Adelaide and South Australian Museum

I was fortunate to be a part of the Department of Ecology and Evolutionary Biology in the School of Earth and Environmental Sciences and the Evolutionary Biology Unit, where I met friendly and helpful people, both their staff and the students. I would like to thank Sue’s postgraduate students, both past and present, for their friendship and assistance in many ways over the years. All member of EBU contributed to my study through discussion groups and through friendship while sharing labs and office space.

Finally, I owe a special debt of gratitude to Reza for his support and help in the field and at home. I can not express how much your love and support meant to me and gave me strength to complete this study.

XVI General introduction

1 General introduction

1.1 Preamble In this section, I provide background information on my research on gliding petaurids and the theoretical background of the project. The present study has used molecular techniques to address a varied range of questions involving Petaurus species. The thesis consists of five data chapters, starting with a broad molecular phylogenetic study of the genus Petaurus (Chapter two), and followed by a phylogeographic analysis of P. breviceps in Australia (Chapter three). Chapter four investigates the social structure and mating system of P. breviceps in fragmented habitats of south-eastern South Australia. Fine-scale analyses of population structure are used in Chapter five to assess the level of genetic variation within populations of P. breviceps in south-eastern South Australia and to investigate the effect of habitat fragmentation on the species. The last data chapter covers the genetic re-discovery of the squirrel glider (P. norfolcensis ) in South Australia and the consequent field and morphometric investigations for this presumably extinct species in the state. The thesis closes with a concluding discussion. There is some overlap between chapters in samples used, laboratory procedures and sequences produced. In order to maintain the integrity of each chapter, samples used in each chapter and sequences (in sequence alignment) are produced in Appendices with reference made to the associated chapter as necessary.

1.2 Introduction The conservation of biodiversity ("variation of life at all levels of biological organization", Gaston and Spicer 2004) has become a widely recognized concern for the global community. Human populations are growing rapidly and resources are being consumed at exceedingly rapid rates, resulting in widespread degradation of ecosystems and loss of biodiversity (Burgman and Lindenmayer 1998; Primack 2006). Proper functioning of ecosystems depends upon an intricate web of biotic and abiotic interactions which provide the life support system for all living creatures. If this web is greatly damaged, the processes that we depend on for sustainable coexistence may no longer function properly (Hunter 1996; Primack 2006).

Although the extinction of species is a natural phenomenon, human activities like habitat degradation and fragmentation have accelerated extinction rates. The rate of

1 General introduction extinction occurring in today’s world is thought to be around 100 to 1000 times greater than natural background (IUCN 2006). In the latest version of the International Union for Conservation of Nature and Natural Resources (IUCN) red list, 23 percent of vertebrates, 53 percent of invertebrates and 70 percent of plants that have been evaluated are designated as endangered or threatened. In Australia, 639 species are currently considered critically endangered, endangered or vulnerable, including 64 (IUCN 2006). The number of mammalian extinctions within Australia in the last 200 years is the highest of anywhere in the world (Maxwell et al. 1996).

Given the limited financial resources available to conserve the many species that are threatened, much debate has been focused on what we can afford to conserve and what species or populations should be considered for conservation (e.g. Vane-Wright et al. 1991; Crozier 1997). Developments in the field of molecular genetics provide us with unprecedented opportunities to explore questions regarding taxonomy, evolution and population genetics of species which can lead to better conservation and management of species. Assessments of historic evolutionary relationships among species through phylogenetic reconstructions may provide a means of determining unique evolutionary groups and, thereby, help to define important lineages for conservation (Purvis et al . 2005). Examining genetic variability within a species and the geographic distribution of lineages can help in the prioritization of areas of high value for conservation and provide guidelines on how to manage these populations (e.g. defining evolutionarily significant units (ESUs) and management units (MSUs) (Moritz 1994b). Consideration of genetic factors such as the level of genetic diversity within isolated populations of a species (e.g. due to habitat fragmentation) and its potential relevance to population viability, can help conservationists better manage species (e.g. through designing corridors between isolated populations). The following series of chapters investigates inter and intra-specific genetic variability within Petaurus species and explores potential genetic contributions to the conservation and management of the species.

1.3 Current taxonomy and distribution of gliding petaurids Gliding petaurids or wrist-winged gliders are members of the family Petauridae, along with the Leadbeater’s possum ( Gymnobelideus leadbeateri ) and four species of striped possums ( )(Groves 2005).

2 General introduction

The species are small (100-700g) arboreal and nocturnal marsupials, distributed in Australia, New Guinea and many adjacent islands. All gliding petaurids have obvious facial markings and a well-defined dorsal stripe. Members of the genus possess a gliding membrane running from the lateral side of the wrist to the ankle which facilitates searching for valuable and scarce sources of food in forests. The wrist-winged gliders are omnivorous, specializing on sap, and nectar, but taking a wide variety of supplemental foods such as fruits and insects (reviewed in Goldingay 2004). Glider species inhabit areas ranging from tropical forests to open forests and woodlands.

In the literature, the number of species in the genus Petaurus varies from five to seven. However, only five species have a relatively stable taxonomy and are recognized by most researchers. These are the yellow-bellied glider P. australis , Shaw 1791; the squirrel glider P. norfolcensis , (Kerr 1792); the P. gracilis , (de Vis 1883); the northern glider P. abidi, Ziegler 1981; and the sugar glider P. breviceps , Waterhouse 1839. The taxonomic status of two other species remains uncertain because of inadequate material. The biak glider ( P. biacensis, Ulmer 1940), a common gliding possum in Biak and Supiori Islands in New Guinea, is also known as a subspecies of P. breviceps ( P. b. biacensis ) (Flannery 1994). The D ΄Entrecasteaux glider ( Petaurus sp ) is an undescribed species inhabiting the D ΄Entrecasteaux island group in south-eastern New Guinea (Flannery 1994).

Three of these gliding marsupials (the yellow-bellied glider, the squirrel glider and the mahogany glider) are endemic to Australia and occur throughout eucalypt forests and woodlands along the east coast. The New Guinean endemic species are the northern glider, the biak glider and the undescribed species (Flannery 1994). The sugar glider is the only Petaurus species which occurs in both regions.

1.4 Conservation status Of the seven species of gliders mentioned above, there is very 1ittle known about the conservation status of the New Guinean species. P. abidi has a very restricted distribution in Papua New Guinean North Coast Ranges and is thought to be vulnerable, while P. biacensis is thought to be common (Flannery 1994; IUCN 2006). The Australian species are mostly of conservation concern and are given varying degrees of protection (Table 1.1). Various governmental departments and branches responsible for the listing of species for conservation often have different levels of protection for these

3 General introduction species or different terms for the same level of protection. This variety and degree of protection often complicates the conservation status of a species. Moreover, lists are continually being reviewed and the status of a species is subject to change. Although all Australian species have declined and are protected on a state basis, only two of the four Australian species ( P. australis north Queensland subspecies and P. gracilis ) have been given Federal protection (Table 1.1).

Gliders are important components of forest and woodland ecosystems. Several species are recognized as having keystone roles in forest ecosystems, in that they pollinate a number of native plants (Quin et al. 1996a; Carthew and Goldingay 1997) and help to control insect pests (Smith 1982). Glider species are reliant upon forest and woodland cover and the elements contained within them, such as hollow bearing trees and foraging substrates. The dominant processes that threaten the species include habitat loss, fragmentation and habitat modification. Aside from human impacts on the viability of these species, unresolved taxonomic issues within the genus also hinder the effective management of the group. For example, P. gracilis suffered greatly from taxonomic oblivion and became lost to science for over half a century (Van Dyck 1993). Resolving taxonomic uncertainties and defining geographical distributions of species and populations are prerequisites for adequate conservation and management plans (Moritz 1994b; Avise 2000).

4 General introduction

Table 1.1 Conservation status of the Australian gliding petaurids. State legislations used are as follow: 1 NT = Territory Parks and Wildlife Conservation Amendment Act 2000, 2QLD = Queensland Nature Conservation Act 1992, 3 NSW = the New South Wales Threatened Species Conservation Act 1995, 4VIC = Victorian Department of Sustainability and Environment, Flora and Fauna Guarantee Act 1988, 5SA = South Australian National Parks and Wildlife Act 1972, 6TAS = Tasmanian Threatened Species Protection Act 1995, 7FED = The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). 8IUCN = World Conservation Union, Red List 2006. 9 na = not applicable; the species never existed in the State or Territory.

P. australis P. gracilis P. norfolcensis P. breviceps

NT 1 na 9 na na Not threatened Vulnerable (in Wet QLD 2 Endangered Common Common Tropics) Vulnerable/ NSW3 Vulnerable na Common Endangered VIC 4 Not threatened na Endangered Common SA 5 Endangered na Endangered Rare TAS 6 na na na Common FED 7 Vulnerable Endangered Not listed Not listed Low risk, Near Low risk, Near Low risk, Least IUCN 8 Endangered Threatened Threatened Concern

1.5 Phylogeny and evolution of gliders Although there have been a number of studies at higher taxonomic levels (such as Family (Edwards and Westerman 1992; Osborne and Christidis 2001) and Order (Osborne et al. 2002; Kavanagh et al. 2004)), which included representatives of Petaurus species, no comprehensive molecular systematics of the genus has been reported. The only biochemical study of the genus (Colgan and Flannery 1992) did not include all the members. That study focused on New Guinean species and did not provide evolutionary relationships of species in both regions. This means that monophyly of the genus and phylogenetic relationships of the species have not been fully established, and the taxonomic status of many named forms within the genus remains uncertain. Attempts to describe and classify species and subspecies in the genus have been based primarily on morphological characters (e.g. Ziegler 1981; Van Dyck 1993), though there is no morphological cladistic analysis of relationships within the genus. It is, therefore, appropriate to start the present study from a broad perspective of Petaurus phylogeny which ideally includes all the members of the genus, including all

5 General introduction known species, subspecies and most geographically isolated populations in Australia, New Guinea and its surrounding islands.

The genus is also of interest because its distribution spans the Australia-New Guinean region, an important region in the biogeographic history of Australia. Phylogenetic studies of widespread species such as Petaurus breviceps may be useful for testing hypotheses about the evolutionary history of the region. For example, it had been suggested that the genus evolved in Australia during the Pliocene (5.3 to 1.8 million years ago) following range contraction of forests which led to the establishment of open forests (Archer 1984). The ability to glide is an advantage in open forests, and these forests were not widespread before this time.

1.6 Phylogeography and population structure Phylogeography is the study of the processes controlling the geographic distributions of genetic lineages, and it is done by constructing the genealogies of populations and genes (Avise 2000). Past events such as population expansion, population bottlenecks, vicariance and migration can be inferred from such studies. Identifying patterns of geographic variation within species and relating this variation to potential selective forces can help to understand the relative contribution of factors involved in evolutionary diversification and speciation (Simons 2002) and can also direct conservation priorities (Moritz et al. 2000; Arbogast and Kenagy 2001).

Forests cover only a small proportion of the Australian landscape. The present-day forests of the eastern seaboard of Australia are fragmented remnants of the tropical forests that once had a widespread and continuous distribution across Australia, but declined as a result of increasing aridity across the Australian continent through the mid-late Tertiary and Quaternary (the past six million years)(Kershaw 1981; Hope 1994). The aridity resulted in a series of disjunct, coastal forest patches scattered from tropical rain forest in Queensland to open eucalypt forests and woodlands in South Australia. The eastern seaboard of Australia is one of the most biologically diverse parts of the continent, supporting a high proportion of terrestrial vertebrate species (Blakers et al. 1984; Strahan 1995a; Cogger 2000). As the past climatic/ environmental events affected the distribution of major vegetation types, the fauna throughout the region may have also been affected. Phylogeographic studies of species distributed in these forests can help in understanding the effect of past climatic events on different species. The

6 General introduction pattern of geographic distribution of species and the potential effect of past history of the region on the current distribution of species has been documented, particularly in the Wet Tropics (e.g. Schneider et al. 1998; Pope et al. 2000). However, it is not well known how the open forest species have been affected by past climatic events. Phylogeographic analysis of yellow-bellied gliders in Australia suggests that a historical barrier known as the Burdekin gap (an area of hot and dry lowland in central Queensland) acted as a potential barrier to gene flow and facilitated the divergence between southern and northern populations of the species (Brown et al. 2006). However more research is required to examine the relative importance of such barriers to broadly distributed species in these forests and to assess if other barriers to gene flow might have existed through the region. P. breviceps has been chosen here as a candidate species to examine phylogeography and divergence along the east coast of Australia, because its distribution mirrors the distribution of forests along the east coast and it is well adapted to different types of forests, from tropical forest to open forests and woodlands of Australia. The sugar glider shows considerable variation in external morphology such as body size and coat colour over its geographic range. This variation has led to the recognition of three subspecies in Australia (Suckling 1983b). Species clearly require management as separate units. However, subspecies or populations within a species may be on the path of speciation. They may show significant adaptive differentiation to different habitats, or significant genetic differentiation and should potentially be considered as separate evolutionarily significant units (ESUs) (Moritz 1994b) for conservation purposes. Genetic study can make an important contribution in delineating groups for conservation. Where the genetic resources of a species have been adequately documented, a number of management strategies can be implemented to maintain genetic diversity.

1.7 Genetic variability and habitat fragmentation Genetic variability has long been recognized as a key component of populations. It provides the raw material for evolutionary change and is, therefore, crucial to the long- term viability of populations, and in particular, small and isolated populations (Reed and Frankham 2003). The loss of genetic variation due to drift, inbreeding or other factors can reduce both individual fitness and the ability of species to adapt themselves to environmental changes (Lacy 1997; Theodorou and Couvet 2006). Alternatively, relatively high level of genetic diversity may increase qualities associated with fitness

7 General introduction

(Lacy 1997). Small and isolated populations generally face appreciable risk from environmental variation, demographic stochasticity and reduced genetic variation. Each process or the interaction of all three can reduce population viability and persistence over time (Frankham 2005).

Human activities such as land clearing for agriculture, softwood production and urbanisation have reduced the amount of native habitats available for the flora and fauna. The remaining habitat patches are often small and isolated from each other by less suitable landscape elements. Isolated populations within these fragments may lose genetic variability and face extinction due to the lack of gene flow and the consequences of inbreeding (reviewed by Reed 2004). Loss of genetic diversity in small populations has been documented in a number of marsupial species such as the northern hairy-nosed (Taylor et al. 1994), the black-footed rock (Eldridge et al. 1999) and the Tasmanian devil (Jones et al. 2004).

Although habitat fragmentation is becoming increasingly common, the effect of habitat spatial structure on population dynamics remains undetermined for many species, including many of the arboreal marsupial species. Arboreal marsupials are recognised as a group of mammals that are potentially vulnerable to habitat disturbance and fragmentation (Bennett 1987; Bennett et al. 1991; Laurance and Vasconcelos 2004). Most studies on the effect of fragmentation on arboreal marsupials have focused on the presence and absence and relative abundance of the species, and much less attention has been given to the genetic consequences of the fragmentation. Less well known are the effects of fragmentation on within-population processes. For example, a reduction of habitat size may impact a range of behaviours at the individual and social group levels. Habitat fragmentation is thought to affect social structure and mating system of a species because of reduced social neighbourhood sizes and restricted dispersal (Cale 2003; Stow and Sunnucks 2004). Natural animal populations generally avoid inbreeding through several mechanisms, including dispersal of individuals from their natal population, extra-pair copulation, or recognition and avoidance of kin as mates (reviewed by Pusey and Wolf 1996). Changes resulting from habitat fragmentation could lead to a disruption of inbreeding avoidance mechanisms and increased matings between closely related individuals. Such effects of fragmentation have been studied in several species of mammals including some marsupials. For instance, Banks et al .

8 General introduction

(2005) found evidence of increased relatedness among potential mates and a reduction in the degree of multiple paternity in Antechinus agilis in fragmented habitats.

The effects of habitat fragmentation on population dynamics depends upon the nature of the fragmentation and the life history characteristics of the species concerned. Ecological traits of species such as body size, trophic level, life history strategy, habitat requirement and type of locomotion are important in predicting their response to habitat modification and fragmentation (reviewed by Ewers and Didham 2006). Petaurus species which vary in ecological traits such as body size and habitat requirements, may respond differently to habitat fragmentation. For instance the Tumut Fragmentation Experiment (Lindenmayer et al. 1999a) showed that P. australis and P. norfolcensis were absent in remnants, but P. breviceps was present in both remnant and continuous forests. The large home range requirement of P. australis and the low density of P. norfolcensis could be the reasons for their absence from small and fragmented patches. P. breviceps is known to have the ability to thrive in small patches of forests, in pasture and road side vegetation where the larger gliders may be absent (Suckling 1982). However little is known how the species survives in small habitats. There is also limited knowledge about the important life history components of the species, such as social structure and mating system and how these are potentially influenced by the effects of fragmentation.

1.8 Study aims The overall aim of this study was to use molecular data to increase our knowledge about the conservation and management of these gliding marsupials. I aimed to do this by assessing the evolutionary relationships of the members of the genus through phylogenetic reconstructions and examining genetic variability between and within the species. I also aimed to assess the level of genetic variability and differentiation among and within populations of P. breviceps , and investigate the effects of habitat fragmentation on genetic structure and mating system of the species.

Specifically, this study aimed to

• Provide a phylogenetic reconstruction using a combination of highly variable mtDNA and nuclear marker sequence datasets as a means of determining historical relationships among the Petaurus species,

9 General introduction

• Examine the phylogeographic structure of P. breviceps and explore the effects of past historical events on the structure of this forest dependent species,

• Examine the level of population subdivision, heterozygosity and allelic diversity within and among populations of the sugar glider using nuclear microsatellites, and explore the effects of fragmentation on genetic variability and long-term survival of the species in fragmented habitats of south-eastern South Australia

• Investigate the social structure and genetic mating system of P. breviceps in the fragmented fragments habitats of South Australia

• Use the results of molecular analyses to guide management for the long- term conservation of sugar gliders.

10 Molecular systematics

2 Molecular systematics of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea

2.1 Introduction The glider genus Petaurus (Marsupialia: Petauridae) comprises a group of diverse and widely distributed arboreal and nocturnal marsupial species. The genus, as currently recognised, consists of seven species including five known, one uncertain and one undescribed species. Three species of these gliding marsupials are endemic to Australia, three species are endemic to New Guinea and one species occurs in both regions (Flannery 1990; Flannery 1994). Species are distributed along the east coast of Australia, Tasmania, New Guinea and many smaller islands in Australasia. Australian species are the yellow-bellied glider P. australis ; the squirrel glider P. norfolcensis ; and the mahogany glider P. gracilis (Strahan 1995b) (Fig. 2.1: a-c). The New Guinean species are the northern glider P. abidi ; Biak glider P. biacensis ; and an undescribed species Petaurus sp . (Flannery 1994) (Fig. 2.1: e). The sugar glider, P. breviceps is the only species that occurs in both Australia and New Guinea (Fig. 2.1: d). Over this geographical range, the species has adapted to a variety of habitats including sparse eucalypt woodlands, sclerophyll forests and tropical rainforest in Australia (Strahan 1995b; Goldingay 2000) and savannah woodlands and even in montane rainforests in New Guinea (Flannery 1994).

The relationships of possum and gliders have been the subject of numerous molecular studies over the past couple of decades (Kirsch 1977; Baverstock et al. 1990; Colgan and Flannery 1992; Edwards and Westerman 1995; Kirsch et al. 1997; Osborne and Christidis 2001; Kavanagh et al. 2004). However, the phylogenetic relationships and monophyly of species within the genus Petaurus has not been rigorously examined, and no published molecular study has yet been undertaken to include all known Petaurus species. Phylogenetic studies using molecular data, such as microcomplement fixation of albumin (Baverstock et al. 1990), DNA-DNA hybridisation (Edwards and Westerman 1992) and DNA sequencing (Osborne and Christidis 2001) suggested the genus is monophyletic; however, this conclusion was based on limited samples of two of the currently known species. Attempts to describe and classify species and subspecies in the genus have been primarily on the basis of morphological characters

11 Molecular systematics

(e.g. Ziegler 1981; Van Dyck 1993). However there is no published morphological cladistic analysis for the genus.

The taxonomic status of many named forms within the genus has remained controversial. Five species are recognized by most workers and of these, only two have had relatively stable taxonomic histories; P. abidi from the North Coast Ranges of New Guinea (Flannery 1994) and P. australis with the nominate subspecies in south-eastern Australia and P. a. reginae (Thomas 1923) in north-eastern Australia. Recently, however, a molecular sequencing study suggested the subspecies classification of P. a. reginae from southern Queensland should be discontinued, and the north Queensland population should be recognized as a distinct Evolutionarily Significant Unit (ESU) (Brown et al. 2006). Taxonomy within P. norfolcensis also has been subject to substantial debate. Tate (1945) recognized two subspecies; P. n. norfolcensis from south-eastern Australia and P. n. gracilis from northern Australia. However, Van Dyck (1990) provided additional morphological evidence for the distinction of gracilis from norfolcensis and raised the status of gracilis to species. Although allozyme data were limited, Colgan and Flannery (1992) also supported the distinctiveness of P. gracilis from P. norfolcensis . Taxonomy within the widespread P. breviceps is also uncertain. The species currently consists of seven subspecies, with three subspecies in Australia and four subspecies in New Guinea (Figure 2.2). The designation of these subspecies is based on small variations in external morphology such as colour and body size (Suckling 1983b). Among these subspecies, P. b. biacensis , a common gliding possum in Biak and Supiori Islands in New Guinea, has also been considered as a distinct species ( P. biacensis ) (Ulmer 1940) and P. kohlsi , a synonym (Troughton 1945). The only molecular study to include representatives from most of these New Guinean subspecies found evidence of cryptic diversity within P. breviceps (Colgan and Flannery 1992). The allozyme data also suggested that a population of Petaurus sp, from the D ΄Entrecasteaux island group in south-eastern New Guinea, may be a subspecies of P. breviceps . Given the morphological and allozyme variability within the genus and the presence of many isolated populations which have never been fully studied, additional molecular analyses are warranted to test for the presence of cryptic species and resolve phylogenetic relationships.

12 Molecular systematics

Figure 2.1 Distribution map of the glider species in Australia and New Guinea; a, P. australis ; b, P. norfolcensis ; c, P. gracilis ; d, P. breviceps and e, New Guinean endemic species including P. abidi , P. biacensis and Petaurus sp.

13 Molecular systematics

All seven species of Petaurus possess a gliding membrane. Although widely distributed in Australasia, it has been suggested that the group evolved within Australia, because gliding membranes are an adaptation of living in forest with an incomplete canopy such as eucalypt forest, but are of limited use in tropical rainforests (Flannery 1994). Archer (1984) argued that Petaurus , with the ability to glide, did not radiate prior to the Pliocene because open forests were not widespread before this time. The earliest fossils of Petaurus in Australia are from the Pliocene Hamilton Local fauna (Flannery et al. 1992) dated at 4.46 ± 0.1 million years (Rich 1991). Molecular dating using DNA-DNA hybridization dates (Edwards and Westerman 1995) and the NADH dehydrogenase subunit 2 ( ND2 ) gene sequence data (Osborne and Christadis 2001) also supported a Pliocene radiation for the genus in Australia. No Petaurus specimen from New Guinea was present in these studies, therefore, the divergence of New Guinean populations is not known. Petaurus fossils recovered from deposits at Nombe in New Guinea, were dated from the Pliocene to mid Holocene (Flannery 1990). Miocene and early Pliocene divergence times estimated for several New Guinean and Australian groups such as Dasyuridae (Krajewski et al. 2000), Dasyuridae, and (Kirsch and Springer 1993) and (Osborne and Christidis 2002), suggest other intermediate activities such as extensive tectonic activities and climatic changes may have affected the diversification of species in the region. Widely distributed species, such as gliders, can be useful for testing hypotheses about the evolutionary history of the region.

The current study used a combination of mitochondrial DNA and a nuclear marker to investigate phylogenetic relationships and the evolution of Petaurus species in Australia and New Guinea. In particular the study aimed to (i) test the monophyly of the genus Petaurus, (ii) elucidate systematic relationships within Petaurus at the species and subspecies levels, and (iii) test hypotheses about the evolutionary history of the region and the evolution of the group.

14 Molecular systematics

NOTE: This figure is included on page 102 in the print copy of the thesis held in the University of Adelaide Library.

Figure 2.2 Current distribution of subspecies of P. breviceps in Australia and New Guinea. Each number represents one subspecies: 1, P. b. breviceps; 2, P. b. longicaudatus; 3, P. b. ariel; 4, P. b. flavidus; 5, P. b. papuanus; 6, P. b. tafa; 7, P. b. biacensis. The map has been modified from Smith (1973).

2.2 Material and methods

2.2.1 Taxa sampling

Samples were obtained from representatives of all known species, subspecies and most geographically isolated populations of Petaurus species in Australia, New Guinea and its surrounding islands, with the exception of P. biacensis (Appendix 1). Most of the tissue samples used were either frozen or ethanol preserved museum specimens obtained from museum collections within Australia. Live trapping was also conducted on targeted populations of P. australis and P. breviceps (see Chapter three for details of sampling techniques). Samples were limited in some areas due to the difficulty of trapping gliders in tall eucalypt forests, the nocturnal nature of the species and low population densities. Furthermore, specimens suitable for DNA analysis were poorly represented in museum collections within Australia.

15 Molecular systematics

2.2.2 Genetic analyses

Osborne and Christidis (2001) used the ND2 gene on representative members of the family Petauridae, which provides a background of data to assess species boundaries using phylogenetic methods. Other mitochondrial genes have also been used in the study of phylogeny and population structure of glider species (such as the NADH dehydrogenase subunit 4 ( ND4 ) gene; Brown et al . 2006). Here, to enhance the resolving power of mtDNA and also to provide comparative data with the other studies, both ND2 and ND4 gene fragments were sequenced. In addition, to further improve the resolution and to assess the congruence among independent lineages one nuclear marker, the ω-globin gene was included. The ω-globin gene is a member of the β-globin gene family of marsupials, but resides on a different chromosome from other β-like globin genes, and has, therefore, not been affected by recent gene conversion events that can obscure phylogenetic relationships (Wheeler et al. 2004; Cooper et al. 2005; Cooper et al. 2006). The selected fragment of the ω-globin gene was primarily the second intron of the gene, amplified by primers that annealed to conserved regions of the second and third exons of the gene. Selective constraints on introns are relaxed relative to exons of protein coding genes, resulting in relatively high variability (e.g. Palumbi and Baker 1994). Introns are being used increasingly to supplement sequence data from mtDNA in phylogenetic analyses (Moore 1995; Friesen et al. 1997; Moore 1997; Giannasi et al. 2001; Pacheco et al. 2002; Prychitko and Moore 2003) and might be especially useful for testing phylogenetic hypotheses derived from mtDNA analyses.

2.2.3 Choice of outgroups

Outgroup sequences used for rooting phylogenetic trees must be ancestral to all other taxa in the tree while at the same time being as closely related as possible to the ingroups. Petaurus species are members of the family Petauridae, along with the Leadbeater’s possum ( Gymnobelideus leadbeateri ) and four species of striped possums (Dactylopsila )(Groves 2005). Support for monophyly of Petaurus and Gymnobelideus to the exclusion of other groups came from serological data (Kirsch and Calaby 1976), morphological (Alpin and Archer 1987) and chromosomal (McKay 1984) characters. Phylogenetic analyses of the ND2 gene (Osborne and Christidis 2001) showed that Gymnobelideus was more closely related to Dactylopsila- Dactylonax than to Petaurus . These associations, however, lacked strong support. Although the closest family to

16 Molecular systematics

Petauridae is Pseudocheiridae (Groves 2005), evidence for the sister relationship of Pseudocheiridae to Petauridae is not strong (Osborne and Christidis 2001). Due to these uncertainties in the phylogenetic relationships of these families, a single ND2 sequence of Trichosurus vulpecula from the family Phalangeridae, (GenBank accession number; AF300999) was used as an outgroup to test the monophyly of Petaurus . The outgroup status of this species was supported by molecular phylogenetic analyses of (Osborne et al. 2002; Kavanagh et al. 2004). Sequences of representative species of other genera in the family Petauridae and Pseudocheiridae (GenBank accession numbers; AF300992- AF300998) were also included in the analysis. Base on this broad phygeny, other outgroups were selected to examine phylogenetic relationships of more closely related species or inter-specific diversity of a specific species. ω-globin sequence data was also obtained from one specimen of Petauroides volans from New South Wales sourced from the Australian Biological Tissue Collection (ABTC) at the South Australian Museum (see Appendix 1 for details) and used as an outgroup in phylogenetic analyses of Petaurus species.

2.2.4 DNA isolation, PCR- amplification and sequencing

Genomic DNA was extracted from frozen tissues or 70% ethanol preserved samples, using the Gentra DNA Extraction Kit following the manufacture’s procedures.

A 700 bp fragment of the ND2 gene was amplified using mmND2.1 and mrND2c primers as described in Osborne and Christidis (2001). PCR amplification of about 900 bp of ND4 and 700bp of the ω-globin gene was carried out using the primer combinations given in Table 2.1. PCR-amplification protocols for these markers were originally presented in Arevalo et al. (1994) and Wheeler et al. (2001). However, they were optimized for the current species as follows. PCR-amplifications were carried out in a final volume of 25 µl with approximately 100 ng genomic DNA, 1x PCR buffer

(Applied Biosystems) 0.20 mM dNTPs, 2.5mM MgCl 2, 2 pmol of the corresponding primers (Table 2.1) and 0.1U Ampli Taq Gold (Applied Biosystems). Thermocycling was performed in a Corbett research thermocycler using an initial denaturation cycle of 95 °C for 9 min, 35 cycles of denaturation at 94 °C for 45 s, annealing at 56 °C ( ND2 ) and 60 °C ( ω-globin gene) for 45 s; extension at 72 °C, 45 s, followed by a final extension at 72 °C for 10 min. PCR products were purified using Ultraclean PCR cleanup columns (MoBio Labs) and sequenced on an automated DNA sequencer (ABI-

17 Molecular systematics

3700, Applied Biosystems) using the BigDye Terminator Cycle Sequencing Kit version 3.1 (Applied Biosystems) following the manufacture’s procedures.

Table 2.1 Primer name, Source and nucleotide sequences used for amplification and sequencing of the ND2 , ND4 and the ωωω-globin gene

Primer Gene Source Sequence (5 ′ to 3 ′) Name

mmND2.1 Osborne and GCACCATTCCACTTYTGAGT ND2 Christadis mrND2c (2001) GATTTGCGTTCGAATGTAGCAAG mt10812H Arevalo et al. TGACTACCAAAAGCTCATGTAGAAGC ND4 mt11769L (1994) TTTTACTTGGATTTGCACCA G314 (Wheeler et al . GGAATCATGGCAAGAAGGTG ωωω-globin gene G424 2001) CCGGAGGTGTTYAGTGGTATTTTC

2.2.5 Sequence analysis

Raw sequences were edited using BioEdit (version 7.0.5.2), aligned using Clustal X version 1.83 (Thomson et al 1997) and checked visually. Before phylogenetic analyses were conducted, factors that are known to affect such analyses such as nucleotide composition and transition and transversion ratios were considered using MEGA (Molecular Evolutionary Genetic Analyses) (Kumar et al. 2004). DnaSP version 4.1 (Rozas et al. 2003) was used to determine the number of haplotypes, nucleotide diversity, and the number of polymorphic and parsimony informative sites. The program PHASE version 2.1 (Stephens et al. 2001) also was used on the ω-globin gene dataset to resolve sequence ambiguities at the heterozygous sites. PHASE implements a Bayesian statistical method to reconstruct haplotypes from genotyping data. Single nucleotide polymorphisms (SNPs) of all individuals at polymorphic sites were obtained and the program was run with the default values. The hypothesis that all mutations are selectively neutral (Kimura 1983) was tested using Tajima’s test as implemented in DnaSP version 4.1 (Rozas et al. 2003) based on the total number of mutations and including gaps. Intra-specific sequence divergence among haplotypes was estimated using the HKY-85 (Hasegawa et al. 1985) model which was selected by Modeltest (see below for details) and implemented in PAUP* (Swofford 2002).

18 Molecular systematics

2.2.6 Phylogenetic analyses

The phylogenetic methods used to analyse both mtDNA and the nuclear marker data sets were implemented in PAUP*, version 4.0 b10 (Swofford 2002) and MrBayes, version 3.1 (Huelsenbeck and Ronquist 2005).

Different reconstruction methods were used to derive phylogenies as this allows the consistency of phylogenetic estimations to be evaluated. Maximum parsimony (MP) analyses were conducted on all three genes separately and on the combined ND2 and ND4 sequence data, using the heuristic search algorithm with tree-bisection- reconnection (TBR) branch swapping, stepwise addition starting tree, and random addition sequence with 100 replicates. Character-state optimization for MP trees used the DELTRAN option, as there is a bug in PAUP* version 4.0b10 in the default ACCTRAN option that leads to erroneous branch lengths in output trees. Each base was treated as an unordered character with equal weight. Gaps were treated as missing data in mtDNA and as fifth base in the nuclear marker. Consensus trees (50% majority rule) were compared if more than one equally parsimonious tree was found. The reliability of MP trees was tested by the bootstrap approach (Felsenstein 1985) with 1000 pseudoreplicates.

Modeltest version 3.9 (Posada and Crandall 1998) was used to determine the best fit model of nucleotide substitution for all three genes. Within these genes, five data partitions were identified including four coding regions (mitochondrial: ND2 , ND4 and nuclear: Exon 2 and Exon 3) and a single non-coding partition (Intron 2). The PAUP* block provided with Modeltest was used to compare different models of DNA substitutions. The best model was chosen under the Akaike Information Criterion (AIC). AIC was preferred over the traditional model selection using hLRT because it has several advantages. Among the pitfalls of hLRT are the (1) need for an arbitrary choice between sequential addition/removal of parameters, (2) election of parameter addition/removal order, and (3) inability to address model selection uncertainty (Sanderson and Kim 2000; Pol 2004; Posada and Buckley 2004). The AIC, as well as some Bayesian approaches (e.g. Bayes factors), avoid these problems because they (1) compare multiple nested and non-nested models simultaneously, (2) account for model selection uncertainty, and (3) permit model-averaged inference (Pol 2004; Posada and Buckley 2004) Parameters such as base frequencies, the shape parameter of the gamma

19 Molecular systematics distribution of rates among sites (Yang et al. 1994; Yang 1996) and the proportion of invariable sites (I) were estimated in conjunction with the models. The chosen models were subsequently used in pairwise distance and Bayesian phylogenetic analyses.

The Bayesian phylogenetic analyses were carried out separately on ω-globin , a combined ND2 and ND4 dataset, and a combined dataset of all three genes, using a partitioned mixed-model in MrBayes (Huelsenbeck and Ronquist 2005). The optimal models of sequence evolution determined for each data partition (Table 2.2) were used with the APPLYTO command and appropriate model parameter values estimated for each data partition using the UNLINK command. A binary model was used to identify the presence (1) and absence (0) of indels in the nuclear marker. The program was run for four chains simultaneously in each analysis and the analysis was repeated three separate times. Each MRBAYES search was run with 1.5 million generations. After this number of generations the standard deviation of split frequencies had reduced to less than 1%, confirming that a good sample of the posterior distribution had been obtained. The likelihood values converged to relatively stationary values after about 5,000 generations. A burn-in of 100 trees (equivalent to 10,000 generations) was chosen with a > 50% posterior probability consensus tree constructed from the remaining 14,901 trees.

2.2.7 Molecular clock and divergence time estimates

A substitution rate of 1% per million years for protein-coding mitochondrial DNA was originally derived from studies of various metazoan groups (Brown et al. 1979) and has been supported by a number of comparable estimates from subsequent studies (e.g. Randi 1996; Fleischer et al. 1998). This rate has been used for estimating divergence times for mammalian species including some marsupials (e.g. Krajewski et al. 1997). Evolutionary rates and divergence times were estimated using a Bayesian interface in BEAST, version 1.4 (Drummond and Rambaut 2006). Unlike many other methods of molecular dating (reviewed in Rutschmann 2006) BEAST is able to directly calculate ultrametric phylogenies based only on sequence data and model parameters, a procedure that also allows incorporation of branch length errors and topological uncertainties (Drummond et al. 2006).

20 Molecular systematics

Table 2.2 Summary of nucleotide substitution models selected for data partitioning using the Akaike Information Criterion in Modeltest version 3.9.

DNA substitution No. substitution Substitution Data Partition Invariant sites model types rates Mitochondrial genes Gamma ND2 HKY 2 Yes distributed Gamma ND4 HKY 2 Yes distributed Nuclear marker Exon2 K81 6 No Equal Exon3 K81 6 No Equal Intron2 HKY 2 Yes Equal

A NEXUS file containing sequence data of ND2 and ND4 was used in BEAUti (a program provided with BEAST) to generate an XML input file to run BEAST. To investigate the behaviour of rates throughout the tree, Bayesian inference was performed under a relaxed clock model with branch-specific rates following a lognormal distribution. Posterior estimates were obtained by sampling every 1000 MCMC steps from a total of 5,000,000 steps. The coefficient of variation of rates and the rate of covariance were obtained to investigate the departure from a molecular clock and the rate of autocorrelation among adjacent branches in the tree.

The combined mtDNA dataset was analysed under a relaxed molecular clock and Uncorrelated Lognormal (UCLN) model. The HKY model of nucleotide substitution was used with invariant gamma rate heterogeneity among sites. A constant population coalescent was assumed (Drummond et al. 2002). Monophyly was enforced for the clades only when the ages of Most Recent Common Ancestors (MRCAs) were being estimated; otherwise, no restrictions were placed on the topology. Rates were fixed at 0.01 average substitution rates per site per time unit (million years) throughout the tree. Two independent MCMC chains were run for 5 ×10 6 generations with sampling every 1000 generations with the default 10 % burn-in of the posterior samples. The convergence of the chain to a satisfactory distribution was confirmed by inspection of the MCMC samples using the program Tracer 1.3 (Rambaut and Drummond 2003). This application analyses posterior samples of continuous parameters from Bayesian MCMCs to allow visual inspection of the chain behaviour, estimation of the effective sample size of parameters and the plotting of marginal posterior densities. The effective

21 Molecular systematics sample size is the number of independent samples that would be equivalent to the autocorrelated samples produced by the MCMC. This provides a measure of whether the chain has been run for an adequate length (for example, if the effective sample sizes of sampled parameters were greater than 100).

2.3 Results

2.3.1 Sequence analyses

2.3.1.1 Mitochondrial regions Sequences for 1393 bp of mitochondrial genes (695 bp of ND2 and 698 bp of ND4 ) were obtained for 57 individuals of Petaurus species. A total of 530 variable sites and 492 parsimony informative sites were observed for Petaurus sequences. A total of 47 haplotypes was observed for the mtDNA of Petaurus species, with 36 in P. breviceps (n = 46), four in P. australis (n = 4), three in P. norfolcensis (n = 3), two in P. abidi (n = 3) and one in P. gracilis (n = 1). On average, the mtDNA sequence was found to be A-T rich (A = 35%, T = 30%, C = 24%, G = 9%). The transition: transversion ratios ranged from 0.2-0.8. On average, transitions were more frequent than transversions (104 vs. 38) with a majority of changes between C and T (78). Transversions were more common between T and A (9) and rare between A and C (1). Details of sequence analyses for the genes are summarised in Table 2.3.

Both ND4 and ND2 sequences had open reading frames in all sequences, suggesting they are functional genes and unlikely to be nuclear copies of mtDNA. No evidence for double PCR-amplification peaks and ambiguities in the sequence data was found to suggest the presence of nuclear copies in the mtDNA data set. The combined ND2 and ND4 sequence alignment for Petaurus samples used in this study is given in Appendix 2.

Sequence divergence values obtained by applying the HKY+I+G model to the mtDNA dataset (Proportion of invariable sites = 0.49, gamma distribution with shape parameter = 2.4) ranged from 2.2% to 45.5% between species. The minimum value was observed between P. norfolcensis and P. gracilis (1.8 to 2.2%) and the maximum was between P. australis and P. breviceps 35% to 45.2% (Table 2.4). Sequence divergence within species ranged from 0.07% to 2%, with the exception of P. breviceps with divergence

22 Molecular systematics values ranging from 0.2 to 16% (see below). Tajima’s test could not reject the hypothesis that all mutations are selectively neutral (D = 0.099, not significant, P = 0.1).

2.3.1.2 Nuclear marker Sequences of a fragment of the ω-globin gene were obtained for 50 individuals of Petaurus species. The sequenced fragment was aligned and phylogenetically analysed with the published sequences of selected marsupials (Wheeler et al. 2001) to confirm the orthology of the amplified fragment (data not shown). The fragment was 705 bp in length consisting of 167 bp of coding sequence (Exon2 and Exon3) and 529 bp of non- coding sequence (Intron2). The ω-globin sequence alignment for Petaurus samples is given in Appendix 3. The sequence was highly conserved over the different species of Petaurus . A total of 11 haplotypes was observed within the Petaurus species and haplotype diversity was 0.66 ± 0.006 (Table 2.3). Nucleotide composition analysis showed almost equality of nucleotide frequencies (T=27% C=28% A=24% G=21%) in the sequence. Overall, 29 polymorphic sites and 22 parsimony informative sites were found. Six deletions (indels), located in the intron, were found over the Petaurus sequences with the largest being 7 bp in length. Tajima’s test could not reject the hypothesis that all mutations are selectively neutral (D = -1.23, not significant, P = 0.1).

Table 2.3 Comparison of sequence statistics for all three genes used in the study.

Gene ND2 ND4 ωωω-globin gene Fragment length 695 698 705 Polymorphic sites 279 251 29 Parsimony informative sites 261 233 24 Total number of mutations 330 290 29 Number of haplotypes (h) 45 30 11 Haplotype diversity (Hd) 0.99 0.97 0.70 Nucleotide diversity (pi) 0.1 0.1 0.006

Table 2.4 the range of MtDNA (combined ND2 and ND4 ) sequence divergence between Petaurus species calculated using the HKY+I+G model in PAUP*.

Taxa 1 2 3 4 5 P. abidi - 20.6- 25.2 22.8-24.4 23.2-23.4 37.1-39.6 P. breviceps - 10.3-16.7 11.1-14.2 35.3-45.2 P. norfolcensis - 1.8-2.2 40-40.8 P. gracilis - 40.2-43.5 P. australis -

23 Molecular systematics

2.3.2 Phylogenetic analyses

2.3.2.1 Mitochondrial gene analyses The monophyly of the genus Petaurus was supported by phylogenetic analyses of ND2 in comparison with representatives of other genera of gliders (Fig. 2.3). Both Bayesian and MP trees supported this monophyletic clade with high Bayesian posterior probabilities (1.00) and bootstrap values (97%). These analyses also revealed a strong sister group relationship (99% bootstrap value and Bayesian posterior probability of 1) between the yellow-bellied glider ( P. australis ) and a second group consisting of all other Petaurus species. This sister relationship was also confirmed by phylogenetic analyses of the ω-globin gene, using Petauroides volans as an outgroup (data not shown) . Consequently, in the further analyses of phylogenetic relationships among species of Petaurus , P. australis was used as an outgroup.

MP and Bayesian analyses of the combined mitochondrial dataset produced trees with a similar topology in which two species of Petaurus (P. abidi and P. norfolcensis ) were each represented by divergent mtDNA clades. P. norfolcensis samples grouped closely with P. gracilis with a high bootstrap and posterior probability (Fig. 2.3 and 2.4). Considerable mtDNA diversity was also identified within the species P. breviceps. The existence of at least seven distinct and divergent (7 to 17.5% sequence divergence) mtDNA lineages was strongly supported, with two lineages located in Australia and five lineages in New Guinea and its surrounding islands (see below). The currently recognized subspecies of P. breviceps from the Northern Territory (NT) grouped closely with P. norfolcensis with high bootstrap and posterior probability support values, to the exclusion of P. breviceps (Fig. 2.3 and 2.4). Samples from Normanby Island (currently known as Petaurus sp) were grouped within New Guinean lineages of P. breviceps (see below).

The first Australian clade of P. breviceps (Aus1) included populations from South Australia, Victoria and north Queensland. The second clade (Aus2) consisted of populations from New South Wales and south eastern Queensland (Fig. 2.5).

In New Guinea at least five monophyletic groups were found, with the majority of populations resolved into two clades. In the first clade (NG1), populations of Bundi and Gali in eastern PNG were grouped together with populations from Sol- River and

24 Molecular systematics

Ofektaman in western PNG. A single sample from Irian Jaya was a sister clade to this group. In the second clade (NG2), Waro and Namasado populations in southern-central PNG were grouped together with a second group including Noru and Yoru in eastern- central PNG. The samples from Karkar Island (an adjacent island in northern PNG) and Tifalmin (western PNG) formed another clade within NG2. The third clade (NG3) consisted of samples from Mt Sulen and Wigotei in northern PNG. Samples from Normanby Island, an island adjacent to PNG, formed a fourth clade (NG4). Finally, the fifth clade (NG5) of P. breviceps lineages represented Kai Besar Island (of Indonesia) populations (see Figure 2.5).

The sequence divergence within P. breviceps (as obtained using the HKY85+I+G model) is summarised in Table 2.5. Sequence divergence between two distinct Australian clades averaged 11% (10.2 to 11.25). For New Guinean lineages the minimum divergence (7%) was found between NG2 and NG5 and a maximum of 11 to 13% between NG3 and NG5. The sequence divergence between Australian and New Guinean lineages ranged from (11 to 17.5%). It is notable that the sequence diversity among NG lineages is almost as high as the diversity between Australian and New Guinean populations and several times higher than the diversity found within other glider species.

2.3.2.2 Nuclear gene analyses

Bayesian and parsimonious trees obtained from the ω-globin gene data had similar topologies in which P. abidi and P. australis were distinct lineages and P. abidi formed a sister lineage relationship with a clade containing all other species of Petaurus . In the partitioned Bayesian tree obtained from ω-globin gene data with P. australis used as an outgroup, individuals from the second Australian mtDNA clade (Aus2) formed a distinctive ω-globin clade supported by 85% of bootstrap pseudoreplicates and a Bayesian posterior probability value of 1.00 (Fig. 2.6). There were, however, a number of specimens from the Aus2 mtDNA clade (e.g. 85533 and 85530) that grouped with taxa from the Aus1 mtDNA clade in the ω-globin phylogeny (further analyses and discussion of these Australian clades are presented in Chapter three).

Due to the low variation of the ω-globin marker, the phylogenetic relationships between the other three species ( P. breviceps, P. norfolcensis and P. gracilis ) were unresolved, with each of the species sharing a number of haplotypes.

25 Molecular systematics

46098 NG Namosado 85 46200 NG Namosado 98 44768 NG Waro 45397NG Namosado 70 99 45398 NG Namosado 97 M19975 NG Tifalmin M19968 NG Tifalmin 67 49347 NG Karkar Is 99 99 49349 NG Karkar Is 92 43395 NG Noru 94 43193 NG Yuro

92 43552 NG Noru 71 43100 NG Yuro

94 43068 NG Yuro 65 43069 NG Yuro 59 M42482 Kai Is 100 M42672 Kai Is M20223 Noramby Is 100 M16002 NG Wigote 62 44206 NG Mt.sulen

80 49310 NG Bundi 49016 NG Gali 99 68 49311 NG Bundi 26 M30682 Irian.Jaya 17 92 47131 NG Solriver 75 43650 NG Ofekaman 75 47133 NG Solriver 92 47134 NG Solriver 100 85530 P. breviceps NSW 85524 P. breviceps NSW 99 53 80833 P. breviceps QLD 93 80835 P. breviceps QLD 99 27102 P. breviceps SA 96 Ren7 P. breviceps Vic 45 27042 P. norfolcensis SA 83 190 P. norfolcensis NSW 87 99 19 P. norfolcensis Vic P. gracilis QLD 99 U433 NT U434 NT 97 U5370 NT 72 97 29964NT Melvill.IS M21350 P. abidi M19216 P. abidi 100 M27670 P. abidi B336 P. australis D3609 P. australis 100 69 R9 P. australis 99 R10 P.australis 88 Petauroides volans peregrinus 50 Gymnobelideus leadbeateri

33 Dactylopsila trivirgata 62 Dactylopsila palpator Trichosurus vulpecula

20

Figure 2.3 Phylogenetic relationships of Petaurus species in comparison with the representatives from other genera of Petauridae (G ymnobelideus and Dactylopsila ) and Pseudocheiridae ( Petauroides and Pseudocheirus ), using Maximum Parsimony analyses of ND2 sequence data. The outgroup used to root the phylogeny was Trichosurus vulpecula . Numbers at nodes are bootstrap values. P. breviceps samples from New Guinean region are shown with the locations of samples. U433-434 NT, U5370 NT and 29964 NT are P. breviceps samples from Northern Territory.

26 Molecular systematics

44768PNG Waro 87 46098PNG Namosado 99 46200PNG Namosado 45397PNG Namosado 87 99 45398PNG Namosado 99 M19975 Tifalmin M19968 Tifalmin 84 49347PNG Karkar Is 100 99 49349PNG Karkar Is 89 43395PNG Noru 99 43193PNG Yuro

94 43552PNG Noru 72 43100PNG Yuro

97 43068PNG Yuro 67 43069PNG Yuro 39 M42882 kai.Is 100 M42672 kai.Is 100 M20223 Normanby Is M20224 Normanby Is 100 M16002 Wigote 46 44206 NG Mt.sulen M30682 Irian.jaya 84 84 49310PNG Bundi 73 49016Gali 95 49311PNG Bundi 91 47131PNG Solriver 59 87 43650PNG Ofekaman 82 47133PNG Solriver 93 47134PNG Solriver 78 85533 P.breviceps NSW 86 85524 P.breviceps NSW 27 85531 P.breviceps NSW 97 85534 P.breviceps NSW 100 16138 P.breviceps QLD 85530 P.breviceps NSW 95 80833 P.breviceps QLD 100 91 98 80835 P.breviceps QLD 16137 P.breviceps QLD P.brevicep 27086 SA 100 81258 P.breviceps SA 27102 P.breviceps SA

95 81225 P.breviceps SA Ren5 P.breviceps Vic Euroa.M5 P.breviceps Vic 36 CandlP Vic 29964NT Melvill Is P.gracilis QLD 100 85528 P.norfolcensis NSW 80 94 27042 P.norfolcensis SA 95 27085 P.norfolcensis SA M21350 P.abidi M19216 P.abidi 100 M27670 P.abidi B336 P.australis D3609 P.australis 100 81 R9 P.australis 86 R10 P.australis

20

Figure 2.4 Phylogeny of the genus Petaurus based on combined mitochondrial ND2 and ND4 genes, using maximum parsimony (MP) implemented in PAUP*. P. australis was used as an outgroup. Numbers on the nodes are bootstrap values. Only one NT sample (29964NT) was included in this phylogeny

27 Molecular systematics

As a combination of two or more types of markers can provide a more powerful approach to phylogenetic analyses than single marker analysis (Hillis et al. 1996), phylogenetic analyses were carried out using the combined data set from all three genes. A Bayesian tree derived from a partition analysis gave similar groupings of taxa to that of the combined mitochondrial tree (Fig. 2.7). Similar to the mtDNA tree, divergent clades were associated with the current known species of Petaurus and seven divergent lineages were found within P. breviceps . However, the populations of Bundi, Gali, Sol- River and Ofektaman (NG1) and Wigotte and Mt Sulen (NG3) formed two monophyletic clades to the exclusion of other clades.

Table 2.5 Mitochondrial DNA sequence divergence (combined ND2 and ND4 genes) between P. breviceps clades calculated using the HKY+I+G model in PAUP*. Aus represents Australia and NG represents New Guinea. Populations associated with each clade are described in the text and their distributions are shown in Fig. 2.5.

Clade Aus1 Aus2 NG1 NG2 NG3 NG4 NG5 Aus1 - 10.2- 11.5 13.7- 15.2 11- 17.5 13.9- 14.9 12.5- 13.5 12.6- 13.2 Aus2 - 15.3- 16 15.2- 16.5 16.7- 17.5 14.6- 15 15.4- 16.8 NG1 - 10.5- 12.4 9.2- 9.5 9.5- 10.5 10.3- 11.1 NG2 - 10.9- 12.4 9.3- 10.1 7- 7.5 NG3 - 10.3- 11.9 11.1- 13 NG4 - 10.3- 10.5 NG5 -

2.3.3 Molecular clock and divergence time estimates

The Program BEAST (Drummond and Rambaut 2006) was used to assess the behaviour of rates throughout the tree. The coefficient of variation of rates was found to be 0.11 (95% highest posterior density (HPD) 2 ×10 -4 – 0.258), suggesting only a limited departure from a molecular clock. The rate of covariance was -0.006 (95% HPD -0.15 to 0.13), indicating a low amount of rate autocorrelation among adjacent branches in the tree.

The times of the Most Recent Common Ancestor (MRCA) of three internal nodes (N1- N3) were obtained (see Fig. 2.5 and Table 2.6). The divergence time for the two Australian clades (N1) was averaged at about 4.8 mya. The date of divergence between Australia and New Guinea (N2) was estimated at about 5-7 mya and the split of New Guinean lineages was aged at about 4.5 mya. These dates were used to investigate the evolution of the species in Australia and New Guinea.

28 Molecular systematics

Table 2.6 The estimated age of the Most Recent Common Ancestor already defined of P. breviceps lineages in Australia and New Guinea using the program BEAST (Drummond and Rambaut 2006). These estimates are based on a relaxed molecular clock with a rate of 0.01 per site per million years.

Clades being dated Mean 95% Credibility interval

lower upper Million years (mya) Aus1 and Aus2 (N1) 4.77 3.2 6.6 New Guinean split (N3) 4.5 3.7 5.9 Australia and New Guinea (N2) 5.8 5.2 6.5

Figure 2.5 Distribution map of the mitochondrial lineages within P. breviceps in Australia and New Guinea. Circles are the location of samples used in this study. N1-N3 denote internal nodes of interest.

29 Molecular systematics

Figure 2.6 50% posterior probability Bayesian consensus tree generated from 14901 trees sampled in two independent runs of MRBAYES. ω-globin gene tree inferred using a partitioned mixed-model in MrBayes. Branch lengths are given above each branch. Numbers in the parentheses are Bayesian posterior probabilities. Sample codes for each specimen are given in Appendix 1

30 Molecular systematics

1.00

1.00

1.00

0.96

1.00 0.96 1.00

0.96 1.00

1.00

1.00 0.96

1.00

1.00

Figure 2.7 50% posterior probability Bayesian consensus tree using all three genes ( ND2 , ND4 and ω-globin gene) with model partitioning, implemented in MRBAYES. Numbers on the nodes are Bayesian posterior probabilities.

2.4 Discussion

2.4.1 Phylogenetic relationships

Monophyly of the genus Petaurus was strongly supported by phylogenetic analyses of the ND2 sequence data. The analyses revealed that currently recognised species of Petaurus , with the exception of P. gracilis , were each associated with divergent mtDNA clades. This finding is consistent with the results of allozymes (Colgan and Flannery 1992) in which P. breviceps, P. norfolcensis and P. abidi were recognised as distinct species. Although the allozyme data from the earlier study revealed three fixed

31 Molecular systematics differences between P. norfolcensis and P. gracilis , suggesting distinction of both species, the divergence of these two species based on mtDNA data obtained here was very low (~2.2%), and similar to the level found within other species of Petaurus (e.g. Brown et al . 2006). P. australis was found to be the sister lineage of all other Petaurus species, with P. abidi being the sister lineage to a monophyletic group containing P. norfolcensis / P. gracilis and P. breviceps populations from Australia and New Guinea. P. breviceps was also associated with considerable mtDNA diversity; two divergent lineages (10.2-11.5% sequence divergence) were found within Australia (see Chapter three for further discussion) and at least five in New Guinea.

The five divergent mtDNA clades from the New Guinean region formed a monophyletic group to the exclusion of the Australian lineages. Allozyme analyses also revealed that the New Guinean samples could be distinguished electrophoretically from Australian samples (Colgan and Flannery 1992). Although the distribution of samples used in this study was similar to that of Colgan and Flannery (1992), the grouping of populations was not always consistent with the clustering obtained by allozymes. Similar to the mtDNA results, Waro, Namosado and Yuro were clustered together because of their possession of a common allele at the GA-3-PHD 2 (Glyceradehyde-3- phosphate dehydrogenase) locus. However, Noru did not have that allele and clustered with Gali, Sol-River and Bundi (NG2). Also similar to the mtDNA results, Tifalmin and Karkar Island formed a cluster, mainly due to their sharing of the GPI 1 (Glucose- phosphate isomerase) allele and high frequencies of the EST-1 1 (Esterase) and EST-2 5 alleles. However unlike the mtDNA results, Wigotte grouped with Ofekaman and Normanby Island with Gali, Sol-River and Bundi (NG2).

Another notable feature of the Petaurus phylogeny obtained here was that the Northern Territory subspecies of P. breviceps was grouped within the P. norfolcensis clade. Three explanations are possible. First, glider samples from the NT have been misidentified and may represent new populations of P. norfolcensis . Second, it might be due to the stochastic process of lineage sorting and retention of an ancestral haplotype by P. breviceps in the NT. Third, it is possible that there may have been introgression between P. breviceps and P. norfolcensis species in the wild. The two taxa are known to interbreed in captivity, producing fertile offspring, but there is no previous evidence to date of hybridization in the wild (Suckling 1983a). Hybridization and mtDNA introgression are phenomena that can leave traces of ancient history of the

32 Molecular systematics mitochondria, introducing errors in phylogenies. Reports of such introgression are accumulating in the literature. Examples in mammals include pocket gophers (Ruedi et al. 1997), deer (Goodman et al. 1999) and elephants (Roca et al. 2005). Due to low variation within the ω-globin gene, these data were not able to provide additional information on the possibility of hybridization between P. norfolcensis and P. breviceps . Therefore, data from more divergent nuclear markers are required to further investigate the possibility of hybridization between these two species.

The mtDNA sequence data supported the distinction of the four currently described species of Petaurus including P. australis , P. abidi , P. norfolcensis and P. breviceps . The distinction of P. gracilis has been supported by morphometric analyses (Van Dyck 1993) and limited allozyme data (Colgan and Flannery 1992). Although phylogenetic analyses of the ω-globin data provided additional support to the distinctiveness of P. abidi and P. australis , it did not help to resolve the relationships of the other three species.

Glider samples from Normanby Island, currently known as Petaurus sp . (Flannery 1994) formed a single clade (NG4) that was distinct (> 9.3% mtDNA divergence) from all the other New Guinean clades, supporting the long term isolation and potential separate species status of this population. These are morphologically distinguished from other populations by their narrow skulls, larger body size and colour (Flannery 1994). One unusual characteristic of these animals is that they have two distinct colour morphs, one light grey and the other greenish-grey (Flannery 1994). Although several other marsupials exhibit two colour morphs, such as the eastern quoll (Dasyurus viverrinus ), the significance of these morphs is not well understood. Due to the lack of samples, this study was not able to consider the phylogenetic relationships of the New Guinean P. biacensis .

There was a notable geographic structuring within P. breviceps . In Australia, two divergent clades were found, however, the geographical distribution of these two apparent lineages does not conform to the currently accepted morphotaxonomic division of P. breviceps at the subspecies level (Fig. 2.2). The current classification of the species does not reflect the major genetic subdivisions found within P. breviceps in this study, and may therefore be inappropriate for any future conservation and management to maintain genetic diversity within the species. Further consideration of the

33 Molecular systematics phylogeographic structure and subspecific status of P. breviceps populations in Australia is presented in Chapter three.

Similarly, the distribution of lineages found in New Guinean region does not correspond with the current accepted morphological subspecies. Clade NG1 of P. breviceps contains populations from the northern part of Papua New Guinea (Gali and Bundi), Ofekaman, Solriver (western PNG) and Irian Jaya. This clade also does not correspond to one of the current subspecies. Gali and Bundi are in the range of P. b. papuanus but grouped with populations outside the supposed range of P. b. papuanus , such as Ofekaman and Solriver (Fig. 2.8). Clade NG3 (Wigotie and Mt Sulen population) is within the range of P. b. papuanus, although the type locality of this taxon is Huon Gulf (Morobe Province, eastern PNG) (Fig. 2.8).

Likewise, the New Guinea clade NG2 (containing populations from southern-central PNG and Karkar Island) could not be assigned to P. b. flavidus , as the distribution of morphological subspecies suggests. The type locality of P. b. flavidus is from south- western Papua New Guinea (River Oriomo; Tate and Archbold 1935), far distant from and ecologically quite different (Flannery 1994) to the area where the samples come from. Furthermore, Karkar Island is currently thought to be part of the distribution of P. b. papuanus (Fig. 2.8).

The Karkar Island population (north of PNG) and Tifalmin (western end of PNG) surprisingly grouped together. Allozyme data also suggested that animals from these regions stand out as being different (Colgan and Flannery 1992) but the significance of this was not clear. The Tifalmin and Karkar Island animals are similar in having a relatively large body and long tail and differ in dorsal colouration (Colgan and Flannery 1992). These may represent different subspecies of P. breviceps which have remained unnamed. The concordance of the geographical arrangement of the genetic profiles of the DNA and allozyme analysis suggests that the population subdivision is not random and implies that some wide-reaching phenomenon has impacted on their history (see below).

Given these results, it is recommended that a revised morphometric analysis be carried out taking account of the genetically defined populations to further investigate the taxonomic status of the New Guinean populations. More samples from across the region are also required to further define the boundaries of lineages found in the current study.

34 Molecular systematics

Figure 2.8 a) the distribution of morphological subspecies: P. b. flavidus, 4; P. b. papuanus, 5; P. b. tafa, 6; P. b. biacensis, 7 . b) evolutionary lineages from genetic data obtained in the present study. Areas included in each group are as follows NG1: Budi, Gali and Irian Jaya; NG2: Waro, Namosado, Tifalmin, Noru and Yuro; NG3: Wigote and Mt Sulen; and NG4: Normanby Island. NG5: Kai Island. Maps are not to scale.

2.4.2 Divergence time and biogeography

Divergence dates estimated from mtDNA sequences were used to investigate the evolution of P. breviceps in Australia and New Guinea. The times of divergence between Australian and New Guinean lineages were estimated at between 5.2 to 6.5 mya. Although the separation of Australia from New Guinea probably began about 20 mya, they were intermittently connected during the ice ages of the last two million years (Dow 1977). Potentially a land bridge between Australia and Papua New Guinea, would allow gene flow between populations from the Northern Territory and Papua New Guinea (Galloway and Löffler 1972). One could argue that the Pleistocene sea fluctuations (over the past 2 million years) accounted for the divergence between Australia and New Guinea. However, the estimated times (5.2 to 6.5 mya) indicate that fragmentation of the ancestral populations occurred earlier than the Pleistocene. Furthermore, when contact with Australia was re-established in the Pleistocene, forest

35 Molecular systematics corridors were few and poorly developed (Galloway and Löffler 1972; Flannery 1994) and probably not suitable for crossing by forest dependent species such as gliders. Opportunity for forest dependent species to disperse might have existed only intermittently during the late Tertiary and Quaternary (Nix and Kalma 1972). In biogeographic analyses of the New Guinean biota throughout the Tertiary and Quaternary, the influence of two factors cannot be ignored: the substantial changes in the geomorphology of the area due to extensive tectonic activities over the period (Dow 1977; Dow and Sukamto 1984) and the dramatic climate fluctuation of the late Tertiary and the Quaternary (Axelrod and Raven 1982). During this period, tectonic movements due to continental and island arc collisions have seen the formation and infilling of several major sedimentary basins to produce new lowland habitats and the rapid uplift of the central cordillera around 5 million years ago (Dow 1977). The degree of sequence divergence between the lineages in the New Guinean region and the geographic structuring seem compatible with the uplift of the central mountain range through the Pliocene. For example, divergence of the population at Tifalmin from all eastern populations in the West Sepik Province could be explained by the presence of the central mountain. Several studies have found the central Cordillera as a barrier to gene flow (e.g. Rawlings and Donnellan 2003). There are other geographical features such as rivers that also may cause population structuring. Genetic divergence of the NG3 clade (Mt Sulen-Wigote) from the other populations in the east might be due to the Sepik River and mountains that separate this area. The phylogenetic relationship of Karkar Island and the Tifalmin population is more difficult to explain. One possible explanation of this affinity is that gliders from this island are relicts of a population that was once widely distributed in the north of New Guinea. Karkar Island was once a part of the mainland and has been separated from the mainland long enough to evolve some genetic and morphological differences. Comparative phylogeographic studies of taxa that occur in both Australia and New Guinea are likely to provide significant insights into the evolutionary history of these regions. The divergence between Australian lineages and the biogeography of the region will be discussed in Chapter three.

36 Phylogeography

3 Phylogeography of the sugar glider ( Petaurus breviceps ) in Australia

3.1 Introduction Patterns of population structure within species reflect both historical and current levels of gene flow. Identifying patterns of geographic variation within species and relating this variation to potential selective forces can help determine the relative contribution of factors involved in evolutionary diversification and speciation (Simons 2002). Revealing genetic diversity within species and populations can also direct conservation priorities (Moritz et al. 2000; Arbogast and Kenagy 2001).

Climate fluctuations are thought to be catalysts for evolution, promoting diversification and adaptation to new environmental conditions (Potts 1996). Climate and environmental changes since the beginning of the Quaternary period (the past two million years) are thought to have had a major impact on species distributions and population divergence through repeated cycles of population contraction, extinction, establishment of biogeographical barriers, isolation in refugia and range expansion (Hewitt 1996; Avise and Walker 1998; Schneider and Moritz 1999; Moritz et al. 2000; Hewitt 2004). Such environmental changes have been used in theories to explain divergence and speciation in rainforests (Schneider and Moritz 1999; Schneider et al. 1999) as well as temperate regions (Taberlet et al. 1998; Hewitt 2004).

Forests of Australia today reflect the environmental changes that have occurred in climate, geology and geographical position throughout time. The present restricted distribution of forest in eastern Australia has been interpreted as the outcome of long term contractions due to increasing aridity across the continent over the past six million years (Adam 1992). The eastern seaboard forests of Australia are fragmented remnants of the tropical forest that once had a widespread and continuous distribution across Australia but declined as a result of increasing aridity across the Australian continent through the mid-late Tertiary and Quaternary (the past six million years) (Kershaw 1981; Hope 1994). This has resulted in a series of disjunct, coastal forest patches scattered from tropical rain forest in Queensland to open eucalypt forests and woodlands in South Australia. These past climatic/ environmental events probably significantly affected the fauna throughout the region. A number of phylogeographical

37 Phylogeography studies have investigated the impact of this history on the distribution and population structure of Australian forest taxa. However, the majority of studies to date have focused primarily on the wet-tropical region (Joseph et al. 1995; Schneider et al. 1998; Schneider and Moritz 1999; Pope et al. 2000). Little is known about how the population structure of open forest and woodland species have been affected by past climatic events. Furthermore, only a few studies have attempted to examine historical biogeography of forest dependent species across the east coast (e.g. Donnellan et al. 1999; Moussalli et al. 2005; Nicholls and Austin 2005). The presence of several biogeographical barriers across the eastern forests of Australia have been proposed, including the Black Mountain corridor, a dry barrier separating northern and southern sections of the Wet Tropics (Joseph et al. 1995; Schneider et al. 1998; Schneider and Moritz 1999), the Burdekin and Broad and Sound gaps, hot and dry lowlands in central Queensland (James and Moritz 2000; Moussalli et al. 2005; Brown et al. 2006) and the Hunter Valley in New South Wales (Donnellan et al. 1999). However, more research is required to examine the relative importance of such barriers to broadly distributed species along the east coast and to assess whether other barriers to gene flow might exist in this region.

The sugar glider ( Petaurus breviceps ) is the most geographically and ecologically widespread species in the genus, having adapted to a range of habitats from sparse woodlands through to dense eucalypt forests and rainforests (Suckling 1983b). Its distribution exactly mirrors the distribution of forests along the east coast of Australia. It is, therefore, an ideal candidate species to examine phylogeography and divergence along the east coast. Over its geographic range, P. breviceps shows considerable variation in external morphology such as body size and coat colour. This variation has led to the recognition of three subspecies in Australia. These subspecies are P. b. breviceps, Waterhouse 1839 in south-eastern Australia (from Tasmania to the tropic of Capricorn in Queensland), P. b. longicaudatus , Longman 1924 in Queensland and P. b. ariel, Gould 1842 in the Northern Territory and as far west as Kimberley (Suckling 1983b; McKay 1988; Flannery 1994)(see Fig. 2.2). A latitudinal cline in characters used to describe these subspecies such as body size has also been reported in the species (Alexander 1981; Quin et al. 1996b). However, no comparisons of the genetics or skeletal morphology of these various subspecies have been published to verify these subspecies. Some molecular evidence for population genetic subdivision within P.

38 Phylogeography breviceps comes from a study by Colgan and Flannery (1992), who used allozyme electrophoresis to investigate the systematics of the genus Petaurus . The study was primarily focused on New Guinea with only a few samples from Australian populations included. Their findings within Australia showed that P. breviceps from southern Australia could be electrophoretically distinguished from Queensland populations. In addition, a recent phylogenetic study of Petaurus species also revealed the presence of cryptic diversity within P. breviceps in Australia (see Chapter two). Therefore, the current study used phylogeographical approaches on a larger sample size to investigate population structure and the genealogical history of P. breviceps in Australia and to explore what forces might have contributed to population differentiation. A combination of fast evolving mitochondrial genes ( ND2 and ND4 ) and a nuclear marker ( ω-globin gene) were used to (i) examine phylogeographic structure of the species within Australia, (ii) explore the impact of historic and environmental changes on the distribution of the species, and (iii) develop conservation guidelines based on the genetic distinctiveness of the populations.

3.2 Material and methods

3.2.1 Population sampling

A total of 63 samples were obtained from 45 sites across the distribution of the species in Australia (Appendix 4). Samples were collected in South Australia (SA) from a network of nest boxes placed in 23 native forest patches (see Chapter four). Live trapping, using cage traps was also conducted at various sites in SA and Victoria (Vic). Sugar glider samples were also obtained through several research projects involving Petaurus species in Victoria, New South Wales and Queensland. Frozen or ethanol preserved specimens from populations of the species in New South Wales and southern Queensland were available from the Australian Museum. The sampling technique involved the removal of small skin biopsies from the ear of each animal and preservation in vials of 50:50 ethanol/ saline at room temperature.

No samples from Tasmania was included in phylogenetic analyses, because the existence of sugar gliders in Tasmania is thought to have resulted from its introduction in 1834 (Gunn 1851). Based on the current classification of P. breviceps , a distinct subspecies ( P. b. arial ) occurs in Northern Territory. Four samples obtained from the

39 Phylogeography

NT were used in a phylogenetic analysis (see Chapter two). These samples grouped within a clade consisting of P. norfolcesis and P. gracilis . However, the phylogenetic analysis could not entirely rule out that the NT population were P. breviceps due to the low variation of the nuclear marker (ω-globin ). The identity of NT samples needs further investigation; however, these populations were excluded from the phylogeographical analysis of P. breviceps in the current chapter, due to the lack of additional samples being available.

The outgroups used for phylogenetic analyses included a single sequence of P. abidi from Papua New Guinea and two Victorian specimens of P. australis (see Appendix 4 for details). The latter species was shown in previous molecular phylogenetic studies to be the sister lineage to all other species of Petaurus (see Chapter two for full details).

3.2.2 PCR- amplification and sequence analyses

Genomic DNA was extracted from frozen or ethanol preserved tissue samples using the Gentra DNA Extraction Kit (MOBio Labs) following the manufacture’s procedures. The selected fragments of three genes including ND2 , ND4 and ω-globin were amplified and sequenced using the primers given in Table 2.1 and the method described in Chapter two.

Raw sequences were edited using BioEdit (version 7.0.5.2) and aligned using Clustal X version 1.83 (Thomson et al 1997). The program PHASE version 2.1 (Stephens et al. 2001) was used on the ω-globin gene to reconstruct haplotypes and resolve ambiguities at heterozygous sites. Single nucleotide polymorphisms (SNPs) of all individuals (including individuals without ambiguous sites) were obtained and the program was run using the default parameter values. DnaSP version 4.1 (Rozas et al. 2003) was used to determine the number of haplotypes, gene diversity, nucleotide diversity and number of polymorphic sites in each data set.

3.2.3 Phylogenetic analyses

Maximum Parsimony (MP), implemented in PAUP*, version 4.0 b10 (Swofford 2002), was conducted separately on a combined mitochondrial dataset and the nuclear sequence data, using the heuristic search algorithm with tree-bisection-reconnection (TBR) branch swapping, stepwise addition starting trees, and random addition of

40 Phylogeography

sequences with 100 replicates. Nucleotide sites were treated as unordered characters with equal weight and gaps were treated as missing data (mtDNA) or as fifth base (the nuclear marker). Consensus trees (50% majority role) were determined if more than one equally parsimonious tree was found. The reliability of MP trees was tested using the bootstrap approach (Felsenstein 1985) with 1000 pseudoreplicates.

Bayesian phylogenetic analyses were carried out using the program MrBayes, version 3.1 (Huelsenbeck and Ronquist 2005). The most appropriate nucleotide substitution models for all three genes were selected in Modeltest version 3.9 (Posada and Crandall 1998) as described in Chapter two (see Table 3.1). The Bayesian analyses were carried out separately on the ω-globin gene and a combined ND2 and ND4 dataset, using a partitioned mixed-model in MrBayes (Huelsenbeck and Ronquist 2005). The optimal models of sequence evolution were used with the APPLYTO command and the appropriate model parameter values estimated for each data partition using the UNLINK command. A binary model was used to identify the presence (1) and absence (0) of indels in the nuclear marker. The program was run for four chains simultaneously in each analysis and the analysis was repeated three separate times. Each MrBayes search was run with one million generations. After this number of generations the standard deviation of split frequencies had reduced to less than 1%, confirming that a good sample of the posterior distribution had been obtained. The likelihood values converged to relatively stationary values after about 5,000 generations. A burn-in of 100 trees (equivalent to 10,000 generations) was chosen with a > 50% posterior probability consensus tree constructed from the remaining 9901 trees.

Table 3.1 Summary of nucleotide substitution models selected for data partitioning using Akaike Information Criterion in Modeltest version 3.9.

Number of DNA substitution Invariant Data Partition substitution Substitution rates model sites types Mitochondrial

genes ND2 HKY 2 Yes Gamma distributed

ND4 HKY 2 Yes Gamma distributed

ω-globin gene HKY 2 Yes Equal

41 Phylogeography

3.2.4 Population structure

The data was tested for the presence of genetic structure by analysis of molecular variation (AMOVA) (Excoffier et al. 1992) using ARLEQUIN version 3.1 (Excoffier et al. 2005). For this purpose, six geographical populations (based on geographic proximity) including South Australia (SA), Victoria (Vic), southern New South Wales (sNSW), northern New South Wales (nNSW), south-eastern Queensland (sQld) and northern Queensland (nQld) were identified a priori . In order to test how genetic variation was partitioned among the currently described subspecies, the above populations were grouped, with all southern Australian populations, including SA, Vic, sNSW, nNSW and sQld, further grouped together as subspecies1 and nQld populations representing subspecies 2. Further analyses were also conducted to test the significance of differences of genetic diversity between the regions. Significance levels for rejecting the null hypothesis of a random distribution of genetic variation were determined using a non-parametric permutation test with 10,000 permutations. F ST estimates among pairs of populations was calculated using the distance method as implemented in ARLEQUIN (Excoffier et al. 1992).

To examine population structure and population history of P. breviceps , a nested clade analysis (NCA) (Templeton et al. 1995; Templeton 1998) was used. A haplotype cladogram was constructed using the statistical parsimony approach with the confidence limit set to 95% (Templeton et al. 1992) in the program TCS version 1.21 (Clement et al. 2000). The resulting haplotype network was then used to group nested cladograms according to the methods described by Templeton et al . (1987). Based on this nested cladogram, the software GeoDis version 2.0 (Posada et al. 2000) was used to test for significant associations between haplotype and geography. Output from the GeoDis program was interpreted using the latest version (November 2005) of the inference key obtained from the GeoDis homepage (http://darwin.uvigo.es/software/geodis.html).

3.3 Results

3.3.1 Variation and distribution of haplotypes

MtDNA ― Sequences for 1393 bp of mitochondrial genes ( ND2 and ND4 ) were obtained for 63 individuals. A total of 369 variable sites and 164 parsimony informative sites were observed within the ingroup individuals. A total of 44 haplotypes was

42 Phylogeography observed within the mtDNA of the species, with 23 in SA and Vic (n = 40), eight in nNSW and sQLD (n = 11), eight in nQld (n = 8), four in sNSW (n = 4). One haplotype was shared between nQld and nNSW. Haplotype diversity (Hd) was 0.98 ± 0.01 and nucleotide diversity (Pi) was 0.05. Intra-specific sequence divergence obtained by applying the HKY+I+G (Hasegawa et al. 1985) model selected by MODELTEST to the mtDNA dataset (proportion of invariable sites = 0.48, Gamma distribution with shape parameter = 1.2) ranged from 0.002 to 12.2 %. Sequence divergence between the two major mtDNA clades (see analyses below) ranged from 10.4 to 12.2 and within each clade variation, ranged from 0.002 to 2.4 % (Table 3.2). The combined ND2 and ND4 sequence alignment is given in Appendix 5.

Omega-globin gene ― Sequences were obtained for 50 individuals. The fragment was 705 bp in length including 167 bp of coding DNA (partial Exon2 and Exon3) and 529 bp of non-coding DNA (Intron2). Two Deletions (indels), 1 bp and 7 bp in length, were found within the sugar glider sequences. The 7 bp deletion was found in haplotypes from SA, Vic and sNSW populations. The ω-globin sequence alignment is given in Appendix 6. A total of 16 haplotypes was observed within the species, with five in nNSW and sQLD and 11 in SA, Vic, sNSW and nQld. Haplotype diversity was 0.63 ± 0.07 and nucleotide diversity was 0.004.

3.3.2 Phylogenetic relationships

Maximum parsimony (MP) and Bayesian analyses produced trees with quite similar topology in which P. breviceps samples grouped into two monophyletic clades of mtDNA haplotypes. One clade contained haplotypes from nNSW and sQld and the second contained haplotypes from all the remaining populations in SA, Vic, sNSW and nQld (Fig. 3.1). This arrangement received strong bootstrap support (95%) and Bayesian posterior probability (100%). A third monophyletic clade containing all SA and Vic populations was also supported by 84% and 99% bootstrap and Bayesian posterior probability values respectively.

Similar to the mtDNA tree, the Bayesian tree resulting from analyses of the ω-globin gene showed two monophyletic clades. One clade contained most of the nNSW and the sQld haplotypes and the second contained all the remaining populations in SA, Vic, sNSW and nQld. Although this arrangement received high posterior probabilities, bootstrap values were low (Fig. 3.2).

43 Phylogeography

There were some discrepancies between the mitochondrial and the nuclear trees. Two individuals (85533 and 85530 from NSW) in the nNSW clade for mtDNA were in the alternative clade for ω-globin . Although there is some concordance between the trees, this arrangement may be evidence for either retention of ancestral haplotypes in the nNSW clade or gene flow between the populations.

Table 3.2 Numbers of samples (n), mtDNA haplotypes and diversity indices ± standard deviation of P. breviceps populations across Australia estimated using DnaSP v 3.4.

Location n No haplotypes Nucleotide diversity Gene diversity SA/Vic 40 24 0.004 0.94 ± 0.02 sNSW 4 4 0.003 1.0 ± 0.17 nNSW 11 8 0.008 0.97 ± 0.06 nQld 9 8 0.007 0.97 ± 0.05

Table 3.3 the range of pairwise sequence divergence between regions estimated, using HKY85+I+G (implemented in PAUP*) are shown as percentages. The range of intra- regional divergence are on the diagonal. I= 0.48 and G= 1.2

Vic/SA sNSW nNSW nQld

Vic/SA 1.4-2.2 11.2-12.2 1.4-2.4

sNSW 10.4-11.8 0.002-1.6

nNSW 11.5-12

3.3.3 Population structure

3.3.3.1 Mitochondrial region Negative variance components (P > 0.05) were obtained in AMOVA when the populations were grouped by morphological subspecies (group1 = SA, Vic, sNSW, nNSW and sQld; group2 = nQld). An AMOVA for population structure based on a single group containing all six populations showed strong genetic structuring with 70% of the variance explained by among-population variation (FST = 0.7, P = 0.000).

Pairwise F ST estimates between each of the populations were also significantly different from zero (P< 0.05, Table 3.4). However, the exact test of sample differentiation based on haplotype frequencies only supported the presence of three distinct lineages including SA/VIC, nQld and nNSW/sQld (P < 0.05). This result was also congruent

44 Phylogeography with the TCS statistical parsimony analysis, which recovered three haplotype networks corresponding to nNSW, nQld/sNSW, and SA/Vic. The network further showed that the sNSW populations were divergent from nQld populations, with 13 mutational steps (Fig. 3.3). The haplotype network provided further evidence for the similarity of haplotypes from SA and Vic, suggesting relatively recent connections between populations from these regions.

Table 3.4 Pairwise F ST values are obtained for populations of P. breviceps in Australia, using an analysis of molecular variance (AMOVA). Asterisks indicate significate values at 0.05.

SA Vic sNSW nNSW SA 0.00 Vic 0.56 * 0.00

sNSW 0.92 * 0.91 * 0.00 nNSW 0.76 * 0.68 * 0.81 * 0.00 nQld 0.80 * 0.73 * 0.85 * 0.41 *

The null hypothesis of no geographical association of clades was rejected (P< 0.05) for the nesting clades 2-2, 4-2 and 3-8 (Fig. 3.3). Clade 2.2 included individuals located in

Vic and SA and had significantly small Dc s and significantly large Dn s. Interpreting the result using the inference key suggested restricted gene flow with some long distance dispersal. Clade 4.2 corresponded to populations from nQld and sNSW and had significantly small Dc s and Dn s. The inference key suggests a past history of fragmentation and/or long distance colonization for this clade. Clade 3.8 corresponded to nNSW populations and had significantly small Dc s and Dn s. The inference key suggested that geographical sampling was inadequate to discriminate between contiguous range expansion/ long distance fragmentation or past fragmentation.

45 Phylogeography

Figure 3.1 Maximum Parsimony tree of combined mtDNA ( ND2 and ND4 ) from P. breviceps in Australia. P.abidi and P. australis were used as outgroups for the analysis. Numbers next to the branches represent percentage of bootstrap values and Bayesian posterior probabilities from left to right respectively.

46 Phylogeography

Figure 3.2 Omega-globin gene tree of P. breviceps inferred using a partitioned mixed- model in MrBayes. Branch lengths are given on the branches. Numbers in parentheses are bootstrap values (%, left) and Bayesian posterior probabilities (%, right) respectively.

47 Phylogeography

5-1

Figure 3.3 Unrooted network of mtDNA haplotypes from 47 P. breviceps haplotypes inferred using statistical parsimony and associated nested clade design. Lines connecting haplotypes represent one mutational step regardless of their length. Black dots represent hypothetical haplotypes.

48 Phylogeography

3.3.3.2 Omega-globin gene Similar to the mtDNA results, negative variance components (P = 1.0) were obtained in an AMOVA analysis on the nuclear data set when the populations were grouped by morphological subspecies (group1 = SA, Vic, sNSW and nNSW; group2 = nQld). However, an AMOVA test for population structure based on a single group containing all six regions showed strong genetic structuring in which 62% of the variance was explained by among population variation (F ST = 0.62, P= 0.001). Pairwise F ST estimates between each of the populations were also significantly different from zero. In this analysis four distinct genetic lineages were supported, including SA/Vic, sNSW, nQld and nNSW/sQLD. A single network consisting of all haplotypes was recovered by TCS analysis. The network included three major haplotypic groups. One group consisted of haplotypes from nNSW and sQLD conecting to two other haplotypes from nNSW with two mutational steps. A majority of nQLD haplotypes were identical to one of the NSW haplotypes (85527). However, one haplotype (16137), representing two samples from nQLD (16137and 159/160), connected to the SA/VIC haplotype group by a single mutational step. In total, four mutational steps separate the nNSW/sQLD group from the most likely ancestral haplotype in SA (Fig 3.4).

Figure 3.4 Haplotype network of ω-globin gene generated under 95% statistical limit of parsimony, using the program TCS 2.1. Size of ovals represents haplotype frequency. Black dots represent hypothetical haplotypes. Lines connecting haplotypes represent one mutational step regardless of their length. The most likely ancestral haplotype is drawn as a rectangle.

49 Phylogeography

3.4 Discussion

3.4.1 Phylogeography and genetic structure

The phylogenetic analyses of both mitochondrial DNA and the ω-globin gene datasets provided evidence for the existence of two divergent clades that are distributed over distinct geographical regions. One clade of hapotypes was distributed over mid to north NSW and south-eastern Queensland while a second clade was distributed over the remaining distributional range of the species in SA, Vic, southern NSW and northern Qld. Two individuals from NSW (ABTC 85523 and 85527) did not fit this geographic pattern of distribution of the mtDNA clades. Similarly, two NSW samples, 85530 and 85533, which grouped in the nNSW mtDNA clade, grouped differently in the ω-globin phylogenetic tree. These samples may represent cases of introgression of mtDNA/ ω- globin haplotypes between the regions or perhaps there has been retention of ancestral haplotypes within the NSW population. Because the number of sampling sites from southern Queensland is sparse, it has not been possible to define the geographical limits of these lineages.

The results of allozyme electrophoreses of two NSW samples from Limeburners Creek (32º 36' S and151º 53' E) and Newholme (29º 31' S and 151º 51' E) in northern New South Wales and a single sample from Gordonvale (17º 06' S and 145º 47') in northern Queensland (Colgan and Flannery 1992), showed three fixed allozyme differences between the two regions. From this the authors suggested that the current morphological subspecies P. b. breviceps (southern Australia) and P. b. longicaudatus (Queensland) were distinct. The current study also supports the distinctiveness of nNSW/sQLD from nQld. However, the allozyme data are insufficient to allow a direct comparison with the mtDNA and ω-globin data presented here.

Analyses of population structure also revealed significant genetic structuring in sugar gliders across Australia, with the presence of at least four distinct genetic lineages including SA/Vic, sNSW, nQld and nNSW being supported by mtDNA and the nuclear marker. The general concordance of the geographical distributions of the genetic lineages for the two types of marker suggests that population subdivision has impacted P. breviceps during its evolution within Australia. An alternative explanation that the common phylogeographic pattern is due to selection fixing alleles in different

50 Phylogeography geographic regions would seem unlikely, given that the mtDNA and ω-globin gene are independent genetic markers. The high level of intra-specific divergence between the major mtDNA clades is best explained by long-term genetic isolation of these populations. Although the habitat is currently heavily fragmented, the amount of genetic divergence (11.2-12.2%, Table 3.3) indicates the presence of a historical barrier to gene flow pre-dating the European colonization of Australia. In particular, the divergence date estimated for the two mtDNA clades (node N1 on Fig. 2.5, average 4.77 mya, see Table 2.6) suggests that environmental and climate changes that occurred during the Pliocene may have facilitated this isolation and divergence of the populations. Prior to this period, in the Oligocene and early Miocene, rainforest was prevalent in Australia, which is reflected in the high level of marsupial diversity found in the Riversleigh fossil deposit (Archer et al. 1994; Crosby et al. 2004). Rainfall began to decline and conditions became cooler, drier and more seasonal over time, potentially resulting in fragmentation of continuous closed forest habitats. These changes may have had an influence on population structure by subdividing the range of the species. Major climatic cycles associated with Ice Ages during the Pleistocene may have also led to the contraction of the range of the species into refugia during Glacial Maxima. A number of empirical studies have found genetic signatures of both animal and plant species that support this scenario of refugia along the east coast of Australia (e.g. Schneider et al. 1998; Pope et al. 2000; Tolley et al. 2006). This pattern of restricted gene flow and fragmentation may also be due to the development of physical barriers to gene flow between populations. In NSW, in particular, the western slope of the Great Dividing Range (GDR) may have acted as a historical barrier to gene flow across the GDR. A correlation between population subdivisions and the topography of the GDR has also been reported in a Saproxylic species (Garrick et al. 2004) and the satin bowerbird (Nicholls and Austin 2005).

3.4.2 Taxonomy

It is difficult to make direct comparison of genetic divergence found in this study with other marsupial species, as other studies used different genes (e.g. control region, Moritz et al. 1997; Firestone et al. 1999; Pope et al. 2000), or different models of evolution were used for estimating sequence divergence (e.g. Kimura Two-Parameters, Osborne and Christidis 2001). However, the level of mtDNA divergence within the species is several times higher than the range reported previously for P. breviceps , using

51 Phylogeography a very small sample size (1.57-2.47%, Osborne and Christidis 2001) and for other glider species such as P. norfolcensis (1.5%, Osborne and Christidis 2001) and P. australis (0.24-2.33%, Brown et al. 2006). In contrast to the differentiation in mtDNA, the preliminary analysis of morphological characters, based on 10 cranial characters of 40 sugar glider skulls from across the range of the species in Australia, revealed little geographical structuring (see Chapter six for details). Specimens from each of six regions within Australia (Qld, NSW, Vic, SA, Tas, and NT) clustered together (see Fig. 6.9). However, the number of samples was limited, particularly, from NSW. In fact no skull was available from the northern part of NSW where the current divergent lineage seems to be located. Further morphological data, in particular from specimens from northern NSW are required to assess the potential morphological distinction between the two current two divergent clades.

The geographical distribution of evolutionary lineages within P. breviceps does not correspond with the distribution of the current morphological subspecies, which includes a southern subspecies extending from Tasmania to the tropic of Capricorn and two northern subspecies, in Queensland and Northern Territory (Fig 3.5-a). In contrast, the current study found two divergent lineages over different geographical regions. One lineage occurs in SA, Vic, sNSW and nQLD and the other occurs in the mid-north NSW and sQLD (Fig 3.5-b). The identity of the NT subspecies remains unclear in the current study. Samples obtained from NT fell outside the P. breviceps mtDNA clades and grouped within a clade contained P. norfolcensis and P. gracilis . The ω-globin gene tree, however, did not provide enough resolution to discriminate P. breviceps and P. norfolcensis and, therefore, it was not possible to rule out alternative explanations (e.g., introgression through hybridization) for the lack of concordance of the mtDNA data with species identifications based on morphology. This lack of geographic concordance of subspecies and genetically defined populations is not uncommon in the literature. Similar findings have been reported from several taxa including avian species (Zink 2004) and marsupials (e.g. P. australis ; Brown et al . 2006). The current subspecies classification, therefore, does not reflect the major genetic subdivisions present within P. breviceps , and therefore would be inappropriate to use as conservation units for any future conservation management to maintain genetic diversity within the species. In addition, it is recommended that a revised morphometric analysis be carried out to assess the species status of the two P. breviceps lineages in Australia.

52 Phylogeography

3.4.3 Implications for conservation

The primary objective of conservation biology is to ensure the maintenance of evolutionary processes, underpinned by genetic diversity (Frankham et al. 2002). Through revealing cryptic, deeply divergent evolutionary lineages that are otherwise overlooked by traditional taxonomy, and by elucidating processes of biotic diversification, phylogeography can direct conservation priorities (Arbogast and Kenagy 2001).

Figure 3.5 Distribution of the current subspecies of P. breviceps in Australia (a) and the two mtDNA clades found in the current study. The heavily outlined circles correspond with the locations of one clade including three genetic groups SA/Vic, sNSW and nQLD. The stippled circle represents the second clade including populations from nNSW and sQLD.

Subspecies are considered to be regional variants of a species (Meikle 1957). However, the concept of subspecies does not always effectively describe intra-specific diversity and the historical evolution (e.g. Burbrink et al. 2000; Zink 2004). There have been several attempts to formalize the relationship between conservation and taxonomic status (reviewed by Fraser and Bernatchez 2001), although the area is still controversial. Two widely applied concepts are the Evolutionarily Significant Unit (ESU) and the Management Unit (MU). The goal of designating these distinct units is to allow their

53 Phylogeography separate management so as to retain the long-term evolutionary diversity of a species. ESUs were proposed as a mean of clarifying the conservation of a taxa that were being conserved as separate subspecies, but where there was limited biological support for this subspecific status (Ryder 1986). Although the use of molecular tools, particularly based on phylogeographic analyses of mitochondrial sequence data, has become popular for assigning populations to ESUs (e.g. Pope et al. 2000), the use of genetic criteria and, in particular, mtDNA alone for defining conservation units may be restrictive (e.g. Gompert et al. 2006). Genetic data alone may not reflect ecological exchangeability and adaptive potential of populations (Peatkau 1999; Crandall et al. 2000). In the current study reciprocal monophyly of mtDNA haplotypes and significant divergence in the ω- globin gene were found for two populations within P. breviceps in Australia. Although these results support their recognition as separate ESUs under the Moritz criteria (Moritz 1994a; Moritz 1994b) it was not feasible to assess ecological exchangeability of P. breviceps across its extensive distribution. A more flexible approach for defining ESUs was described by Fraser and Bernatchez (2001). In this approach an ESU was defined as "a lineage demonstrating highly restricted gene flow from other such lineages within the higher organizational level (lineage) of the species". Evidence of two divergent evolutionary lineages supported by both mtDNA and nuclear markers here suggest that gene flow has been restricted for a considerable period of time between these populations, supporting their status as separate ESUs under both the Fraser and Bernatchez (2001) and Moritz (1994) criteria. Given that the current taxonomy of the species does not reflect the underlying genetic diversity, the flexible ESU concept may provide an appropriate approach for prioritizing units for conservation within P. breviceps until more data can be gathered.

54 Social structure and mating system

4 Nest box-use, social structure and mating system of P. breviceps

4.1 Introduction The social organisation and mating system of many species is not a fixed attribute but can change in response to variations in environmental conditions (Emlen and Oring 1977; Lott 1984; Clutton-Brock 1989). Differences in social organisation and mating system within and between populations of vertebrates may be correlated with variations in ecological factors such as food abundance and distribution and habitat structure (e.g. Bryja and Stopka 2005; Wong et al. 2005; Rossmanith et al. 2006), as well as demographic factors such as population density (e.g. Carrete et al. 2006).

Habitat characteristics can have profound effects on the evolution of social and reproductive behaviours. For example, the spatial distribution of habitat may be a key determinate of animal dispersion, which in turn may influence their optimal social and reproductive strategies (e.g. Brotherton and Manser 1997). In addition, habitat patch size and quality may influence social group size by affecting individuals ability to form groups or disperse (e.g. Komdeur 1992; Covas et al. 2004). Since social group size and structure can predetermine the resulting mating system (Crook and Gartlan 1966), aspects relating to habitat, such as size, quality and distribution play an important role in the evolution of social and mating systems and their variation within and between species.

Habitat fragmentation resulting from human activities reduces the size of habitat patches and increases their spatial isolation (Saunders et al. 1991). When populations are confined to discrete patches of habitat, the size of the patch can potentially limit the size of social groups and interactions associated with mating (e.g. Wong et al. 2005). Habitat fragmentation may also result in elevated relatedness among potential mates, thereby increasing the likelihood of inbreeding. This in return is likely to decrease offspring fitness and may be a significant contributor to extinction risk (e.g. Keller 1998; Keller and Waller 2002; Kruuk et al. 2002; Frankham 2005). Natural animal populations generally avoid inbreeding through several mechanisms, including dispersal of individuals from their natal population, extra-pair copulation or recognition and avoidance of kin as mates (reviewed by Pusey and Wolf 1996). Changes resulting from habitat fragmentation may lead to a disruption of inbreeding avoidance mechanisms by

55 Social structure and mating system increasing mating between closely related individuals. For example, in a small marsupial carnivore, Antechinus agilis , habitat fragmentation resulted in an increased relatedness among potential mates and reduced the degree of multiple paternity (Banks et al. 2005). However, these effects of habitat fragmentation are still under-researched.

Petaurus breviceps is a social and colonial species which lives in small groups of between two and seven individuals (Henry and Suckling 1984; Suckling 1984). Groups share tree hollows in which they build bowl-shaped nests of eucalypt leaves. They also readily occupy artificial nest boxes in forests where natural hollows are rare or absent (e.g. Suckling and Macfarlane 1983; Traill and Lill 1997). The sex ratio of groups in the wild is generally female-biased (Quin 1995; Sadler and Ward 1999) and a polygamous mating system has been proposed for the species (Henry and Suckling 1984; Suckling 1984; Trail 1995 cited in Sadler and Ward 1999). However, no study has yet been carried out to determine the genetic mating system of the species. Molecular approaches (e.g. microsatellite DNA analyses) are particularly useful for determining mating systems and group structure of a social species (Ross 2001), as even the most careful field-based observations of animals can result in a misleading assessment of their breeding patterns (e.g. Noisy Miners, Dow 1979; Poldmaa et al. 1995). In studies of arboreal marsupials, the cryptic and nocturnal natures of species make them even more difficult to observe.

In south-eastern South Australia, habitats are highly fragmented and about 80% of natural forests have been cleared for agriculture and softwood plantations (Croft et al. 1999). P. breviceps is known to have the ability to survive in small patches, where larger gliders are absent (Suckling 1982). Surveys in the south-east showed that the species is less likely to occupy patches less than 100 hectares (Carthew 2004). However, little is known about how the species may respond to habitat characteristics such as size, quality and isolation. It may be predicted that group size and structure of the species will vary in response to habitat patch size: small patches should support smaller numbers of individuals with potentially smaller social groups.

The present study aimed to investigate the social structure and mating system of P. breviceps in the fragmented habitats of south-eastern South Australia. The effect of patch size on nest-box use, group size and structure was investigated by assessing animals inhabiting artificial nest boxes in small (less than 150 ha) and large (greater

56 Social structure and mating system than 200 ha) patches. Highly polymorphic microsatellite markers were used to investigate the mating system of the species in these patches, and to assess relatedness of nesting individuals.

4.2 Material and methods

4.2.1 Study area

The study was conducted in 19 remnant patches of native forest in south-east South Australia (37 ° 30 ′ S, 140 ° 25 ′ E to 38 ° 00 ′ S, 141 ° 00 ′ E), and three small remnants and a large continuous forest (Rennick State Forest, 5000 ha) in south-west Victoria (37°55'S 140°58'E). A majority of patches used in this study (11 of the 23) are on public land and are administered by the Department for Primary Industries and Resources, South Australia (PIRSA); two were managed for the Department for Environment and Heritage (DEH), South Australia, and six patches were under private ownership. Victorian forests were managed by the Department of Sustainability and Environment (DSE) (Fig 4.1 and Table 4.1).

The native patches were selected because they were known to contain suitable habitat for arboreal marsupials, particularly, P. breviceps (How 1996; How et al. 2004). The size of patches varied from 2 to 2216 ha, providing an opportunity to compare the effect of size on social structure of the species. Patches were isolated from one another and surrounded by rural and agricultural land or Pinus radiata plantations.

4.2.2 Sampling methods

Nest boxes were installed in August 1999 as part of a survey for the (Acrobates pygmaeus ) in South Australia (Richardson and Carthew 2004). They were constructed from rough-sawn pine timber and nailed to the trunks of trees about 3-4m above the ground and spaced approximately 50m apart along each site. Two transects of five nest boxes were located in each of the patches commencing 50-100m from the access tracks. The distance between each transect was dependent upon the size of the patch and varied between 100 to 500m apart (Richardson and Carthew 2004). Although the entry hole of boxes initially had a diameter of 25mm, sugar gliders gained access by chewing and enlarging the holes. Most nest boxes were still in place in 2004 and were used to obtain sugar glider tissue samples for DNA analysis. Sugar gliders were also

57 Social structure and mating system sampled from nest boxes installed for detecting the endangered Phascogale (Brush- tailed Phascogale , Phascogale tapoatafa ) in Comaum Forest Reserve (Deadmans Swamp), South Australia. In addition, new nest boxes were installed in six further patches in 2005 (see Table 4.1). These boxes were similarly constructed, but with larger (40 mm) entry holes.

Table 4.1 Size, ownership and location for 23 native forest patches surveyed in the current study. PIRSA, DEH, and DSE represent Department of Primary Industries and Resources, Department for Environment and Heritage (South Australia) and Department of Sustainability and Environment (Victoria) respectively. Patches in bold represent areas in which new nest boxes (two transects of five nest boxes) were installed in 2005. * and ^ represent five small and the five large patches respectively that were used for comparisons.

Id Patch Name Area (ha) Ownership Location (AMG) 1 Possum House 2 DSE 497674E 5812201N 2 Palpara Camping ground 16 DSE 498089E 5810061N 3 Casterton Rd* 43 Private 495000E 5820200N 4 Mc Eachens 49 PIRSA 496400E 5794500N 5 Wan win 76 DSE 499518E 5797949N 6 Bourne’s * 80 Private 471500E 5859500N 7 Paltridges* 116 Private 494100E 5836700N 8 Topperweins (a and b) * 117 PIRSA 497000E 5845300N 9 Mulligan Sanctury 133 Private 470000E 5822500N 10 Penola CP* 139 DEH 473000E 5866000N 11 Telford CP 168 DEH 481000E 5827800N 12 Snowgum NFR 194 PIRSA 494500E 5801000N 13 The Heath ^ 204 PIRSA 492500E 5841000N 14 Old Woolwash Scrub 248 PIRSA 463500E 5825500N 15 Mt Meredith ^ 250 Private 489500E 583000N 16 Warienga 250 PIRSA 488506E 5797483N 17 Honeysuckle 251 PIRSA 493500E 5797000N 18 Grundys Lane^ 260 PIRSA 478000E 5826500N 19 Yangery ^ 286 Private 493400E 5839500N 20 Dry Creek 396 PIRSA 496000E 5798200N 21 Deadmans Swamp ^ 525 PIRSA 487606E 5886068N 22 Nangwarry NFR 2216 PIRSA 490500E 5853000N 23 Rennick State Forest 5200 DSE 498000E 5802000N

Box inspection occurred at least once per season from April 2004 to April 2006. A single inspection of Deadmans Swamp nest boxes occurred in June 2005. Inspections were done during daylight hours, with the content of each box (including evidence of use such as nesting materials) recorded. Any P. breviceps found were removed from the box and placed in holding bags, and information such as sex, weight and reproduction status was recorded. Skin biopsies were taken from the ear of animals using sharp scissors, and these were placed in a sterile vial of 50:50 ethanol/saline and stored at the

58 Social structure and mating system room temperature before processing in the laboratory. Sugar gliders were individually tagged with numbered metal fingerling ear tags and were placed back in the nest box.

Figure 4.1 Location of 23 patches surveyed in this study. Numbers on the map correspond to patches in Table 4.1.

Reproductive condition in male and females in conjunction with Suckling’s (1984) weight and tooth wear categories were used to allocate captured sugar gliders to one of three groups; adults, sub-adults and juveniles. All males with an obvious head scent gland were classified as adults and, therefore, were considered potential fathers for all offspring for a particular patch. These animals were greater than 120 g (ranged from 120-160 g) and had cracked or stained incisors. Adult females were classified as adults if they showed signs of being reproductively active, i.e. pouches with loose skin, elongated or lactating teats, or had a pouch young. Adult females were ~ 110-135 g, with slightly worn and discoloured incisors. All reproductively mature females within a patch, regardless of whether they were seen with offspring in a box, were assumed to be potential mothers for all offspring in a specific patch. Sugar gliders were classified as sub-adults if they were not reproductively mature; males had not yet developed a scent gland on top of their heads and female pouches were pale pink in colour and tight (obviously unused). These animals were around 100 g in weight and had sharp or slightly flat incisors, but had not obviously bred yet. Sub-adult sugar gliders captured in 2004 and 2005 were also considered as potential parents of offspring collected in 2005

59 Social structure and mating system and 2006 respectively. The category of juvenile was given to pouch young and young gliders that had left the pouch but were still with their mothers.

Trapping was also conducted to sample animals from Rennick State Forest, as no nest boxes were installed there prior to this study, and to augment nest box samples at Snowgum, Honeysuckle, Mt Meredith, Paltridges and Dry Creek. Wire cage traps were baited with creamed honey placed on a cloth at the back of the trap, and were installed 3-6m above the ground on metal brackets nailed to the trunk of trees. Trap trees were also sprayed with a mixture of honey water, around and above the trap, as an attractant. Traps were checked at midnight and first light, and any captured gliders were removed and placed into holding bags. Captured gliders were checked for reproductive condition, sexed, weighed and skin biopsies were taken in the same way as given above and they were released at the point of capture. All samples used in genetic analyses are given in Appendix 7.

4.2.3 Comparison between small and large patches

To investigate any possible differences in nest box occupancy rate and group size, and structure of P. breviceps , five small and five large patches were compared (Table 4.1). Surveys in the region showed that while P. breviceps may be present in many fragments, they were less likely to occupy areas less than 100 ha (Carthew 2004). Here, due to the availability of data, five patches less than 150 ha and five patches larger than 200 ha were selected. In order to get sufficient numbers for comparison, data were pooled for each category. Patches sampled by trapping, including Rennick State Forest and Snowgum, were excluded because the methods were not comparable.

4.2.4 DNA extraction and microsatellite analysis

Genomic DNA was extracted from all samples using a Gentra DNA Extraction Kit following the manufacture’s procedures. A panel of nine microsatellite loci (Table 4.2) was used for genotyping each individual. Five tetranucleotide and one trinucleotide microsatellite loci were isolated from P. breviceps (Accession Numbers AY633628- AY633632, Brown et al. 2004), one trinucleotide microsatellite locus was isolated from P. australis (unpublished) and two dinucleotide loci were isolated from P. norfolcensis (accession numbers 330707 and 330728, Millis 2000).

60 Social structure and mating system

PCR amplifications were carried out in a final volume of 15 µL with approximately 100 ng genomic DNA, 2 pmol of each primer (forward primers were synthesized with fluorescent tags FAM, NED, VIC or PET at the 5 ′ end), 1x PCR buffer (Applied

Biosystems) 0.20 mM dNTPs, 2.5mM MgCl 2 and 0.1UAmpli Taq Gold (Applied Biosystems). Thermocycling was performed using touch down programs as described in Brown et al . (2004) with annealing temperatures ranging from 47-60 ºC (see Table 4.2 for annealing temperatures of each locus). Microsatellite alleles were detected by using an ABI 3730 DNA analyser and scored using the software program Genemapper version 2.1 (Applied Biosystem). Data were checked for errors and identical individuals using Microsatellite toolkit (Park 2001). A number of samples were also genotyped twice: 52 individuals at Petb1, 50 individuals at Pet6, 36 individuals at Pn3, seven individuals at Petb7 and five individuals for Pn49. These samples were used to estimate genotyping error rates for parentage analysis.

Table 4.2 Primer sequences (F, Forward; R, Reverse), annealing temperatures and source of the nine polymorphic microsatellite loci used in screening of P. breviceps samples.

Locus Name Sequence 5 ′′′→′→→→3′′′ Ta °°°C Source

Petb1 F: CTTGAGTTCCTAGTATGAGC 47-57 Brown et al . (2004) R: ATCACAGTGTAGAGGTAACC Petb2 F: AAAGATATAGAGAGAAATATG 47-57 unpublished R: TCCTCAGAGGCTA Petb4 F: CTTTCCAGTGCTATATGT 47-57 Brown et al . (2004) R: GCTCCTAACAAGTTGCCA Petb6 F: AATGTCTTTGGGATATGGAC 50-60 Brown et al . (2004) R: CCAGGACTTAGGAAACATC Petb7 F: TCACCAGTACCCAAATAATG 47-57 Brown et al . (2004) R: GGATAGGAAACTAGGTCACC Petb8 F: AGAAAACTGAGGTAGAGAA 50-60 Brown et al . (2004) R: ATTACCAGACATAGTGAGG Pn3 F: CTTCCCCTACCTGCCCCT 50-60 Millis (2000) R: TGGAATGATCTCCAAGG Pn49 F: TAGTGGGCTAGGACTGCTGC 50-60 Millis (2000) R: ACCATTGGTCCAACAGACAT Peta12 F: ACAAACTCCTAGAAGAG 50-60 unpublished R: AGAAGTCCAAAACCAAAG

4.2.5 Parentage analysis and mating system

The revised likelihood equation of the program CERVUS 3.0, which provides greater power to assign parentage at a given level of confidence (Kalinowski et al. 2007) than the former equation (Marshall et al. 1998), was used to assign parentage to 85 offspring

61 Social structure and mating system

(juveniles/ sub-adults) from 12 populations (Table 4.3). Because neither parent was known, parent pair analysis (sexes known option) was used to test for parentage. To identify the most likely genetically compatible mother and father for each offspring, LOD scores were calculated for each offspring in each patch with all adult animals in the patch being used as possible parents. The program differentiates the most likely parent by comparing the likelihood ratio of parentage with alternative candidates (Marshall et al. 1998) and significance levels for assignments were derived by comparing the differences in likelihood ratios between the two most likely parents with critical log-likelihood ratios (delta values) calculated through simulation. Strict (95%) and relaxed (80%) levels of confidence were used to assign parentage in this study. Parentage stimulations were based on 10,000 cycles. The proportion of loci typed was 0.94 and the genotype error rate was set to 0.067 based on the average percentage error at each locus estimated from the number of individuals genotyped twice at that locus. The simulation parameter, proportion of un-sampled gliders in each patch, was estimated from an assessment of the likely carrying capacity of adults within patches. Home range estimates from behavioural observations (where available, Le Duff 2000; Parkhurst 2005) or an average of approximately two ha (average based on estimations in several studies including Henry and Suckling 1984; Suckling 1984; Quin et al. 1992; Le Duff 2000; Parkhurst 2005) was used in conjunction with the suitability rankings of habitat patches for arboreal marsupials (Carthew and Goldingay 1998) to estimate the likely carrying capacity. Sex ratios were then estimated based on composition in nest boxes and were used to infer the number of adult males and females likely to be present in each patch given the estimated carrying capacity of the patch. From this, the proportion of the population sampled was estimated for each population and an average of 40% was used for parentage simulations. In parentage exclusion, one mismatch at one locus per parent-offspring pair was allowed to count as a typing error and an individual was excluded as a putative parent if a mismatch occurred at two or more loci.

Sugar gliders disperse from their natal population when they are about one year old (Suckling 1984). To allow for the possibility of dispersal between patches, the parentage assignment of all offspring was repeated on a single dataset including all potential parents across all patches in the region.

62 Social structure and mating system

4.2.5.1 Relatedness analysis Relatedness analysis was carried out to further investigate the relationships of individuals nesting together and to test whether P. breviceps avoided or preferentially shared nest with kin. Pairwise relatedness values among individuals within a patch were estimated using the Queller and Goodnight (1989) relatedness estimator with the software package GenAlEX6 (Peakall and Smouse 2006). Pairwise relatedness values of nesting adult males, adult females and adults of opposite sex were obtained. In addition, the age composition of individuals nesting together was used to categorize nesting groups as a putative family nest group (a mix of adults and juveniles/ sub- adults), an adult nest group, or a sub-adult nest group. The significant difference of average relatedness between the above categories was tested using a single–factor analysis of variance (ANOVA). To test for inbreeding avoidance in mate choice, pairwise relatedness values of the most likely mated pairs, based on the most likely parent pairs resulting from parentage analyses at each patch, were compared with the average relatedness of random pairs of adult males and females of that patch.

Table 4.3 Number of adult male, female and offspring (juvenile and sub-adult) P. breviceps sampled from 12 populations. *sex unknown individuals include museum specimens and several carcasses found in nest boxes.

Area No No No Sex Patch name (ha) samples females males Offspring Unknown* Casterton 43 11 3 3 5 0

Bourne 80 13 5 2 6 0

Paltridges 116 10 2 4 4 0

Topperwiens 117 14 5 2 6 1

Penola 139 6 1 0 1 4

Snowgum 194 9 2 3 4 0

The Heath 204 20 4 6 9 1

Mt Meredith 250 7 2 0 5 0

Grundys 260 29 5 5 17 2 Deadmans Swamp 525 35 7 11 17 0 Nangwarry 2216 5 2 1 2 0

Rennick SF 5200 14 3 4 7 0

63 Social structure and mating system

4.3 Results

4.3.1 Nest box occupancy

4.3.1.1 Species, Occupancy rate and pattern of use Nest boxes were occupied by four species of marsupials, including P. breviceps , Antechinus flavipes , Pseudocheirus peregrinus and Trichosurus vulpecula (Table 4.4). Microbats were recorded at six sites and signs of use by passeriform birds (nest materials, feathers and eggs) were found at two sites. Invertebrates were also recorded including spiders and ants. Of a total of 254 nest boxes (by the time of last inspection in 2006) 151 (59.4 %) had been occupied by vertebrate species.

Sugar gliders make bowl-shaped nests of leaves which are distinctive from other potential species that use nest boxes, such as Antechinus . These nests were used as evidence of usage by the species in the absence of animals in boxes. Signs of visitation by P. breviceps (in the form of nesting material or animals themselves) were evident in nest boxes at 18 of the 23 sites surveyed, giving an occupation rate of 38.1 % (97 nest boxes of the 254 available nest boxes). However, at the time of inspections, animals were found in residence at only 12 sites. Overall, 152 P. breviceps samples were collected from nest boxes.

The first evidence of visitation by P. breviceps (in the form of nest materials) in new nest boxes was recorded at about 60 days after installation. However, actual colonization of nest boxes by P. breviceps was first recorded six to nine months after installation. In Rennick State Forest, P. breviceps nests were found about nine months after installation of nest boxes. However, no animals were ever found in residence at the time of inspections.

Sugar gliders could be resident in nest boxes all the year round, with peaks of usage in autumn and winter (Fig 4.2). The difference between seasons was significant when cold (autumn-winter) and warm (spring-summer) seasons were compared (Fig. 4.2, χ2 = 7.24, df = 1, P < 0.01).

4.3.1.2 Comparison between small and large patches From a total of 418 nest box checks, 221 were carried out in five small patches (< 150 ha) and 197 in five large patches (> 200 ha), such that approximately equal sampling

64 Social structure and mating system effort was applied to each patch type. Thus samples from each patch size were used to investigate differences in occupancy rate and group structure between large and small patches.

Table 4.4 Species recorded using nest boxes, and the number of patches and nest boxes in which animal species were detected.

Species No. patches No. boxes P. breviceps 18 97 Antechinus flavipes 11 37 Trichosurus vulpecula 1 1 Pseudocheirus peregrinus 2 2 Bats 7 12 Spider 11 19 Birds 2 3 Ants 3 3

P. P.

18 16 14 12 10 8

breviceps 6 4 2 0 autumn w inter spring summer

Percenatge of Percenatge boxes found occupied by

Figure 4.2 Seasonal use of nest boxes by P. breviceps , based on the percentage of boxes occupied by the species in 12 patches over a three year period 2004-2006.

Nest boxes were more likely to be occupied by P. breviceps in large than small patches (Fig. 4.3, χ2 = 6.63, P = 0.01), with a maximum of three nest boxes occupied in a transect of five nest boxes in large patches, compared to a maximum of one occupied per transect in small patches. The mean number of animals co-habiting a nest box was also significantly greater in large patches using an independent-samples t test (Fig. 4.4, t = -2.82, P = 0.006). Boxes with greater numbers of gliders were also more frequently observed in large patches and contained up to seven individuals (Fig. 4.5).

65 Social structure and mating system

25

20

15 P. brevicepse 10

5 occupied by Percenatge of boxes found 0 small large Patch size category

Figure 4.3 The percentage of the total of nest box checks where a nest box was occupied by at least one P. breviceps individual in five small and five large patches. The number of nest boxes in small and large patches was 49 and 58 respectively.

4 3.5 3 2.5 2 1.5 1 Mean # P. breviceps P. Mean# 0.5 0 small large Patch size category

Figure 4.4 The mean number of individual P. breviceps per nest box (± s.e) in small (< 150 ha) and large (>200 ha) patches.

66 Social structure and mating system

14

12

10

8 small 6 large

4 No. No. of observations 2

0 1 2 3 4 5 6 7 No. of animals per box

Figure 4.5 Frequency histogram of the number of P. breviceps inhabiting nest boxes at one time in small and large patches.

Nesting groups consisted of varying numbers of males and females. Some groups consisted of only one sex and others had mixed sexes. A two factor ANOVA was used to test for significant differences between small and large patches in the number of adult and juvenile gliders in nest boxes. There were significantly fewer reproductively active adult males than females in small patches (Fig. 4.6, F = 5.4, P = 0.02). However proportions of reproductively active adult males and females between large and small patches were near significant (F = 3.35, P = 0.07). There were also significantly more juvenile and sub-adult individuals detected in large rather than small patches (Fig 4.7, F = 11.6, P = 0.001). However the proportion of juvenile and sub-adult males and females was similar for both small and large patches (F = 1.23, P = 0.27). The number of juveniles relative to adults did not differ between large and small patches (F = 0.4, P = 0.7). The average sex ratio of reproductively active adult males and females within a nest box was 1 male: 2.4 females in small patches and approximately one to one in large patches (Fig. 4.6). The average sex ratio of juvenile and sub-adult males and females was one to one in both small and large patches.

67 Social structure and mating system

1.2

1

0.8 Female 0.6 Male 0.4

0.2 Mean# gliderof per box 0 small large Patch size category

Figure 4.6 The mean number of reproductively active adult male and female P. breviceps per nesting group in small and large patches, n = 29 nesting groups in small and 42 nesting groups in large patches.

1.2

1

0.8 Female 0.6 Male 0.4

0.2

Mean # of gliders perbox gliders #Meanof 0 small large Patch size category

Figure 4.7 The mean number of juvenile and sub-adult male and female P. breviceps per nesting group in small and large patches, n = 29 nesting groups in small and 43 nesting groups in large patches.

The number of nesting groups with multiple females was significantly higher in large patches than small patches (Table 4.5, χ2 = 4.00, P = 0.047). Single adult females were almost equally recorded in both small (n =10) and large patches (n = 11). Nesting groups of sub-adult males and females were also found in small (n = 4) and large (n = 7) patches. Multiple male groups were uncommon in both patch types and male-biased groups (multiple adult male with a single or multiple females) were absent in both small and large patches (Table 4.5).

68 Social structure and mating system

Table 4.5 Frequency of the various combinations of adult sugar gliders nesting together in nest boxes in five small patches (n = 17) and five large patches (n =35). * represents sub- adult nest groups.

Multiple female Single female No female Total Multiple male 0 0 1 1 Single male 1 3 1 5 small No male 0 7 4* 11 Total 1 10 6 17 Multiple male 0 0 2 2 Single male 16 large 6 6 4 No male 5 5 7* 17 Total 11 11 13 35

4.3.2 Parentage analyses

Positive maternal LOD scores were obtained for 49 of the 85 offspring (juveniles / sub- adults). However, 36 offspring showed at least two genotypic mismatches with all candidates and could not be allocated to a mother. Similarly, positive paternal LOD scores were obtained for 27 offspring, although 58 offspring could not be assigned to a father based on only one mismatch allowed.

From the simulation data, critical values of 5 at the 95% confidence level and 1.88 at the 80% confidence lavel were obtained for female candidates. Based on these results, maternity was assigned to 24 offspring at the 95% confidence level and to an additional 11 offspring at the 80% confidence level. Two offspring (G20 and 83903) were assigned to a female candidate (83905) with a positive LOD score but obtained a zero delta value (Table 4.6). Further investigations were carried out using a second CERVUS analysis to obtain the two most likely female parents. The results showed that adult female 83905 was the only candidate that gave a positive LOD score for offspring G20. This female did not obtain a significant delta because it shared several common alleles with the offspring. Maternity of offspring 83903 was assigned to two candidate females with similar LOD scores. The two adult females (81225 and 83905) had a relatedness value of 0.16 suggesting they were potentially half-sibs. Therefore, it is likely that the low confidence of this assignment is due to the presence of related individuals who shared alleles with the potential mother.

69 Social structure and mating system

Critical delta values for male candidates ranged from 6 at the 95% confidence level to 2 at the 80% level. Paternity assignments were made for nine offspring at the 95% confidence level and to a further 16 offspring at the 80% confidence level. A critical LOD value of 5 at the 95% confidence level and 3.5 at the 80% confidence level was obtained for parent pairs. Thirteen juvenile/ sub-adults obtained positive LOD scores for parent pair assignments. However, only seven juvenile / sub-adults were assigned to two parents at the 95% confidence level and to a further two were assigned two parents at the 80 % confidence level (Table 4.6).

No parentage of an offspring was assigned to an adult outside the patch in question. A comparison between the parentage assignments and the location of animals showed that 55% of maternal and 30% of parental assignments were made to females and males that shared a nest box with the offspring at the time of sampling. The rest of the assignments were made to males and females captured from the same transect of nest boxes.

CERVUS simulation, assuming that all mothers had been sampled, resulted in only 32% of offspring (27 of 85) being assigned with 95% confidence. The close agreement of this figure with the observed (24) figure, when taking account of a proportion of un- sampled mothers, suggests that marker resolution in addition to incomplete sampling of adult females may have been primarily responsible for failure to assign maternity. In paternity assignment, however, the simulation result suggested that only 24% of offspring could be assigned to a father with 95% confidence. The discrepancy between observed (12%) and the expected rate of assignment is likely to be the result of incomplete sampling of adult males. In addition to marker resolution and incomplete sampling of adult males and females, the presence of close relatives (e.g. siblings or half-sibs) may have also reduced the success and confidence of assignments (Marshall et al. 1998).

70

Social structure and mating system

Table 4.6 Result of parentage assignments for juvenile and sub-adults sampled in this study by calculation of the most likely male and female parents. LOD scores and Delta statistics for the most likely mother and male father for each offspring are provided. Trio LOD and Trio Delta scores represent the most likely candidate parent pairs. Assignments at the 95% confidence level are designated by * and at the 80% by +. Id codes for offspring, mothers and fathers correspond with those in Appendix 7.

Patch Offspring ML LOD Delta ML LOD Delta Trio Trio Delta name ID mother score obt ≥ crit father ID score obt ≥ crit LOD score obt ≥ crit ID C1 C5 10.02 5.55 ≥ 3.5* C2 9.95 8.23 ≥ 6* 22.44 6.73 ≥ 5* C11 C7 7.53 2.28 ≥ 1.88+ C10 8.48 0.98 < 2NS 15.16 4.98 ≥ 3.5+ Casterton Rd C3 C5 13.13 9.56 ≥ 3.5* C2 9.91 9.91 ≥ 6* 24.99 11.08 ≥ 5* C8 C7 7.45 2.48 ≥ 1.88+ C9 10.23 10.23 ≥ 6* 15.92 5.16 ≥ 5* C4 C6 10.72 4.50 ≥ 3.5* C9 7.42 7.42 ≥ 6* 14.09 4.38 ≥ 3.5+ B6 B7 7.66 7.66 ≥ 3.5* Bourne 81266 81265 11.08 11.08 ≥ 3.5* 81267 81265 11.56 11.56 ≥ 3.5* G11 G10 9.00 6.36 ≥ 3.5* G12 9.61 4.28 ≥ 2+ 21.88 10.53 ≥ 5* G14 81225 4.9 1.9 ≥ 1.88+ G12 8.59 7.52 ≥ 6* 3.76 0.00< 3.5 NS G16 83901 8.47 6.78 ≥ 6* Grundys G18 G10 3.79 3.79 ≥ 3.5* G20 83905 4.80 0.00 < 1.88 NS G21 81225 6.35 2.77 ≥ 1.88 + G22 83905 9.53 5.65 ≥ 3.5* G25 G19 6.54 2.24 ≥ 1.88+ G26 G10 6.22 0.59 < 1.88 NS G12 2.79 2.79 ≥ 2+ G27 G10 7.01 1.78 < 1.88 NS G12 3.42 3.42 ≥ 2+

71

Social structure and mating system

Patch Offspring ML LOD Delta ML LOD Delta Trio Trio Delta name ID mother score obt ≥ crit father ID score obt ≥ crit LOD score obt ≥ crit ID G28 G24 4.93 4.89 ≥ 3.5* G12 2.90 2.90 ≥ 2+ 10.22 5.46 ≥ 5* 83902 G19 1.85 0.43 < 1.88 NS 83903 83905 3.90 0.00 < 1.88 NS Grundys 83904 83905 3.40 1.96 ≥ 1.88+ 83901 2.87 1.78 < 2NS 6.46 2.43 < 3.5 NS 83906 83907 4.90 4.90 ≥ 2+ 83908 81225 9.14 9.14 ≥ 3.5* 83890 83893 9.44 1.75 < 1.88 NS H11 5.74 4.64 ≥ 2+ 10.66 2.49< 3.5 NS H14 H10 5.65 2.37 ≥ 2+ H15 83891 5.82 2.47 ≥ 1.88+ H16 H9 3.96 3.96 ≥ 2+ The Heath H17 83893 8.79 5.88 ≥ 3.5* H10 4.74 4.74 ≥ 2+ 15.60 6.24 ≥ 5* H18 83893 7.64 0.67 < 1.88 NS H10 7.59 6.87 ≥ 6* 16.63 3.09 < 3.5 NS 83892 83893 3.55 2.90 ≥ 1.88+ 83894 83891 8.23 1.19 < 1.88 NS 83895 83898 9.17 3.58 ≥ 3.5*

Mt Meredith 83897 83898 6.60 1.20 < 1.88 NS 83899 83896 5.51 0.12 < 1.88 NS MtTR2 83898 3.64 2.57 ≥ 1.88+ Nangwarry N4 N5 5.71 2.78 ≥ 1.88+ 83887 PL8 1.69 1.69 < 1.88 NS Paltridges 83888 PL8 2.47 2.47 ≥ 1.88+ PL7 81262 5.74 5.74 ≥ 3.5*

72

Social structure and mating system

Patch Offspring ML LOD Delta ML LOD Delta Trio Trio Delta name ID mother score obt ≥ crit father ID score obt ≥ crit LOD score obt ≥ crit ID REN1 REN10 11.39 6.71 ≥ 6* REN12 REN7 8.57 8.57 ≥ 3.5* REN10 3.09 3.09 ≥ 2+ 13.96 13.96 ≥ 5* REN3 REN10 6.57 5.97 ≥ 2+ Rennick REN4 REN2 6.56 6.56 ≥ 3.5* REN5 REN10 9.09 7.30 ≥ 6* SGR.PA REN2 10.08 10.08 ≥ 3.5* snow3 snow2 2.30 2.30 ≥ 2+ Snowgum snow4 snow2 2.69 2.69 ≥ 2+ snow6 snow5 8.34 8.34 ≥ 3.5* TP3 TP2 4.89 4.89 ≥ 2+ TP4 TP2 5.03 5.03 ≥ 2+ Topper- weins TP6 TP7 9.95 9.95 ≥ 3.5* 81273 81275 7.01 1.75 < 1.88 NS 81274 81275 11.18 7.91 ≥ 3.5* DS13 DS11 2.10 0.00 < 1.88 NS DS15 DS14 5.13 5.13 ≥ 3.5*

Deadmans DS17 DS21 10.38 10.38 ≥ 3.5* Swamp DS3 DS2 8.86 8.86 ≥ 3.5* DS8 DS14 1.09 1.09 < 1.88 NS DS23 DS14 6.84 6.84 ≥ 3.5* DS22 DS24 5.78 5.78 ≥ 2+

73 Social structure and mating system

4.3.3 Mating system

Parent pairs assigned to offspring with at least an 80% confidence level were used to investigate the mating system of P. breviceps in those populations. In addition, a second CERVUS analysis was conducted to obtain the two most likely parents for each offspring. Results of this analysis were used to investigate whether a female could be excluded as being the mother of an offspring based on her having a negative LOD score.

In the Casterton Rd population, adult male C9 and adult female C7 were chosen as the most likely parent pair for offspring C8 at the 95% confidence level (Table 4.6). This adult male with another adult female (C6) were chosen as the parent pair for offspring C4 at the 80% confidence level (Table 4.6). Similarly, in the Grundys population, adult male G12 and adult female G10 were chosen as the most likely parent pair for offspring G11 at the 95 % confidence level. The same adult male was selected with another adult female (G24) as the parent pair for offspring G28 at the 95 % confidence level. Male G12 was also selected as the most likely father for offspring G14 at the 95% confidence level and offspring G26 and G27 at the 80% confidence level. Adult female 81225 as the most likely mother of G14 obtained a significant delta at the 80 % confidence level. However, this pair (G12, 81225) did not obtain a significant delta. An alternative mother for offspring G14 had a negative LOD score (data not shown). No candidate female with positive LOD scores were obtained for offspring G26. Two females (G10 and G24) with positive LOD scores were obtained for the offspring G27. However delta values for these two females were close to zero, suggesting an equal chance of each being the parent. The relatedness value of these two females was 0.51, suggesting potential siblings and therefore sharing similar alleles.

Adult male 83901, from Grundys, with adult female 83905 were chosen as the most likely parent pair for offspring 83904, although the delta score for this pair was close to significant. A second female (G19) chosen for this offspring had a lower but positive LOD score. An analysis of relatedness showed that these two most likely mothers were close relatives (r = 0.4). Although the same male (83901) was selected as the most likely father of offspring G16 at the 95% confidence level, no female with a positive LOD score was obtained for this offspring.

74 Social structure and mating system

In The Heath population, adult male H10 with adult female 83893 were selected as the most likely parent pair for offspring H17 at the 95% confidence level. One further offspring H18 was also assigned to this pair with a positive LOD and a near significant delta. The alternative female 83891 was a close relative to 83893 (r =0.39). Offspring H14 was assigned to adult male H10 at the 80% confidence level. Although two females (H13 and 83893) with positive LOD scores were selected for offspring H14, both obtained a zero delta. Taking account of the relatedness value of these two females (r = 0.13) suggests they may potentially be half-sibs.

The above results revealed cases of potential polygamous pairs in which adult males sired several offspring with different partners. The low confidence level for the assignments of some animals is most likely to be due to the presence of relatives in the data set. Adult females with high relatedness values mentioned above were also found in the same nest box with offspring. Although data is limited, the presence of related females with offspring in the same box may imply a cooperative rearing of offspring of P. breviceps .

4.3.4 Relatedness and kinship

Pairwise relatedness values of individuals nesting together were used to further investigate the relationships of individuals within nest boxes. On average, adult females within nest boxes had higher relatedness values (0.185 ± 0.096) compared to adult male pairs and adults of the opposite sex (Fig 4. 8). Adult males and females who shared a nest box showed, on average, the lowest relatedness values (0.003 ± 0.061). On average, adult male pairs had higher relatedness values compared to adults of opposite sexes. However, pairwise relatedness values of adult males within nest boxes varied greatly and ranged from -0.45 to +0.33. The differences between the three groups were not significant when a single-factor ANOVA was used (F = 1.18, P = 0.32).

75 Social structure and mating system

0.3 0.25 0.2 0.15 0.1 0.05

relatedness 0 -0.05 Average coefficient of coefficient Average -0.1 F/M F/F M/M Nesting adults

Figure 4.8 Average coefficient of relatedness (Mean ± s.e.) of nesting adult individuals is estimated from 30 nest groups.

Average relatedness values were calculated for nesting mates from 20 putative family (a mix of adults and sub-adults /juveniles), 10 adult and 11 sub-adult nest groups. On average, putative family groups showed higher relatedness values (0.31 ± 0.03) compared to adult (0.022 ± 0.07) and sub-adult (-0.085 ± 0.04) nest groups (Fig 4.9). Average relatedness between adult and sub-adult nest groups was significantly lower than family nest groups, using a single-factor ANOVA (F =18.6, P = 0.000). The range of relatedness values between individuals within the 20 family nest groups was +0.11 to +0.57, indicating that the majority of animals within these nests were relatives. Relatedness values for adult nest groups ranged from -0.22 to 0.54. The highest relatedness value was from two adult females sharing a box (r = 0.54). Three nest boxes with multiple adult males had relatedness values of 0.19, 0.13 and -0.089. In sub-adult nest groups, the coefficient of relatedness was lower than in adult nest groups, although the difference was not significant (F = -0.09, P = 0.3). Within sub-adult nest groups, pairwise relatedness values between nest mates ranged between -0.36 and 0.15, indicating unrelated individuals or potentially half-sibs following a polygamous mating.

76 Social structure and mating system

0.4

0.3

0.2

0.1

0

-0.1

Average coefficient of relatedness coefficient Average -0.2 Putative family adult sub-adult Nest groups

Figure 4.9 Average coefficient of relatedness (Mean ± s.e) for nesting individuals nesting together is estimated from 20 mixed nests, 10 adult nests and 11 sub-adult nests.

The most likely parent pairs selected by CERVUS, at least at the 80% confidence level, were used to assess potential inbreeding in P. breviceps . Pairwise relatedness values of these presumably mated pairs were compared to the average relatedness of adults within that patch. Two of the eight most likely mated pairs showed relatedness values greater than the average relatedness of adults within that patch, indicative of close relatives (Table 4.7). Adult male C2 and adult female C5, who shared the same nest box at the time of sampling, were selected as the most likely parents of offspring C1 and C3 at the 95% confidence level. This pair showed a relatedness value of 0.21, suggesting potential half-sibs. Similarly, adult male C9 and adult female C7, selected as the most likely parents pair of offspring C8 at the 95 % confidence level, showed a positive relatedness value of 0.26. Male C9 shared a box with offspring C8. However female C7 was captured in a different nest box (200m away). The two pairs with positive relatedness values were both from Casterton Rd, a small patch (43 ha) surrounded by a matrix of agricultural land and exotic pine plantation. The remaining six unrelated pairs were sampled from two larger patches (> 200 ha) and a continuous forest.

77 Social structure and mating system

Table 4.7 Pairwise relatedness values for the most likely mated pairs from one small patch (Casterton Rd), two larger patches (Grundys and The Heath) and a continuous forest (Rennick State Forest). Mean of relatedness of all randomly paired adults and mean of relatedness of adults of opposite sex for each pair are also given.

Mean Most likely pairs Pairwise Mean adult Patch name adult F/M relatedness relatedness relatedness male female

C2 C5 + 0.21 Casterton - 0.21 ± 0.07 - 0.167 ± 0.09 C7 C10 - 0.07 Rd C9 C7 + 0.26 C6 C9 - 0.15 Grundys - 0.13 ± 0.04 - 0.089 ± 0.07 G12 G10 -0.38 G12 G24 -0.3 The Heath -0.055 ±0.03 -0.1 ± 0.05 H10 83893 -0.21 Rennick SF - 0.13 ± 0.04 - 0.089 ± 0.07 REN 10 REN 7 -0.23

4.4 Discussion

4.4.1 The effects of patch size on nest-box use, group size and structure

In the current study, four marsupial species were recorded occupying nest boxes, the most common of which was P. breviceps . The occupancy rate of nest boxes by sugar gliders, however, was significantly higher in large (> 200 ha) patches than small (< 150 ha) patches. The number of gliders per box was also significantly higher in large patches and boxes with greater number of gliders were more frequently observed in larger patches. The higher occupancy rates and greater number of gliders per box are presumably a response to better resource availability (e.g. see Grundel and Pavlovic 2007), although this was not tested in the current study. Several studies of habitat fragmentation have found that animal population density is related to patch size (reviewed by Debinski and Holt 2000). However other researchers suggested that habitat quality is more important than habitat size (e.g. Fleishman et al. 2002; Franken and Hik 2004), and in fragmented habitats both habitat quality and isolation determine the long-term viability of populations (Thomas et al. 2001). The effect of patch size on population density is also known for some of the larger gliders such as P. gracilis (Jackson 1999). Pope et al . (2004) also showed that as patch size decreased, the population size of Petauroides volans also decreased . A number of other studies found that the density of arboreal marsupials increases with patch size and some suggested that the quality of the soil, that indirectly accounts for the quality of the patch, was the

78 Social structure and mating system main factor that influenced the population size (van der Ree et al. 2001; van der Ree and Bennett 2003). Results from the present study suggest that P. breviceps may respond to higher resource availability in large patches via increased population density and group size.

Nest-box use by arboreal marsupials appears to be influenced by the availability of natural hollows at a site. (Menkhorst 1984a; Traill and Lill 1997; Smith and Agnew 2002; Lindenmayer et al. 2003). Although higher occupancy rates of nest boxes have been interpreted as indicators of lower natural hollow availability, no replicated study has been conducted to investigate the relationship between natural hollow availability and occupancy of nest boxes. Menkhorst (1984b) found sugar gliders frequently occupied nest boxes at a site with a relatively high abundance of natural hollows. Furthermore, a number of studies have shown that the presence of sugar gliders is best explained by the abundance and quality of food resources and to a lesser extent by denning resources (e.g. Jackson 2000). Habitat ranking data (Carthew and Goldingay 1998) was used to assess habitat quality of small and large patches selected for comparisons in the current study. These patches had a similar ranking for hollow availability, suggesting that the population density was not influenced by the availability of hollows. However, in ranking for P. breviceps large patches such as Grundy and The Heath had a lower ranking compared to a small patch such as Paltridges, suggesting that potentially several other factors may influence nest box-use. Other factors such as the number of eucalypt trees (e.g. E. viminalis ), height of trees and diameter at breast height also have shown to be correlated with the presence of P. breviceps (How 1996; Carthew and Goldingay 1998; Le Duff 2000).

This study found that the number of adult males was significantly lower than adult females in the small patch category. However, a female-biased sex ratio was not reflected in a biased sex ratio at birth in both small and large patches. A female sex-bias structure may result from male dispersal if the isolation of a patch is leading perhaps to a lack of immigration of males from outside the patch. A female-biased sex ratio also reported in sugar glider nesting groups (Sadler and Ward 1999) and populations (Suckling 1984). This may be consistent with the general theory of male dispersal in polygamous species (Greenwood 1980), a pattern that has been documented in a range of marsupial species, including the yellow-bellied glider (Russell 1984), Antechinus

79 Social structure and mating system

(Cockburn et al. 1985), brushtailed possum (Clout and Efford 1984), and phascogale (Soderquist and Lill 1995).

4.4.2 Mating system of P. breviceps

In the current study, nesting groups consisted of a single adult male with a single adult female, as well as groups of multiple females with a single male were observed. From genetic analyses, using parent pairs assigned to offspring with at least 80 % confidence level, five out of seven offspring/ parent combinations, with at least one common parent, were found to represent cases of polygamy. In these cases two adult males were found to sire two offspring each with different partners and one adult female was found to sire two offspring with two different male partners. Two further offspring were sired by the same male and female parents. Although these results suggest that polygamy may be a common mating strategy in these sugar gliders, further data are required to confirm this observation. Furthermore, these pairs were found in fragmented habitats, and the results may not be representative of mating strategies in more continuous forest. Difficulties associated with trapping of gliders in tall eucalypt forests resulted in a low sample size from a more continuous forest at Rennick State Forest. In addition, no nest boxes were available in the continuous forest prior to this study. Therefore, a comparison of social group structure or mating system with a continuous forest was not possible.

The results are consistent with a number of other studies that have suggested a polygamous mating system for P. breviceps (e.g. Suckling 1984; Sadler and Ward 1999). These studies have been observational and mainly based on the composition of nesting groups. A mixed social system consisted of polygamous and monogamous pairs also have been reported for sugar gliders at Limeburners Creek Nature Reserve, on the central north of New South Wales (Quin 1995). Several researchers have suggested that the mating system of number of arboreal marsupial species may vary between different populations and habitats. For example, Menkhorst (1995) observed that Victorian populations of the squirrel glider lived alone or in pairs whereas Quin (1995a) found that squirrel gliders in northern coast of New South Wales nested in colonies of two to nine animals and were probably polygamous. Mixed social systems have been reported for a number of other possum and glider species, including yellow-bellied gliders (Goldingay and Kavanagh 1990; Goldingay 1992), Leadbeater’s possums (Lindenmayer

80 Social structure and mating system and Meggs 1996) and mountain brushtail possums (Lindenmayer et al. 1997). Moreover, even within the same population of arboreal marsupials, mating system may vary between groups of animals (e.g. the , Henry 1984). Few studies, however, have determined whether the social mating system equates to the genetic mating system using molecular analyses (but see Brown et al. 2007). It is, therefore, not known whether variations in the observed mating system are due to actual changes in mating strategies or to the failure to detect the actual mating system because of the arboreal, cryptic and nocturnal natures of the species.

4.4.3 Relatedness and Kin structure of P. breviceps

Petaurus breviceps is a communally nesting species, known to form social groups in the wild (Suckling 1984; Quin 1995; Sadler and Ward 1999). However, the relationship of nesting individuals is less known. In the current study, the analyses of genetic relatedness between individuals within nest boxes showed that the groups of gliders that shared nest boxes were generally comprised of related individuals. Parentage analyses showed that around 55% of maternal and 30% of paternal assignments were made to adult females and males that shared a nest box with offspring. Genetic relatedness analyses also showed that nesting females in a majority of cases were relatives (e.g. siblings or half-sibs). The assignment of offspring to candidate mothers was more difficult in the presence of related females who shared several alleles. The presence of co-nesting related females may imply that they live and rear their offspring together in a single nest. Potential benefits of this behaviour include protection of offspring from infanticide, improved thermoregulation and adoption of young whose mother dies (Hayes 2000). Nesting adult males were found to vary in the degree of relatedness. However, adults of the opposite sex were the least related. The presence of unrelated male and females as potential sexual partners within nest boxes could result from a natural behaviour within the species to choose unrelated partners or is a natural process resulting from sex-biased dispersal. Further analyses are required to elucidate these possibilities.

In the current study, gliders were found using nest boxes in all seasons. However, the nest-box use was higher in cold seasons and it is suggested that group nesting greatly reduces winter energy expenditure of P. breviceps (Fleming 1980; Körtner and Geiser 2000). The higher occupancy rate of nest boxes in autumn and winter may be viewed as

81 Social structure and mating system a way of conserving energy. Group nesting or increases in group size over winter, as a way of conserving energy, have been reported or suggested for several small mammals, including voles (Wolff and Lidicker 1981); squirrels (Koprowski 1996); the southern (Layne and Raymond 1994); and the mountain brushtailed phascogale (Rhind 2003). The huddling associated with nesting either increases actual body temperature, or animals are able to maintain their normal temperature at a lower metabolic cost (Withers and Jarvis 1980).

4.4.4 Inbreeding avoidance

This study found two cases of offspring/parent combinations where the parents were potentially related (R>0.21), providing some direct evidence of inbreeding in a small and isolated patch. Although these data are very limited, this finding may be due to the smaller patch size (43 ha) or potential isolation of the population, which is surrounded by a matrix of pine and agricultural land. Population analyses revealed significant pairwise F ST values between this population (Casterton Rd) and other populations (Chapter five), suggesting potential isolation of this population, which might be expected to lead to inbreeding in small populations.

In the absence of the capacity for dispersal, kin recognition may act as a mechanism for inbreeding avoidance, therefore mitigating the problem of a high density of related individuals in small populations. Mechanisms of social recognition in natural populations of P. breviceps remain unclear (Mallick et al. 1994; Klettenheimer et al. 1997; Sadler and Ward 1999). Male P. breviceps possess several scent glands (e.g. frontal, sternal and urogenital) which secrete pheromones. Schultze-Westrum (1965, 1969) (cited in Suckling 1984) suggested that scent marking is important in determining the social organization of sugar glider captive groups. Schultze-Westrum (1969) suggested that pheromones may be transferred to group members by one or two of the dominant males. These dominant males also perform most of the other social activities such as mating, territory maintenance, territory patrolling, and aggression against outside individuals. However, little is known about scent markings in natural populations and the role of pheromones in the social structure of P. breviceps.

Within a species, comparisons of populations found in both continuous and fragmented habitats are of particular value. These comparisons allow an assessment of the impact of fragmentation on population dynamics and social organization. The findings of this

82 Social structure and mating system study only reflect social organisation and group structure of the species in fragmented habitats and do not necessarily equate to those of a continuous forest. In this study the limited samples from the continuous forest at Rennick State Forest did not provide such an opportunity for comparison. More research is required to compare social structure and mating system of the species between fragments and continuous forest.

83 Genetic diversity and population structure

5 Genetic diversity and population structure of P. breviceps

5.1 Introduction The loss of natural habitats caused by human activities is one of the major threats to long-term persistence of many species. The remaining habitat patches are often small and isolated from each other by less suitable landscape elements such as agricultural and rural areas, softwood plantations, settlements and roads. Potentially, negative effects of fragmentation include reduction of habitat area, modification of the environment and increased isolation of local populations. The latter is of particular importance because it may increase the risk of population extinction due to different demographic and genetic factors (reviewed by Reed 2004; Burkey and Reed 2006). Genetic variability provides the raw material for evolutionary change and is therefore crucial to the long-term viability of isolated populations (Reed and Frankham 2003). Habitat fragmentation can affect the genetic structure of populations both directly and indirectly through its effects on gene flow, by restricting dispersal and increasing the effect of inbreeding and genetic drift in small habitats (Frankham 2005). The long-term viability of a species in a fragment is strongly influenced by its location within the broader landscape, and, in particular, by the nature of the surrounding vegetation and the presence of corridors (Downes et al. 1997).

Although landscape heterogeneity and patchy distribution of resources may affect species survival in fragmented habitats, it is unclear to what extent habitat fragmentation represents population fragmentation. Furthermore, the degree and the type of habitat fragmentation can have different effects depending both on the species and the context (e.g. Swihart et al. 2006). The extent to which a species is affected by habitat fragmentation is determined by its degree of habitat specialization, dispersal potential and behavioural responses to habitat fragmentation (Weins 1997).

Population fragmentation is expected to reduce within-population genetic polymorphism and increase genetic differentiation. Loss of polymorphism can reduce the potential for adaptation and, in combination with increased mating among relatives, lead to inbreeding depression (Frankham 2005). In contrast, increased genetic differentiation among populations may potentially lead to outbreeding depression, following interpopulation mating (Marshall and Spalton 2000). However, gene flow tends to homogenise population genetic composition and thereby counteracts such

84 Genetic diversity and population structure effects (Slatkin 1985). Consequently, a minimum level of gene flow is considered important for the viability of small, isolated populations (Mills and Allendorf 1996).

In south-eastern South Australia, native forests have been cleared for agricultural activities, urbanisation or softwood production. The region originally consisted of a mosaic of grasslands, woodlands and forests. However, it has suffered severe habitat fragmentation, with only 13 % of the original native vegetation now remaining (Croft et al. 1999). The area now comprises agricultural and rural areas, and most suitable remaining habitats are confined to small less productive remnant patches, which are often degraded. The sugar glider ( Petaurus breviceps ) is one of nine species of arboreal marsupials in the region (Carthew 2004), and is listed as Rare under Schedule 7 of the South Australian National Parks and Wildlife Act (1972 ). P. breviceps is likely to be vulnerable to the effects of fragmentation as it is forest dependent and virtually absent from exotic pine plantations such as radiata pine ( Pinus radiata) (Lindenmayer et al. 1999b; Lindenmayer et al. 2000). Arboreal marsupials have been long recognised as a group of mammals that are potentially vulnerable to habitat disturbance and fragmentation (McIllroy 1978; Bennett et al. 1991; Laurance and Vasconcelos 2004). However, studies to date on the effects of habitat fragmentation on arboreal marsupials have primarily focused on the presence and absence of species (Lindenmayer et al. 1993a; McAlpine and Eyre 2002), and their diversity and relative abundance in the fragmented landscape (Deacon and Nally 1998; Lindenmayer et al. 1999b; Soderquist and Mac Nally 2000; Kavanagh and Stanton 2002; Woinarski et al. 2006). Much less attention has been paid to the genetic consequences of fragmentation. Such data are important for long-term conservation management of the species.

Surveys of native forest patches in the south-east of SA showed that the presence of arboreal marsupials was positively correlated with habitat attributes such as the density of eucalyptus species and the surrounding land use (How 1996; Le Duff 2000). Although P. breviceps was present in many of the native patches surveyed, suggesting relative tolerance of the species to habitat fragmentation (Le Duff 2000), the effects of the fragmentation on genetic structure of the species is yet to be documented. There is also a lack of knowledge of whether gene flow occurs between fragmented populations. Le Duff (2000) found that P. breviceps was more likely to be detected in patches which were surrounded by grazing land rather than Pinus radiata plantations, suggesting that scattered large and old eucalyptus trees within grazing lands or thin corridors along

85 Genetic diversity and population structure fence lines and roadsides may provide nesting sites or assist P. breviceps to disperse between patches.

The present study aimed to evaluate whether the population genetic structure of P. breviceps in south-eastern South Australia has been influenced by habitat fragmentation. Highly variable microsatellite markers were used to investigate the genetic diversity and population structure of 13 populations of P. breviceps in fragmented habitats. Specifically, this study aimed to determine whether (i) genetic diversity and polymorphism has reduced due to the reduction in size of habitats and (ii) if the current genetic structure of the species suggests isolation and restricted gene flow between populations.

5.2 Materials and methods

5.2.1 Study populations and molecular data

Samples of P. breviceps were collected from 12 remnant patches of native forest in south-east South Australia (37 ° 30 ′ S, 140 ° 25 ′ E to 38 ° 00 ′ S, 141 ° 00 ′ E), and an area of continuous forest (Rennick State Forest) in south-west Victoria (37°55' S 140°58' E). They were obtained from nest boxes and by trapping (see Chapter four for details). The genotypic data was obtained for nine microsatellite loci. Primer sequences, PCR amplification and screening protocols are given in Chapter four. Preliminary analysis was conducted to determine levels of relatedness between individuals sampled (see Chapter four for the details of the analysis) and remove those considered related, including offspring of glider pairs, siblings and potential half-sibs from the same nest box or within close proximity (up to 200 m). Consequently 87 individuals, including adults and sub-adults, were used in population analyses. Five additional samples from sites further north, at Western Flat, Bordertown and Alaman, were obtained from the Australian Biological Tissue Collection at the South Australian Museum.

5.2.2 Genetic diversity

Tests for departure from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium between loci were performed using the program GENPOP 3.4 (Raymond and Rousset 1995). A probability test based on a Markov chain algorithm (Guo and Thompson 1992) with 10000 dememorizations, 100 batches and 5000 iterations were

86 Genetic diversity and population structure conducted at each combination of locus and population. The resultant P values were adjusted for multiple tests via the sequential Bonferroni method (Rice 1989). Observed

(H O) and expected heterozygosity (H E) (Nei 1978) for each population was calculated in POPGENE version 1.32 (Yeh et al. 1997). Allelic diversity (average number of alleles per locus), allelic richness (allelic diversity corrected for sample size) and levels of inbreeding (FIS ) were estimated for all populations. The significance of FIS values were tested by permuting the alleles within samples over all loci in each population in the program FSTAT 2.9.3.2 (Goudet 2001), using 1000 permutations. Bonferroni correction was applied to the resultant P values. Differences in allelic diversity, allelic richness and heterozygosity (H E) among populations were assessed using one-way analysis of variance (ANOVA) and post hoc Tukey tests in SPSS version 13.0 (SPSS, 2004. Inc). Linear regression was used to determine if there was a relationship between patch size and allelic richness or heterozygosity.

5.2.3 Population structure

To determine differences in genetic variability between populations and to assess whether habitat fragmentation may have contributed to genetic differentiation between the populations, a hierarchical analysis of molecular variance (AMOVA) (Excoffier et al. 1992) was conducted using GenAlEX6 (Peakall and Smouse 2006). Pairwise estimations of F ST were used to evaluate the genetic differentiation between each pair of populations and were tested for significance using 10000 permutations.

The Bayesian clustering method in the program STRUCTURE version 2.1 (Pritchard et al. 2000) was used to determine whether populations of sugar gliders in the region could be subdivided into genetically distinct groups, and whether the structure of these groups reflected the population structure of the region The program attempts to find population groupings that minimize Hardy-Weinberg and linkage disequilibrium by assigning individuals to subpopulations on the basis of their genotypes, while simultaneously estimating population allele frequencies (Pritchard et al. 2000). An admixture ancestry model was chosen based on the history of the region and connectivity of the populations prior to habitat fragmentation. The option of correlated allele frequencies between populations was used, as this configuration is considered best by Falush et al . (2003) in cases of subtle population structure. Alpha was inferred from the data and other parameters such as Lambda were set to their default values. No prior population

87 Genetic diversity and population structure information was provided. The length of the initial burn-in period was set to 100,000 iterations followed by a run of 500,000 Markov chain Monte Carlo iterations. Five independent runs each of K (optimal number of populations) from 1 to 18 (two more than the actual number of populations) were performed and the mean estimated posterior probability Ln P(X/K) was calculated for each value of K. The optimal value of K was assessed using the original method described in Prichard et al. (2000), as well as the more recent method described by Evanno et al. (2005), where the highest K score represents the optimal number of populations.

Data was tested for isolation by distance by comparing genetic distance between populations (as measured by pairwise F ST ) to geographical distance using GenAlEX6 (Peakall and Smouse 2006). Significance was tested using a Mantel test (Mantel 1967).

5.3 Results

5.3.1 Genetic diversity

In total, genotypic data for 92 individuals from 16 populations and nine loci were used in population analyses. A total of 57 alleles were scored across all populations and loci, with the number ranging from three to 11 per locus. Calculations of allelic diversity and allelic richness were performed only on 13 populations, as three populations with only one individual each were excluded. The average population allelic diversity ranged from 2.66 to 7.4. Levels of moderate to high heterozygosity were found within each of these populations, with a mean heterozygosity across all loci and populations of 0.66 (Table 5.1).

There was no significant departure from Hardy Weinberg Equilibrium after the Bonferroni correction for each population. One locus (Petb1) showed some departure from HWE (P = 0.01), however the result was not significant when corrected for the number of tests ( α = 0.005). No significant linkage disequilibrium was observed between 36 pairwise locus combinations.

Overall, there was a significant difference in allelic diversity among populations (F = 3.49, P = 0.001). However, a post hoc Tukey test showed that only six pairwise comparisons were significant. Five of the six significant differences were between the population with the largest number of samples (Deadmans swamp) and five of the

88 Genetic diversity and population structure

smallest populations ( ≤ five samples). A further significant comparison occurred between Rennick State Forest and a small population (Mt Meredith). Comparisons of

allelic richness and unbiased hereozygosity (H E) (Nei 1978) among populations were not significant (F = 1.2, P = 0.43 and F = 0.35, P = 0.8 respectively). No significant relationship was found between patch size and either allelic diversity (r 2 = 0.046, P = 0.48), allelic richness (r 2 = 0.07, P = 0.78) or heterozygosity (r 2 = 0.05, P = 0.6). Despite overall HW equilibrium in populations, positive values of the inbreeding coefficient were evident at nine of the 13 populations and values ranged from 0.007 to 0.13. The 0.007 value was from the large continuous forest at Rennick State Forest. This value was several times smaller than the values found in smaller fragments. Although two small (Paltridges and Topperweins) and one larger population (Deadmans Swamp) had

significant F IS values at the 95% level, none remained significant after corrections were made for multiple tests (k = 9 and P= 0.005); (Table 5.1). Linear regression revealed no relationship between inbreeding coefficient and patch size (r 2 = 0.03, P = 0.56).

Table 5.1 Summary statistics of genetic diversity for P. breviceps in south-eastern South Australia. Values are area, number of samples (n), allelic diversity (AD), allelic richness (AR), observed (HO) and expected (HE) heterozygosity and inbreeding coefficient (FIS ) and probability (P) of FIS values for 13 populations sampled. Numbers are given as mean ± s.e. Numbers in bold are two small and one large populations with significant FIS values before Bonferroni correction for multiple tests (K = 9, P = 0.005). See Fig. 4.1 for the location of patches.

Patch name Area n AD AR HO HE FIS P (ha) Casterton Rd 43 5 3.88 ± 0.67 3.32 ± 0.48 0.65 ± 0.06 0.57 ± 0.06 -0.1 0.93 Bourne 80 9 5.66 ± 1.00 3.79 ± 0.35 0.65 ± 0.04 0.66 ± 0.05 0.062 0.17 Paltridges 116 8 6.33 ± 1.13 4.17 ± 0.41 0.74 ± 0.04 0.72 ± 0.05 0.092 0.047 Topperweins 117 8 6.33 ± 0.98 4.14 ± 0.39 0.69 ± 0.03 0.71 ± 0.03 0.13 0.025 Penola CP 139 5 3.88 ± 0.45 3.82 ± 0.34 0.83 ± 0.07 0.66 ± 0.05 -0.138 0.92 Snowgum 194 7 5.00 ± 0.97 3.70 ± 0.45 0.66 ± 0.07 0.64 ±0.06 0.073 0.13 Western Flat 200 3 3.77 ± 0.64 4.25 ± 0.49 0.79 ± 0.09 0.66 ± 0.07 0.013 0.56 The Heath 204 6 4.4 ± 0.67 3.66 ± 0.36 0.66 ± 0.03 0.68 ± 0.03 0.031 0.33 Mt Meredith 250 3 2.66 ± 0.40 2.87 ± 0.39 0.72 ± 0.09 0.56 ± 0.06 -0.079 0.77 Grundys 260 8 5.1 ± 0.65 3.73 ± 0.33 0.65 ± 0.02 0.71 ± 0.03 0.026 0.35 Deadmans 525 15 7.4 ±1.591 4.01 ± 0.36 0.67 ± 0.03 0.69 ± 0.03 0.078 0.03 Swamp Nangwarry 2216 4 3.66 ± 0.28 3.37 ± 0.26 0.78 ± 0.06 0.64 ± 0.07 -0.165 0.90 Rennick SF 5200 8 6.89 ±1.20 4.15 ± 0.41 0.73 ± 0.04 0.71 ± 0.03 0.007 0.51

89 Genetic diversity and population structure

5.3.2 Population structure

Overall, the level of genetic subdivision (F ST ) among all populations was small, but it was significantly different from zero (F ST = 0.067 ± 0.005; P = 0.002). A large proportion (93%) of the genetic variance was explained by variation within populations, with only 7% among populations. After adjustments were made for multiple tests (Rice 1989) 28 of 78 pairwise comparisons were significant (k = 78, α = 0.0006; Table 5.2). The smallest patch (Casterton Rd) was significantly differentiated from the other 12 populations. Snowgum, a patch embedded in a matrix of pine, also was significantly differentiated from 10 other populations. However, the pairwise FST between this patch and the nearby Rennick State Forest (5 km) was not significant.

One further patch with significant FST values was Deadmans Swamp, a larger patch (525 ha) surrounded mainly by pine plantation and geographically located a fair distance (up to 80 km) from other populations. The effect of surrounding land use was assessed by dividing patches into two groups of agriculture (coded by 1 and 2) and pine plantation (coded by 3, 4 and 5). No significant difference in F ST values was found between the two groups (F ST = 0.06, P = 0.12).

A total of 92 samples from 16 populations were used in the Bayesian clustering analysis. The convergence of the data was evaluated from the values of the summary statistics such as α, F and the likelihood values. At the end of the burn-in phase (100,000 iterations), and throughout the run (500,000 iterations) α was almost constant. The consistency of the estimated probability of the data (Ln P(X/K) across different runs also verified that the chains had converged. The maximal value of the log likelihood of the data was obtained at K = 1 (Ln P(X/K) = -3273) and declined thereafter from K= 2 to 18 (Fig. 5.1). Standard deviations of the log probability estimates were very small, less than 1% of the mean. Using the method of Evanno et al. (2005), a clear mode in K was also observed at K= 1 ( K = 89) and K dropped to 3 after that. Based on these results, the analyses suggest that the optimal number of populations is one.

90

Genetic diversity and population structure

Table 5.2 Pairwise FST (below diagonal) and probability (above diagonal) values based on 10000 permutations between each pair of populations sampled in this study. Probabilities in bold were significant after sequential Bonferroni was applied (P = 0.0006). Population codes are as follow: Cast = Casterton Rd, Boun = Bournes, Palg = Paltridges, Topw = Topperwiens, Penl = Penola Cp, Snwg = Snowgum, Wf = Western Flat, Heth = Heath, Mdth = Mt Meredith, Grnd = Grundys, DmS = Deadmans Swamp, Nang = Nangwarry and Renk = Rennick State Forest. Surrounding land use codes are: 1 = surrounded by grazing land, 2 = ¼ Pinus radiata, 3 = ½ P. radiata , 4 = ¾ P. radiata and 5 = surrounded by P. radiata. c = continuous forest

Surrounding Cast Boun Palg Topw Penl Snwg WF Heth Mdth Grnd DmS Nang Renk Land use 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cast 1 0.124 0.028 0.006 0.010 0.000 0.004 0.005 0.003 0.004 0.000 0.011 0.016 Boun 3 0.114 0.027 0.298 0.004 0.000 0.010 0.160 0.012 0.012 0.004 0.023 0.005 Palg 3 0.140 0.042 0.006 0.008 0.000 0.039 0.028 0.015 0.007 0.002 0.011 0.036 Topw 1 0.161 0.057 0.071 0.069 0.000 0.014 0.004 0.005 0.040 0.000 0.029 0.001 Penl 5 0.082 0.060 0.053 0.071 0.126 0.003 0.000 0.000 0.000 0.000 0.000 0.034 Snwg 1 0.153 0.073 0.063 0.048 0.114 0.091 0.007 0.002 0.019 0.264 0.294 0.012 WF 3 0.145 0.053 0.017 0.036 0.084 0.091 0.094 0.103 0.049 0.000 0.006 0.162 Heth 1 0.240 0.091 0.068 0.072 0.158 0.114 0.155 0.047 0.007 0.000 0.000 0.034 Mdth 3 0.126 0.043 0.039 0.045 0.047 0.083 0.067 0.033 0.086 0.000 0.032 0.171 Grnd 4 0.132 0.053 0.035 0.037 0.093 0.078 0.012 0.059 0.117 0.058 0.006 0.000 DmS c 0.139 0.055 0.048 0.064 0.076 0.116 0.015 0.077 0.158 0.047 0.049 0.001 Nang c 0.097 0.033 0.041 0.028 0.085 0.032 0.064 0.017 0.055 0.013 0.057 0.074 Renk

91 Genetic diversity and population structure

A Mantel test revealed that there was no significant relationship between geographical and genetic distance (R (XY) = -0.003, P = 0.53) across the region. However, small sample sizes in this study precluded further breakdown of data and comparison of patterns of spatial genetic structure within populations or between sexes, which may have provided better resolution of isolation by distance within the region.

-1000

-2000

-3000

-4000

-5000

-6000 EstimatedLn probability

-7000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Number of Populations (K)

Figure 5.1 Log likelihood probability of data (Ln P(X/K) as a function of K for P. breviceps samples from 16 populations.

5.4 Discussion One major objective of conservation management should be to maintain genetic diversity in natural populations to ensure the continued survival, fitness and evolutionary potential of a species (Reed and Frankham 2003). An accurate knowledge of local genetic diversity and population structure can, therefore, provide critical information for assessing the conservation status of populations and establishing the appropriate scale for conservation management strategies (Petit et al. 1998). Genetic diversity and structure in P. breviceps populations were studied here by sampling 13 populations and using nine polymorphic microsatellite loci. Heterozygosity and allelic diversity of sugar gliders at microsatellite loci were moderate (H E = 0.56 to 0.71 and AD = 2.87 to 7.4) compared to a range observed across 24 marsupial species (AD = 1.2 to 12, HE = 0.05 to 0.86, Bowyer et al. 2002). The average heterozygosity (0.66) was higher than those found in species known to suffer range contraction or recent founder events such as the southern (0.43, Houlden et al. 1996), and northern hairy-nosed wombat (0.27, Taylor et al. 1994), but lower than levels observed in undisturbed

92 Genetic diversity and population structure populations such as eastern grey (0.82, Zenger et al. 2003) and allied rock (0.86, Spencer et al. 1997). In order to assess the effects of fragmentation on genetic diversity of these populations, pre-fragmentation samples are necessary, but such information was not available in the current study. However, in a similar investigation, populations of the greater glider ( Petauroides volans ) in remnant patches at Tumut showed evidence of a significant loss of microsatellite genetic diversity relative to pre-fragmentation samples (A. Taylor et al . unpublished data, cited in Banks et al. 2005).

Although there were fewer alleles in populations from smaller patches than large patches in this study, there were no significant differences in either allelic richness or heterozygosity. The differences in the number of alleles are likely to be the effect of sample size. No significant relationship was also found between the size of the patches and either allelic diversity, allelic richness or heterozygosity. Overall, no significant inbreeding effect was detected in the populations studied. However, two small and one larger patch had F IS values significantly greater than zero before applying Bonferroni corrections, and the values were >9 fold larger than the F IS value in a continuous forest

(Rennick State Forest). Pairwise F ST comparisons also revealed that the smallest patch (Casterton Road) was significantly differentiated from other populations. These results in conjunction with some direct evidence of inbreeding between two closely related pairs of gliders (relatedness values of 0.21 and 0.26, see Chapter four for details) suggest that small and isolated populations in the region may potentially be more likely at the risk of inbreeding depression.

An overall small but significant FST was obtained for populations in the region, with AMOVA results showing 7% of the variation was partitioned among populations. However, Bayesian clustering indicated a single cluster (no substructuring) in the absence of prior information on the location of sampled populations. No significant relationship between FST and surrounding land use was detected. However, a small patch (Snowgum) embedded in a matrix of pine was differentiated from 10 of the 12 populations compared. Although data is limited, a non significant FST between Rennick

State Forest and Snowgum, which are in close proximity (5 km), may imply some level of gene flow between these populations. Significant pairwise FST values were also observed between Deadmans Swamp, a population surrounded mainly by pine plantation and geographically distantly located from other populations, and eight other

93 Genetic diversity and population structure populations. However, there was no evidence for isolation-by-distance in populations of P. breviceps in south-eastern South Australia.

Overall, this study revealed some limited evidence for genetic structuring of populations of P. breviceps in the south-east of South Australia. However larger sample sizes from these patches are required to verify these results. The findings of the study also may be affected by the sampling technique, which mainly involved sampling from nest boxes and may not have randomly and evenly covered populations. An alternative explanation for the low genetic substructuring is that anthropological fragmentation is a recent phenomenon in evolutionary time and the final, long-term impacts of fragmentation may not yet have shown in the allelic frequencies of microsatellite loci.

94 Distribution of squirrel gliders in South Australia

6 An extension to the known distribution of the squirrel glider (Petaurus norfolcensis) in Australia

6.1 Preamble

A large section the following chapter has been published in Malekian et al. (2006), Australian Mammalogy 28, 235-238

6.2 Introduction

The squirrel glider (Petaurus norfolcensis) is a small (190-300g), arboreal and nocturnal marsupial. It is very similar in appearance to its more common relative, the sugar glider (Petaurus breviceps). However, it has a longer, more pointed face; longer and narrower ears; a bushier, more softly furred tail and is almost double the weight (Suckling 1983b; Menkhorst 1995). P. norfolcensis inhabits dry sclerophyll forests and woodlands and is absent from rainforests and closed forests (Menkhorst et al. 1988). Compared to P. breviceps, P. norfolcensis is more restricted in distribution and less studied. It is sparsely distributed along the east coast of Australia, from Victoria to north Queensland (Fig. 6.1). This hollow dependent species is listed as Threatened in New South Wales and Victoria but considered Endangered (presumed extinct) under Schedule 7 of the South Australian National Parks and Wildlife Act (1972).

NOTE: This figure is included on page 95 in the print copy of the thesis held in the University of Adelaide Library.

Figure 6.1 Distribution map of P. norfolcensis in Australia prior to this study. Map from Menkhorst and Knight (2004).

The only known record of P. norfolcensis from South Australia is a single specimen held in the South Australian Museum from Bordertown in 1939 (Carthew 2004). Recently, however, two suspected P. norfolcensis specimens were found in the SA

95 Distribution of squirrel gliders in South Australia

Museum collection during a broad genetic study of the genus Petaurus and more specifically, P. breviceps in South Australia. The specimens, both caught by cats, came from localities in the upper south-east of the state: Western Flat (36º 32 ′ S and 140º 45 ′ E), collected in 1993 and Bordertown (7 km west of the town; 36º 18 ′ S and 140º 50 ′ E), collected in 1991 (Fig. 6.2).

Figure 6.2 Sketch map of upper south-east of South Australia. Black dots show the location of suspected P. norfolcensis samples in SA.

Traditional morphometric methods and more recently molecular techniques have been developed for species identification. In the glider genus Petaurus , morphological characters such as colour and body size, as well as skull parameters have been used to distinguish and describe species (e.g. Alexander 1981; Ziegler 1981; Van Dyck 1993; Quin et al. 1996b). In particular, skull parameters have been used to differentiate P. breviceps and P. norfolcensis by a number of researchers. For example, Quin et al. (1996) found a strong positive correlation between condylobasal length (CBL) and maximum zygomatic breadth (MZB) in both species. The CBL/MZB ratio was significantly greater in the squirrel glider than in the sugar glider. They, therefore, relied on skull length as an index of body size (Quin et al. 1996b).

96 Distribution of squirrel gliders in South Australia

Molecular based methods for species identification are also well established (e.g. Martin 1993; Baker and Palumbi 1994; Alacs et al. 2003) and have been used for many species, including marsupials (e.g. Alacs et al. 2003). Several approaches are available to identify species based on analysis of proteins and DNA. A powerful approach for resolving taxonomic uncertainties is to survey nucleotide sequence variation in mitochondrial DNA (mtDNA) (Martin 1993). Because mtDNA evolves rapidly, it is possible to distinguish closely related as well as distantly related species (Martin 1993; Baker and Palumbi 1994). Furthermore, a large number of mtDNA sequences already exist for most glider species (Osborne and Christidis 2001; Brown et al. 2006), providing a background of data to assess species boundaries using robust phylogenetic methods.

In this study, both morphometric and molecular techniques were used to identify the suspected squirrel glider samples from South Australia. This chapter describes the genetic discovery of the squirrel glider in South Australia and the consequent field investigations for the species in the state. It also assesses the accuracy of the skull parameters in distinguishing this species from its similar relative the sugar glider. Since the next nearest locality for known P. norfolcensis is the eastern side of the Grampians, several hundred kilometres east of the current potential population in SA (Menkhorst 1995), I also wish to explore whether the SA population is an isolated population or a continuum that had not previously been recognised, perhaps, because of the difficulties in distinguishing the two species in the field.

6.3 Material and methods

6.3.1 Genetic investigation

Tissue samples from suspected squirrel glider specimens were used in genetic analyses. A 700bp fragment of NADH dehydrogenase subunit 2 ( ND2 ) was PCR-amplified and sequenced, using mmND2.1 and mrND2c primers as described in Osborne and Christidis (2001). Sequences were obtained from the two museum specimens (27042 and 27085), two glider specimens obtained in 2006 in Bordertown (85784 and 85785) (see below), two known P. norfolcensis samples from populations in New South Wales, and a single sequence from a Victorian P. norfolcensis from GenBank (accession number AF300995). A number of P. breviceps samples obtained across the range of the

97 Distribution of squirrel gliders in South Australia species in Australia (see Chapter three for details) were also included. To confirm the identity of the suspected samples among Australian gliding petaurids, sequences of yellow-bellied glider ( Petaurus australis ) from Victoria and mahogany glider ( Petaurus gracilis ) from Queensland were added to the analyses. The greater glider ( Petauroides volans ) was used as an outgroup for phylogenetic analyses (GenBank accession number AF300997). The sequences were aligned using Clustal X (version 1.83) and checked visually. Phylogenetic relationships between mtDNA haplotypes for known glider species from Australia and unknown samples were assessed by Neighbour Joining (NJ) (HKY85 distance) using PAUP (version 4.0 b10) (Swofford 2002). Robustness of this analysis was tested using 1000 bootstrap pseudoreplicates.

6.3.2 Field investigations

A field trip to Bordertown and Western Flat was conducted in February 2006, in order to assess habitat at the collection site of museum specimens and determine whether the sites were occupied by gliders. Trees at the sites were assessed during daylight for flowering and incisions/or any sign of animal presence. Spotlighting was conducted over two consecutive nights at the sites using 55W hand-held spotlights connected to 12V sealed lead acid batteries. Observations started before dusk and were followed by about an hour of spotlighting. Several observers watched and listened for calls or rustling that might be an indicator of animals. The location of any animals detected was entered into a Garmin Global Positioning System (GPS).

6.3.3 Morphometric assessments

To further investigate the identity of the SA specimens, a morphological assessment of the available voucher specimens of the three samples (two museum specimens and one carcass (85784) found in Bordertown) was carried out. The three specimens were checked and measured (carcass only) for the external characters such as fur colour and body size. The fourth suspected squirrel glider was a young orphaned animal (85785) from Bordertown. The skull measurements of these animals were not available.

To test the accuracy of skull parameters in species identification in these two species, skull measurements were also taken from 41 sugar glider and 12 squirrel glider skulls in collections from the South Australian Museum and Victorian Museum. Catalogue numbers for those samples are given in Appendix 8. The age of the animals was

98 Distribution of squirrel gliders in South Australia assessed roughly from the amount of tooth wear on the lower and upper incisors and only adults were included in the analyses. All measurements were taken with vernier callipers to the nearest 0.1 mm. Only cranial characters could be used, as few complete skeletons were available. Ten skull parameters (Fig. 6.3) were chosen for use according to several criteria: (i) measurements were easily taken and repeatable, (ii) measurements were relatively independent and covered most areas of the skull, and (iii) characters were preserved in most of the skulls examined.

Figure 6.3 Parameters used in morphometric analysis: 1. Condylobasal length; 2. maximum zygomatic breadth; 3. rostrum height; 4. upper molar tooth raw length; 5. upper tooth raw length; 6. lower molar raw length; 7. rostral width between upper canines; 8. width of ascending ramus; 9. upper incisor- premolar row; 10. interorbital width

Statistical analyses were conducted in SPSS version 13.0 (SPSS.Inc 2004). Summary statistics of skull parameters were generated separately for both species. An Analysis of Variance (ANOVA) was used to test the significance of these variables between sugar gliders and squirrel gliders. Means of CBL, MZB and CBL/MZB ratios were calculated for each species and a t-test was used to test the significance of these variables. A bivariate correlation analysis using Pearson coefficient (e.g. Quin et al. 1996b) was used to test for significant relationships between CBL and MZB in both species. The bivariate analyses used condylobasal length, an index of absolute skull size, as the independent (X) variable. Principle Components Analysis (PCA) was also used as a

99 Distribution of squirrel gliders in South Australia multivariate analysis to identify underlying variables that explain the pattern of correlations within the set of variables (Rao 1964).

Measurements of P. breviceps skulls taken from museum specimens sourced from the intervening distance between current localities in western SA (36º 00 ′ S and 140º 50 ′ E) and the known far west population in Victoria (37º 00 ′ S and 142º 34 ′ E) were used in a second analysis as unknown species. A Discriminant Analysis (Lachenbruch 1975) was conducted to test whether the skull variables were able to be assigned to either P. breviceps or P. norfolcensis groups. This analysis builds a predictive model of group membership based on observed characteristics of each case. The procedure generates a discriminant function based on linear combinations of the predictor variables that provide the best discrimination between the groups (Lachenbruch 1975). The functions are generated from a sample of cases for which group membership is known. The functions can then be applied to new cases with measurements for the predictor variables, but unknown group membership.

6.4 Results

6.4.1 Genetic investigation

The sequenced fragments of three samples, including Bordertown (27042 and 85785) and Western Flat (27085), were consistently and strongly associated with the three samples forming a monophyletic group containing known P. norfolcensis and P. gracilis to the exclusion of other glider samples, with 100% bootstrap support (Fig. 6.4). P. gracilis appeared to be a sister clade to P. norfolcensis with 61% bootstrap support. The remaining Bordertown (85784 ) sample grouped within a clade containing P. breviceps samples, suggesting the presence of both species in this region. Among the haplotypes within P. norfolcensis, sequence divergence (as determined using the HKY85 model) ranged from 0.2 to 1%. This group was separated from P. gracilis by 2% nucleotide diversity. Sequence divergence between the suspected haplotypes and other glider species averaged 13% for P. breviceps and 24% for P. australis (Table 6.1).

100 Distribution of squirrel gliders in South Australia

Figure 6.4 Neighbour-Joining phylogram from 700 base pairs of ND2 sequenced from four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown and Western Flat. Bootstrap values are shown above branches. Australian Biological Tissue Collection (ABTC) numbers, from the South Australian Museum, are given in parenthesis. Accession numbers for sequences of P. norfolcensis VIC and Petauroides volans are given in the text.

Table 6.1 Pairwise distances (HKY model) between four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown and Western Flat along with the outgroup.

1 2 3 4 5 6 7 8 9 10 11 P. australis - 23.3 22.9 22.9 22.9 23.3 23.1 23.1 22.5 22.7 32.5 P. norfolcensis _NSW - 0.5 0.5 0.5 1.1 13.2 13.2 13.2 13.2 33.7 Bordertown - 0.00 0.00 1.86 13.6 13.6 13.6 13.6 33.2 P. norfolcensis _VIC - 0.00 1.86 13.6 13.6 13.6 13.6 33.2 WesternFlat - 1.86 13.6 13.6 13.6 13.6 33.2 P. gracilis - 13.6 13.6 13.6 13.6 33.7 P. breviceps _SA - 0.5 1.4 2.00 34.2 P. breviceps _VIC - 1.7 2.2 34.7 P. breviceps _NSW - 1.5 33.8 P. breviceps _QLD - 34.1 Petauroides volans -

6.4.2 Field investigation

Sites assesed in Bordertown and Western Flat were roadsides of open woodlands, a few hundred meters wide (Fig 6.6). One site in Western Flat was investigated. The dominant species at this site was Brown Stringybark (Eucalyptus baxteri ), which formed an open canopy and had a sparse understorey of Silver Banksia ( Banksia marginata ) and a ground cover of grasses and herbs. E. baxteri was in flower during the time of visit

101 Distribution of squirrel gliders in South Australia

(February 2006). Three sites in Bordertown were investigated, including roadside habitat in Canawigra Rd, Poocher Swamp Game Reserve and Canawigra Swamp. Two tree species, including Blue Gum (Eucalyptus globulus) and Grey Gum (Eucalyptus moluccana) were dominant in Canawigra Rd. The dominant eucalypt species at the other two sites was Red Gum (Eucalyptus seeana).

Gliders were detected at two road side sites in Western Flat and Bordertown. In Western Flat, gliders were detected in the canopy of E. baxteri feeding on the pollen and nectar (three individuals) and on a gum tree (one individual). Six gliders were also detected in the roadside habitat in Canawigra Rd. However, the species could not be identified precisely at this time, as they were high in the canopy. Therefore the presence of P. norfolcensis is yet to be confirmed by trapping. Other species of arboreal marsupials were also detected including common (Trichosurus vulpecula). The presence of a barn owl (Tyto alba) and a southern boobook (Ninox boobook) were also noted.

Further field investigation was carried out in the Bordertown area in the following month, providing two additional glider specimens. One was a carcass (ABTC 85784) and the other one was a sample from an orphaned animal found near Bordertown (85785) (Fig. 6.5). These samples were also included in the genetic analyses.

NOTE: This figure is included on page 102 in the print copy of the thesis held in the University of Adelaide Library.

Figure 6.5 The first live suspected squirrel glider in South Australia. The animal is a juvenile. (Photo: Dan Harley).

102 Distribution of squirrel gliders in South Australia

Figure 6.6 Roadside habitat in Western Flat.

6.4.3 Morphometric assessments

The Bordertown (27042) museum specimen showed the main morphological characteristics of P. norfolcensis as described in Smith and Winter (1984) and Suckling (1983). It had a bigger and broader head compared to P. breviceps , a more pointed face, a very fluffy tail and white-creamy fur under the body. The Western Flat (27085) museum specimen showed the same characteristics with the exception of having grey fur under the body, which might be a result of age or individual differences in coat colour, as reported in other glider species (e.g. P. australis , Russell 1984).

The carcass of the recent Bordertown animal (85784) was also checked and measured. It showed the characteristics of P. breviceps with brown-grey fur above, pale-grey under the body and black tail with no white tip. These morphometric assessments showed the occurrence of both P. norfolcensis and P. breviceps from the same localities in South Australia. The fourth animal was a juvenile (85785), however in appearance it was similar to P. breviceps.

CBL/MZB ratios for both species support the general belief that live P. norfolcensis has a longer and more pointed face than P. breviceps. The ratio averaged 1.56 for P.

103 Distribution of squirrel gliders in South Australia norfolcensis and 1.45 for P.breviceps . A two-sample t-test revealed that the CBL/MZB ratio was significantly greater in P. norfolcensis than P. breviceps (t = 1.885, df = 52, P= 0.045). A bivariate correlation analysis using Pearson coefficient also showed a significant positive relationship between CBL and MZB in both species (Table 6.2 and Fig. 6.7). Sample size was insufficient to investigate the effects of sex and age on average skull size for both species. On the multivariate plot the two species were completely differentiated by skull parameters (Fig. 6.8). However, a second analysis on P. breviceps revealed neither a sexual dimorphism nor a consistent geographic variability for any of the morphometric characters examined (Fig. 6.9). In plots from both analyses the sexes were overlapping (results not shown) and were, therefore, combined for geographic analyses. When examined according to geographic origin, a single specimen of P. breviceps from Papua New Guinea separated out. Although there are some apparent outliers on the right hand side of the plot, specimens from each of six regions within Australia (Qld, NSW, Vic, SA, Tas, and NT) clustered together (Fig. 6.8). Small sample sizes precluded further breakdown of data into age classes (e.g. Quin et al. 1996b), which may have provided better resolution of variation between sexes and thus between regions. Summary statistics for the ten parameters examined in this study are given in Table 6.3, with all showing significant differences between the species.

Discriminant analysis successfully classified the skulls obtained from the intervening distance (between current localities in western SA and the known far west population in Victoria) as P. breviceps , suggesting the accuracy of the skull variables in distinguishing these species.

Table 6.2 Average and range of CBL: MZB ratio for P. breviceps and P. norfolcensis . Pearson correlation coefficients (r p) for correlation analysis comparing both species and the Probability (P) values are presented.

Correlation coefficient Species N Mean CBL:MZB Range P value (r p)

P. breviceps 40 1.45 1.2-1.6 0.78 0.000

P. norfolcensis 12 1.56 1.45-1.9 0.89 0.000

104 Distribution of squirrel gliders in South Australia

species P.breviceps 30 P.norfolcensis

25 MZB

20

15

30.0 35.0 40.0 45.0 CBL

Figure 6.7 Bivariate plot of Condylobasal length (CBL) over maximum zygomatic breadth (MZB) for P. breviceps ( ○) (n = 41) and P. norfolcensis ( ●) (n =11)

.

2.00000 species P. breviceps P. norfolcensis

0.00000

-2.00000 PCA2

-4.00000

-6.00000

-4.00000 -2.00000 0.00000 2.00000 4.00000 PCA1

Figure 6.8 Relationship between the first (PCA1) and second (PCA2) components of the Principle Component Analysis. Ten characters measured on 50 skulls of both species are included.

105 Distribution o f squirrel gliders in South Australia

2.00000 location NSW NT 1.00000 PNG QLD 0.00000 SA TAS -1.00000 VIC PCA1

-2.00000

-3.00000

-4.00000

-3.00000 -2.00000 -1.00000 0.00000 1.00000 2.00000 PCA2

Figure 6.9 Relationship between the first (PCA1) and second (PCA2) components of the Principle Component Analysis. Ten characters measured on 39 skulls of both sexes of P. breviceps are included. Qld = Queensland, NSW = New South Wales, VIC = Victoria, SA = South Australia, Tas = Tasmania, NT = Northern Territory and PNG = Papua New Guinea.

Table 6.3 Average skull parameters and summary statistics for P. norfolcensis (1) and P. breviceps (2). Analyses of variance (F) between two species and probability values (P) at the ten skull parameters examined.

Skull parameters species n Mean ± SE Range F P 1 11 44.6 ± 0.48 42-47.5 Condylobasal length 226.5 0.000 2 41 37.1 ± 0.22 33-39.5 1 12 29.1 ± 0.64 24-33 maximum zygomatic breadth 69.5 0.000 2 41 24.52 ± 0.23 20.2-27 Rostrum h 1 12 10.3 ± 0.17 9.3-11 46 0.000 2 39 8.5 ± 0.87 7-10.5 Upper molar L 1 10 8.6 ± 2.6 8.5-9.8 7.7 0.008 2 40 7.3 ± 0.7 5.2-8.5 Lower molar L 1 10 8.7 ± 0.4 8-9.3 57.8 0.000 2 40 7.3 ± 0.6 5.7-9 Upper tooth L 1 10 22 ± 1.3 19.2-23.5 156.5 0.000 2 39 17.4 ± 0.9 14-18.7 Upperincisor-premoalr 1 10 13.9 ± 1.3 11.5-16 23.3 0.000 2 39 9.2 ± 2.9 7.5-12.1 1 10 8.8 ± 0.9 7.3-10.2 Rostral width 56 0.000 2 39 6.8 ± 0.7 5.4-8.9 1 12 8.5 ± 0.9 7.1-10 Inter-orbital 44 0.000 2 40 6.9 ± 0.7 5.1-8.4 1 12 10.9 ± 0.7 9.8-12 Ascending armus 134 0.000 2 40 8.4 ± 0.6 7-9.9

106 Distribution o f squirrel gliders in South Australia

6.5 Discussion This study confirmed the occurrence of P. norfolcensis in South Australia and significantly extended the current distribution of P. norfolcensis several hundred kilometres to the west. The molecular marker ( ND2 ) strongly and consistently associated the three South Australian suspected specimens with known squirrel gliders. The result further showed the occurrence of both P. breviceps and P. norfolcensis in the Bordertown area. Preliminary field investigation in Bordertown and Western Flat areas also identified Petaurus species by spotlighting potential habitats. However, the identity of the species in different parts of habitat is yet to be confirmed through trapping surveys. P. norfolcensis on mainland Australia is broadly sympatric with P. breviceps and both species have been recorded together at various sites in Victoria, New South Wales and Queensland (Menkhorst et al. 1988; Quin 1995; Traill and Lill 1997; Smith and Murray 2003; Rowston and Catterall 2004). Both species have similarities in diet (Smith and Ganzhorn 1996) and habitat requirements, such as tree hollows (Traill and Lill 1997), although habitat partitioning may be occurring (e.g. Rowston and Catterall 2004). Detailed analysis of populations and habitat preferences were beyond the scope of this study, although they need to be explored in future investigations.

Results of this study were also consistent with the finding of Quin et al. (1996) which used CBL: MZB ratio as a taxonomic measurement for the species. The species were divergent for the skull characters and in the western part of the range and this can be used in the future for species identification. Although no P. norfolcensis skull or skin was found from the intervening region between SA and eastern Grampians in Victoria in museum records, due to the small sample size, the potential presence of the species in the intervening region can not be ruled out. Further research is required to investigate potential habitats of P. norfolcensis .

Surveys in Victoria have shown that squirrel gliders were often patchily distributed (Menkhorst et al. 1988 and Emison et. al . 1984, cited in Menkhorst 1988). This is presumably due to removal of most of the native vegetation over the past 100 years and, therefore, lack of interconnecting habitat corridors. In Victoria, remaining P. norfolcensis habitats tend to be in areas of open-forest or woodlands that have been retained because they were of greater value for timber production than for agriculture, or in narrow belts of eucalypt left standing along roadsides (Menkhorst et al. 1988).

107 Distribution o f squirrel gliders in South Australia

Studies have shown that remnant roadsides and creek-side woodlands are important parts of P. norfolcensis habitat and such areas might be crucial for its survival (e.g. van der Ree 2002). Potential habitat for P. norfolcensis in south-east of SA also consists of small isolated patches and roadsides. The extensive clearing of productive habitat in this region has reduced the amount of available habitat for possum and gliders to small isolated patches and roadsides which are often degraded (Croft et al. 1999). Populations in these small remnants may face extinction as a result of small population size and lack of re-colonization opportunities. These remnant patches and roadside areas therefore need to be conserved from further contraction and degradation.

108 Concluding discussion

7 Concluding discussion

In this chapter, I bring together the results of each chapter and discuss how they may contribute to conservation management of gliding petaurids. I first review the aims of the study, and then give an overview of the major results and their implications for conservation. Finally, I outline the limitations of the study and point out recommendations for further research.

7.1 Review of aims This project aimed to:

• investigate evolutionary relationships of Petaurus species

• examine the phylogeographic structure of P. breviceps and explore the effect of past history on genetic diversity within the species

• investigate nest-box use, social structure and the mating system of P. breviceps in fragmented habitats

• assess genetic diversity and the population structure of P. breviceps in fragmented habitats.

7.2 Evolutionary relationships of Petaurus species In prioritizing taxa and habitats for conservation we seek to maximize both representation and persistence of diversity. Conservation requires an accurate targeting of resources together with information on population processes. Information from gene phylogenies can make significant contributions to conservation through the more rigorous definition of evolutionary lineages and by contributing to a better understanding of historical population processes (Moritz 1995). This study aimed to establish a better understanding of the phylogenetic relationships of Petaurus species and assess genetic diversity within the genus. Two mitochondrial genes ( ND2 and ND4 ) and a nuclear gene marker ( ω-globin ) were screened for sequence variation in samples obtained from across the distribution of Petaurus species, including Australia, New Guinea and its surrounding islands. Phylogenetic analyses of ND2 confirmed the monophyly of the genus Petaurus and revealed a strong sister group relationship between the yellow-bellied glider ( P. australis ) and a second group consisting of all other Petaurus species. The analyses showed that currently recognised species of

109 Concluding discussion

Petaurus , with the exception of P. gracilis , were associated with divergent mtDNA clades. P. gracilis was a unique haplotype within a clade containing P. norfolcensis . The analyses also revealed considerable mtDNA diversity within P. breviceps . The existence of at least seven distinct and divergent (7 to 17.5 %) mtDNA lineages was strongly supported, with two lineages located in Australia and at least five lineages in New Guinea and its surrounded islands. Species clearly require management as separate units. However, distinct phylogenetic lineages within the species indicate long-term evolutionary splits that potentially can lead to speciation. These evolutionary lineages with significant genetic differentiation should potentially be considered as separate evolutionarily significant units (ESUs) (Moritz 1994a; Fraser and Bernatchez 2001). The results further indicated that the current morphological classification does not reflect major population genetic divisions present within the species. These findings highlight a need for revising taxonomy within P. breviceps and defining units for conservation.

7.3 Phylogeography and population differentiation within P. breviceps in Australia. Population structure and current patterns of gene flow among populations of P. breviceps in Australia were further examined using phylogeographic approaches to explore the potential causes of geographic variations within the species. The phylogenetic analyses of both mitochondrial DNA and the ω-globin gene datasets provided evidence for the existence of two divergent clades that are distributed over distinct geographical regions. One clade of hapotypes was distributed over the northern part of New South Wales and south-eastern Queensland while, a second clade was distributed over the remainder of the distribution of the species including, South Australia, Victoria, southern New South Wales and northern Queensland. Population structure analyses also revealed significant genetic structuring in sugar gliders across Australia, with the presence of four distinct genetic groups, including SA/Vic, sNSW, nQld and nNSW/sQLD being supported by mtDNA and the nuclear marker. NCA analyses found significant associations in the spatial distribution of haplotypes. Patterns of isolation by distance and past fragmentation, which were identified for sugar glider populations, were consistent with a more continuous historical distribution of forests along the eastern seaboard of Australia. Evidence of two divergent evolutionary lineages supported by both mtDNA and nuclear markers suggest that gene flow has

110 Concluding discussion been restricted for a considerable period of time between these populations, supporting their status as separate ESUs under both the Fraser and Bernatchez (2001) and Moritz (1994) criteria. The results revealed that the current taxonomy of the species within Australia does not reflect the underlying genetic diversity and suggest the flexible ESU concept may provide an appropriate approach for prioritizing units for conservation within P. breviceps until the taxonomy within the species becomes resolved. The Pliocene divergence dates estimated for the two major mtDNA clades in Australia suggested that environment and climate changes which occurred during the Pliocene may have facilitated this diversification. This pattern of restricted gene flow and fragmentation may also be due to the development of physical barriers to gene flow between populations. In NSW, in particular, the western slope of the Great Dividing Range (GDR) may have acted as a historical barrier to gene flow across the GDR.

Given these results, it is recommended that a revised morphometric analysis be carried out to determine whether the two major mtDNA/nuclear clades represent distinct taxa at the species level.

7.4 Nest box-use social structure and mating system of P. breviceps in fragmented habitats The continuing growth of human populations has resulted in fragmentation of natural habitats. Habitat fragmentation is considered a major threat to forest dependent species such as gliders, as it has the potential to lead to isolation and extinction of small populations. Obtaining empirical knowledge about species life history, such as social structure and mating system, are important in managing species in fragmented habitats. In this part of my study several aspects of life history characteristics of P. breviceps were explored in fragmented habitats. The networks of nest boxes were used to investigate site occupancy of P. breviceps and collect samples for genetic analyses of population structure and mating system of the species within fragmented habitats in south-eastern South Australia. The occupancy rate of nest boxes was, overall, high and several species of marsupials occupied nest boxes, suggesting an overall low availability of natural hollows in the region and the importance of managing habitats from further degradation. The formation and development of hollows suitable for occupancy by arboreal marsupials is a long process and may take several hundreds of years (Lindenmayer et al. 1993b). It is also suggested that the number of trees with

111 Concluding discussion hollows is more important than the number of hollows itself; probably because arboreal marsupials prefer not to share the same tree when denning (Lindenmayer et al. 1990). Although nest boxes represent an alternative to natural hollows where they are scarce, they should not be viewed as a complete replacement to natural hollows because they neither reflect the abundance and diversity of natural hollows, nor provide the other benefits of wood decay to forest and woodland ecosystems (Gibbons and Lindenmayer 2002).

Petaurus breviceps was one species that regularly used nest boxes in the region. However, occupancy rates and group sizes were higher in larger patches (> 200 ha). This is presumably due to more resource availability in larger patches. Communal nests consisted of two to seven gliders, and these were often close relatives, including parents with their offspring. Parentage analyses provided some evidence for a polygamous mating system within fragmented habitats, with a number of males found to have fathered offspring from multiple female partners and females with multiple male partners. Some evidence of inbreeding also was found within a small and isolated patch. Population genetics theory predicts that small, isolated populations experience increased random genetic drift and inbreeding as a result of reduced gene flow (Wright 1969; Barrett and Charlesworth 1991). This may result in the depletion of genetic diversity, inbreeding depression and reduced fitness and may ultimately cause local extinction (Frankham 2005). Establishing corridors of narrow strips of favoured habitats and linking isolated patches may help mitigate against genetic loss in small populations.

7.5 Genetic diversity and population structure of P. breviceps A further aim of the study was to investigate genetic diversity and population structure of P. breviceps within fragmented habitats and whether habitat fragmentation has led to population differentiation in the region. On average, a moderate level of genetic diversity at microsatellite loci was found for populations of gliders within fragmented habitats. An overall significant F ST value suggested that gene flow was restricted between some of these populations. In a number of cases, smaller and isolated patches showed significant differentiation from other patches which may have resulted from genetic drift acting more quickly to differentiate the small populations. However, the overall result revealed little sub-structuring between populations in the region. This may suggest that anthropological fragmentation in the region is a recent phenomenon in

112 Concluding discussion evolutionary time and the final, long-term impacts of fragmentation on population structure may not yet have shown. Findings of the study, however, may be affected by small sample sizes or sampling technique which did not randomly and evenly cover each population. Therefore these results should be verified by larger sample sizes from populations in the region

7.6 Limitations of the study Small sample sizes are often an issue in ecological and genetic studies. Most samples used in this project were museum specimens or obtained from nest boxes and live trappings. Sample sizes were limited because of the difficulty of trapping gliders in tall eucalypt forests, which leads to low trap success rates. These difficulties are also compounded by the arboreal, cryptic and nocturnal natures of gliders and low population densities. Furthermore, suitable samples for DNA extraction were poorly available from museum tissue collections around Australia. The results of the phylogeographic analyses of P. breviceps could be more comprehensive if more samples from southern Queensland and New South Wales were available. This could help to define the boundaries of the two major evolutionary lineages found within P. breviceps in Australia. Small sample sizes also preclude a comparison between fragments and continuous forests. The findings of this study only reflect social organisation and group structure of P. breviceps in fragmented habitats and do not necessarily equate to those of a continuous forest. Apart from small sample sizes, non random sampling of P. brevicesps populations may have also affected the results of genetic diversity and population structure of the species. Pre-fragmentation samples which could provide a comparison of genetic diversity before and after the fragmentation were not available in the current study.

7.7 Further research The conservation and management of species largely depends on a detailed knowledge of distributional patterns, population structure and status and habitat requirements of species. The study has helped to address several gaps in our knowledge about genetic diversity and evolution of Petaurus species. It is one of the first to investigate genetic diversity and structure of a gliding petaurid in fragmented habitats. While this has given us important insights into phylogenetic relationships of Petaurus species, as well as social structure and mating system of P. breviceps , further research is required to

113 Concluding discussion investigate some of the issues raised in this study. The most important of these are outlined below.

Clarification of the taxonomic issues raised in this study clearly awaits analysis of morphometric characters in conjunction with additional molecular data. Morphological examinations of sugar glider specimens across the range in Australia and New Guinea may help elucidating subspecific and specific status of several populations within P. breviceps represented by distinct mtDNA and, in some cases, nuclear DNA markers. Sampling additional sites in southern Queensland and New South Wales is also required as a means of elucidating boundaries of the two major evolutionary lineages found in Australia. While molecular phylogenies can recover the patterns of ancestry and descent that gave rise to species or lineages, collecting ecological data (e.g. habitat requirements) is also essential for revealing ecological exchangeability and adaptive potential of populations of P. breviceps .

The identity of the P. breviceps population from the Northern Territory remains unclear in this study. Although mitochondrial data classified them as P. norfolcensis , the nuclear marker did not have enough variation to separate the two species. Further sampling of these populations in conjunction with using other nuclear markers with higher variability, such as microsatellites, may help to resolve whether NT populations are P. norfolcensis or P. breviceps that have retained an ancestral mtDNA.

The current knowledge of the effect of habitat fragmentation on arboreal marsupials is limited. Furthermore, the effect of fragmentation on inter-patch processes, such as social structure and mating systems of species are even less known. Within a species, comparisons of populations found in both continuous and fragmented habitats are of particular value. These comparisons allow an assessment of the impact of fragmentation on population dynamics and social organization. In this study limited samples from the continuous forest at Rennick State Forest did not provide such a comparison. Therefore more research focusing on the continuous forest is required to allow a comparison of the social structure and mating system of the species between fragments and continuous forests. The research would also benefit from the development of additional genetic markers to help distinguish parentage in cases where related females and males are found within the same social group.

114 Concluding discussion

Little is known about the dispersal ability of gliders and whether they are able to cross exotic pine plantations to access to suitable habitats. Further research is required to obtain an accurate knowledge of local genetic diversity and gene flow between populations in the fragmented habitats. This information is critical for determining the scale of conservation management and which populations may benefit from the development of habitat corridors. Comparative studies using species with different life style characteristics such as size, diet, breeding strategies and type of locomotion also help to understand which trait may make species vulnerable or resilient to genetic diversity loss following habitat changes.

115 References

References

Adam P, 1992. ' Australian Rainforests .' (Oxford University Press: Melbourne)

Alacs E, Alpers D, de Tores PJ, Dillon M, Spencer PBS, 2003. Identifying the presence of ( Setonix brachyurus ) and other macropods using cytochrome b analyses from faeces. Wildlife Research 30, 41-47.

Alexander JSA, 1981. The status of the squirrel glider, Petaurus norfolcensis (Marsupialia: Petauridae) in Victoria. Honours thesis, La Trobe University.

Arbogast BS, Kenagy GJ, 2001. Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography 28, 819-825.

Archer M, 1984. The Australian marsupial radiation. In 'Vertebrate Zoogeography and Evolution in Australasia'. (Eds M Archer and G Clayton) pp. 633-808. (Hesperian Press: Carlisle, Australia)

Archer M, Godthelp H, Hand SJ, 1994. ' Riversleigh: the story of animals in ancient rainforests of inland Australia. ' ( Reed Books: Sydney)

Avise JC, 2000. ' Phylogeography, The History and Formation of Species .' (Harvard University Press, Cambridge.)

Avise JC, Walker D, 1998. Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London Series B- Biological Sciences 265, 457-463.

Axelrod DI, Raven PH, 1982. Paleobiogeography and origin of the New Guinea flora. In 'Biogeography and Ecology of New Guinea'. (Ed. JL Gressitt) pp. 919–941. (W. Junk, The Hague)

Baker CS, Palumbi SR, 1994. Which whales are hunted? A molecular genetic approach to monitoring whaling. Science 265, 1538-1539.

Banks SC, Ward SJ, Lindenmayer DB, Finlayson GR, Lawson SJ, Taylor AC, 2005. The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis . Molecular Ecology 14, 1789- 1801.

Barrett SCH, Charlesworth D, 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522-524.

Baverstock PR, Krieg M, Birrell J, 1990. Evolutionary relationships of Australian marsupials as assessed by albumin immunology. Australian Journal of Zoology 37, 273 - 287.

Bennett AF, 1987. Conservation of mammals within a fragmented forest environment: the contributions of insular biogeography and autecology. In 'Nature Conservation: The Role of Remnants of Native Vegetation'. (Ed. DA Saunders)

116 References pp. 41-52. (Surrey Beatty and Sons, Chipping Norton, New South Wales, Australia)

Bennett AF, Lumsden LF, Alexander JSA, Duncan PE, Johnson PG, Robertson P, Silveira CE, 1991. Habitat use by arboreal mammals along an environmental gradient in north-eastern Victoria. Wildlife Research 18, 125-46.

Blakers M, Davies SJJF, Reilly PN, 1984. ' The Atlas of Australian Birds .' (Melbourne University Press: Victoria)

Bowyer JC, Newell GR, Eldridge MDB, 2002. Genetic effects of habitat contraction on Lumholtz's tree- ( Dendrolagus lumholtzi) in the Australian Wet Tropics. Conservation Genetics 3, 59-67.

Brotherton PNM, Manser MB, 1997. Female dispersion and the evolution of monogamy in the dik-dik. Animal Behaviour 54, 1413-1424.

Brown M, Carthew SM, Cooper SJB, 2007. Monogamy in an Australian arboreal marsupial, the yellow-bellied glider ( Petaurus australis ). Australian Journal of Zoology in press.

Brown M, Cooksley H, Carthew SM, Cooper SJB, 2006. Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis ). Australian Journal of Zoology 54, 1-13.

Brown M, Kendal TA, Cooksley H, Saint KM, Taylor AC, Carthew SM, Cooper SJB, 2004. Polymorphic microsatellite markers for the gliding marsupials Petaurus australis and Petaurus breviceps . Molecular Ecology Notes 4, 704-706.

Brown WM, George M, Wilson AC, 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 1967-1971.

Bryja J, Stopka P, 2005. Facultative promiscuity in a presumably monogamous mouse Apodemus microps . Acta Theriologica 50, 189-196.

Burbrink FT, Lawson R, Slowinski JB, 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake ( Elaphe obsoleta ): a critique of the subspecies concept. Evolution 54, 2107-2118.

Burgman MA, Lindenmayer DB, 1998. ' Conservation Biology for the Australian Environment .' (Surrey Beatty & Sons, Chipping Norton, New South Wales, Australia)

Burkey TV, Reed DH, 2006. The effects of habitat fragmentation on extinction risk: mechanisms and synthesis. Songklanakarin Journal of Science and Technology 28, 9-37.

Cale PG, 2003. The influence of social behaviour, dispersal and landscape fragmentation on population structure in a sedentary bird. Biological Conservation 109, 237-248.

117 References

Carrete M, Donazar JA, Margalida A, Bertran J, 2006. Linking ecology, behaviour and conservation: does habitat saturation change the mating system of bearded vultures? Biology Letters 2, 624-627.

Carthew SM, 2004. Distribution and conservation status of possums and gliders in South Australia. In 'The Biology of Australian Possums and Gliders'. (Eds RL Goldingay and SM Jackson) pp. 63-70. (Surrey Beatty and Sons: New South Wales, Australia)

Carthew SM, Goldingay RL, 1997. Non-flying mammals as pollinators. Trends in Ecology & Evolution 12, 104-108.

Carthew SM, Goldingay RL, 1998. Habitat Suitability and persistence of the yellow- bellied glider in forest fragments in South Australia. Report for the Department of Environment and Heritage and Aboriginal Affair.

Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657-1659.

Clout MN, Efford MG, 1984. Sex-Differences in the dispersal and settlement of brushtail possums ( Trichosurus vulpecula ). Journal of Animal Ecology 53, 737- 749.

Clutton-Brock TH, 1989. Mammalian mating systems. Proceedings of the Royal Society of London Series B-Biological Sciences 236, 339-372.

Cockburn A, Scott MP, Scotts DJ, 1985. Inbreeding avoidance and male-biased natal dispersal in Antechinus Spp (Marsupialia, Dasyuridae). Animal Behaviour 33, 908-915.

Cogger HG, 2000. ' Reptiles & amphibians of Australia .' (Reed New Holland: Sydney)

Colgan DJ, Flannery TF, 1992. Biochemical systematic studies in the genus Petaurus (Marsupialia, Petauridae). Australian Journal of Zoology 40, 245-256.

Cooper SJB, Wheeler D, De Leo A, Cheng JF, Holland RAB, Graves JAM, Hope RM, 2006. The mammalian alpha(D)-globin gene lineage and a new model for the molecular evolution of alpha-globin gene clusters at the stem of the mammalian radiation. Molecular Phylogenetics and Evolution 38, 439-448.

Cooper SJB, Wheeler D, Hope RM, Dolman G, Saint KM, Gooley AA, Holland RAB, 2005. The alpha-globin gene family of an Australian marsupial, eugenii : the long evolutionary history of the theta-globin gene and its functional status in mammals. Journal of Molecular Evolution 60, 653-664.

Covas R, Doutrelant C, du Plessis MA, 2004. Experimental evidence of a link between breeding conditions and the decision to breed or to help in a colonial cooperative bird. Proceedings of the Royal Society of London Series B-Biological Sciences 271, 827-832.

118 References

Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK, 2000. Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290-295.

Croft T, Carruthers S, Possingham HP, Inns B, 1999. Biodiversity plan for the southeast of South Australia. Department for Environmental Heritage and Aboriginal Affairs: South Australia.

Crook JH, Gartlan JS, 1966. Evolution of primate societies. Nature 210, 1200-1203.

Crosby K, Bassarova M, Archer M, Carbery K, 2004. Fossil possums in Australia: discovery, diversity and evolution. In 'The Biology of Australian Possums and Gliders'. (Eds RL Goldingay and SM Jackson) pp. 161-176. (Surrey Beatty and Sons: New South Wales, Australia)

Crozier RH, 1997. Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annual Review of Ecology and Systematics 28, 243-268.

Deacon JN, Nally RM, 1998. Local extinction and nestedness of small- faunas in fragmented forest of central Victoria, Australia. Pacific Conservation Biology 4, 122-131.

Debinski DM, Holt RD, 2000. A survey and overview of habitat fragmentation experiments. Conservation Biology 14, 342-355.

Donnellan SC, McGuigan K, Knowles R, Mahony M, Moritz C, 1999. Genetic evidence for species boundaries in frogs of the Litoria citropa species-group (Anura: Hylidae). Australian Journal of Zoology 47, 275-293.

Dow DB, 1977. A geological synthesis of Papua New Guinea. Australian Bureau of Mineral Resources Geology and Geophysics Publication No 210.

Dow DB, Sukamto R, 1984. Late Tertiary to Quaternary tectonics of Irian Jaya. Episodes 7, 3-9.

Dow DD, 1979. The influence of nests on the social behaviour of males in Manorina melanocephala, a communally breeding honey-eater. EMU 79, 71-83.

Downes S, Handasyde KA, Elgar MA, 1997. The use of corridors by mammals in fragmented Australian eucalypt forests. Conservation Biology 11, 718-726.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A, 2006. Relaxed phylogenetics and dating with confidence. The Public Library of Science Biology 4, 699-710.

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W, 2002. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307-1320.

119 References

Drummond AJ, Rambaut A, 2006. BEAST version 1.4. Available from http://evolve.zoo.ox.ac.uk/beast/ .

Edwards D, Westerman M, 1992. DNA-DNA hybridization and the position of Leadbeater possum ( Gymnobelideus-Leadbeateri ) in the family Petauridae (Marsupialia, Diprotodontia). Australian Journal of Zoology 40, 563-571.

Edwards D, Westerman M, 1995. The molecular relationships of possum and glider families as revealed by DNA-DNA hybridisations. Australian Journal of Zoology 43, 231-240.

Eldridge MD, King JM, Loupis AC, Pope LC, Hall GP, 1999. Unprecedented low levels of genetic variation of the black-footed rock-wallaby. Conservation Biology 13, 531-541.

Emlen ST, Oring LW, 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215-223.

Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611-2620.

Ewers RM, Didham RK, 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews 81, 117-142.

Excoffier L, Laval G, Schneider S, 2005 Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50.

Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.

Falush D, Stephens M, Pritchard JK, 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567-1587.

Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.

Firestone KB, Elphinstone MS, Sherwin WB, Houlden BA, 1999. Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial. Molecular Ecology 8, 1613- 1625.

Flannery T, 1994. ' Possums of the World: A Monograph of the .' (Geo Productions in association with the Australian Museum: Chatswood, New South Wales, Australia)

120 References

Flannery TF, 1990. ' Mammals of New Guinea .' (Robert Brown & Associates: Carina, Queensland)

Flannery TF, Rich TH, Turnbull WD, Lundelius EL, 1992. The Macropodoidea (Marsupialia) of the early Pliocene Hamilton local fauna, Victoria, Australia. Fieldiana Geology 25, 1-37.

Fleischer RC, McIntosh CE, Tarr CL, 1998. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Molecular Ecology 7, 533-545.

Fleishman E, Ray C, Sjogren-Gulve P, Boggs CL, Murphy DD, 2002. Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conservation Biology 16, 706-716.

Fleming MR, 1980. Thermoregulation and torpor in the sugar glider, Petaurus breviceps (Marsupialia, Petauridae). Australian Journal of Zoology 28, 521-534.

Franken RJ, Hik DS, 2004. Influence of habitat quality, patch size and connectivity on colonization and extinction dynamics of collared pikas Ochotona collaris . Journal of Animal Ecology 73, 889-896.

Frankham R, 2005. Genetics and extinction. Biological Conservation 126, 131-140.

Frankham R, Ballou JD, Briscore DA, 2002. 'Introduction to Conservation Genetics.' (Cambridge University Press)

Fraser DJ, Bernatchez L, 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology 10, 2741-2752.

Friesen VL, Congdon BC, Walsh HE, Birt TP, 1997. Intron variation in marbled murrelets detected using analyses of single-stranded conformational polymorphisms. Molecular Ecology 6, 1047-1058.

Galloway RW, Löffler E, 1972. Aspects of geomorphology and soils in the Torres Strait region. In 'Bridge and Barrier: the Natural and Cultural History of Torres Strait,'. (Ed. D Walker) pp. 11–28. (Australian National University: Canberra)

Garrick RC, Sands CJ, Rowell DM, Tait NN, Greenslade P, Sunnucks P, 2004. Phylogeography recapitulates topography: very fine-scale local endemism of a saproxylic 'giant' springtail at Tallaganda in the Great Dividing Range of south- east Australia. Molecular Ecology 13, 3329-3344.

Gaston KJ, Spicer JI, 2004. ' Biodiversity : An Introduction .' (Blackwell Publishing: Malden, MA)

Giannasi N, Malhotra A, Thorpe RS, 2001. Nuclear and mtDNA phylogenies of the Trimeresurus complex: implications for the gene versus species tree debate. Molecular Phylogenetics and Evolution 19, 57-66.

121 References

Gibbons P, Lindenmayer D, 2002. ' Tree hollows and wildlife conservation in Australia .' (CSIRO Publishing: Collingwood, VIC)

Goldingay RL, 1992. Socioecology of the yellow-bellied glider ( Petaurus australis ) in a coastal forest. Australian Journal of Zoology 40, 267-278.

Goldingay RL, 2000. Gliding mammals of the world: diversity and ecological requirments. In 'Biology of Gliding Mammals'. (Eds RL Goldingay and J Scheibe) pp. 9-44. (Filander Verlag: Fu¨rth)

Goldingay RL, 2004. A review of the ecology of the Australian Petauridae. In 'The Biology of Australian Possums and Gliders'. (Eds RL Goldingay and SM Jackson) pp. 376-400. (Surrey Beatty and Sons: New South Wales, Australia)

Goldingay RL, Kavanagh RP, 1990. Socioecology of the yellow-bellied glider, Petaurus australis , at Waratah Creek, NSW. Australian Journal of Zoology 38, 327-341.

Gompert Z, Nice CC, Fordyce JA, Forister ML, Shapiro AM, 2006. Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Molecular Ecology 15, 1759-1768.

Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM, 1999. Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152, 355-371.

Goudet J,2001. Fstat, a program to estimate and test gene diversities and fixation indices; available at URL: http://www.unil.ch/izea/softwares/fstat.html .

Greenwood PJ, 1980. Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140-1162.

Groves C, 2005. Order Diprotodontia: Petauridae. In 'Mammal Species of the World: A Taxonomic and Geographic Reference'. (Eds DE Wilson and DM Reeder) pp. 54-55. (Johns Hopkins University Press: Baltimore)

Grundel R, Pavlovic NB, 2007. Resource availability, matrix quality, microclimate, and spatial pattern as predictors of patch use by the Karner blue butterfly. Biological Conservation 135, 135-144.

Gunn RC, 1851. On the introduction and naturalisation of Petaurus Sciureus in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 1, 253- 255.

Guo SW, Thompson EA, 1992. Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics 48, 361-372.

122 References

Hasegawa M, Kishino H, Yano TA, 1985. Dating of the Human Ape splitting by a molecular clock of mitochondrial-DNA. Journal of Molecular Evolution 22, 160-174.

Hayes LD, 2000. To nest communally or not to nest communally: a review of rodent communal nesting and nursing. Animal Behaviour 59, 677-688.

Henry SR, 1984. Social organization of the greater glider ( Petauroides volans) in Victoria. In 'Possums and Gliders.' (Eds AP Smith and ID Hume) pp. 222-228. (Australian Mammal Society: Sydney)

Henry SR, Suckling GC, 1984. A review of the ecology of the sugar glider. In 'Possums and Gliders'. (Eds AP Smith and ID Hume) pp. 355-358. (Australian Mammal Society: Sydney)

Hewitt GM, 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58, 247-276.

Hewitt GM, 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 183-195.

Hillis DM, Moritz C, Mable BK, 1996. ' Molecular Systematics .' (Sunderland: Massachusetts)

Hope GS, 1994. Quaternary vegetation. In 'History of the Australian Vegetation: Cretaceous to Recent'. (Ed. RS Hill) pp. 368-389. (Cambridge University Press: Cambridge)

Houlden BA, England PR, Taylor AC, Greville WD, Sherwin WB, 1996. Low genetic variability of the koala cinereus in south-eastern Australia following a severe population bottleneck. Molecular Ecology 5, 269-281.

How T, 1996. Habitat fragmentation and its implications for common arboreal marsupials. Honours thesis, University of Adelaide.

How T, Carthew SM, Tap P, 2004. A comparison of survey techniques for detecting possums and gliders in forest of southern Australia. In 'The Biology of Australian Possums and Gliders'. (Eds RL Goldingay and SM Jackson) pp. 564- 570. (Surrey Beatty and Sons: New South Wales, Australia)

Huelsenbeck JP, Ronquist F, 2005. Bayesian analysis of molecular evolution using MrBayes. In 'Statistical Methods in Molecular Evolution'. (Ed. R Nielsen) pp. 183-232. (Springer: New York)

Hunter ML, 1996. ' Fundamentals of Conservation Biology .' (Blackwell Science; USA)

IUCN, 2006 Red-list statistics. http://www.iucnredlist.org/info/stats .

123 References

Jackson SM, 1999. Preliminary predictions of the impacts of habitat area and catastrophes on the viability of mahogany glider Petaurus gracilis populations. Pacific Conservation Biology 5, 56-62.

Jackson SM, 2000. Habitat relationships of the mahogany glider, Petaurus gracilis, and the sugar glider, Petaurus breviceps . Wildlife Research 27, 39-48.

James CH, Moritz C, 2000. Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species from eastern Australia. Molecular Ecology 9, 349-358.

Jones ME, Paetkau D, Geffen E, Moritz C, 2004. Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Molecular Ecology 13, 2197-2209.

Joseph L, Moritz C, Hugall A, 1995. Molecular support for vicariance as a source of diversity in Rain-Forests. Proceedings of the Royal Society of London Series B- Biological Sciences 260, 177-182.

Kalinowski ST, Taper ML, Marshall TC, 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099-1106.

Kavanagh JR, Burk-Herrick A, Westerman M, Springer MS, 2004. Relationships among families of Diprotodontia (Marsupialia) and the phylogenetic position of the autapomorphic ( Tarsipes rostratus ). Journal of Mammalian Evolution 11, 207-222.

Kavanagh RP, Stanton MA, 2002. Response to habitat fragmentation by the powerful owl ( Ninox strenua) , sooty owl ( Tyto tenebricosa ), masked owl ( Tyto novaehollandiae ) and other nocturnal fauna in southeastern Australia. In 'Ecology and conservation of owls'. (Ed. I Newton). (CSIRO Publishing: Melbourne)

Keller LF, 1998. Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52, 240-250.

Keller LF, Waller DM, 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution 17, 230-241.

Kershaw AP, 1981. Quaternary vegetation and environment. In 'Ecological biogeography of Australia'. (Ed. A Keast) pp. 81-101. (Hague: Boston)

Kimura M, 1983. ' The neutral theory of molecular evolution .' (Cambridge University Press: Cambridge)

Kirsch JAW, 1977. The comparative serology of Marsupialia, and a classification of marsupials. Australian Journal of Zoology Supplement 52, 215-216.

124 References

Kirsch JAW, Lapointe F-J, Springer MS, 1997. DNA-hybridisation studies of marsupials and their implications for metatherian classification. Australian Journal of Zoology 45, 211-280.

Kirsch JAW, Springer MS, 1993. Timing of the molecular evolution of New Guinean marsupials. Science in New Guinea 19, 147-156.

Klettenheimer BS, Temple-Smith PD, Sofronidis G, 1997. Father and son sugar gliders: more than a genetic coalition? Journal of Zoology (London) .

Komdeur J, 1992. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493-495.

Koprowski JL, 1996. Natal philopatry, communal nesting, and kinship in fox squirrels and gray squirrels. Journal of Mammalogy 77, 1006-1016.

Körtner G, Geiser F, 2000. Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123, 350-357.

Krajewski C, Blacket M, Buckley L, Westerman M, 1997. A multigene assessment of phylogenetic relationships within the dasyurid marsupial subfamily Sminthopsinae. Molecular Phylogenetics and Evolution 8, 236-248.

Krajewski C, Wroe S, Westerman M, 2000. Molecular evidence for the pattern and timing of cladogenesis in dasyurid marsupials. Zoological Journal of the Linnean Society 130, 375-404.

Kruuk LEB, Sheldon BC, Merila J, 2002. Severe inbreeding depression in collared flycatchers ( Ficedula albicollis ). Proceedings of the Royal Society of London Series B-Biological Sciences 269, 1581-1589.

Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150-163.

Lachenbruch PA, 1975. ' Discriminant Analysis .' (Hafner Press: New York)

Lacy RC, 1997. Importance of genetic variation to the viability of mammalian populations. Journal of Mammalogy 78, 320-335.

Laurance WF, Vasconcelos HL, 2004. Ecological effects of habitat fragmentation in the tropics. In 'Agroforestry and Biodiveristy Conservation in Tropical Landscapes'. (Eds G Schroth, GAB Fonesca, CA Harvey, C Gascon, H Vasconcelos and AMN Izac) pp. 33-49. (Island Press: Washington, USA)

Layne JN, Raymond MAV, 1994. Communal nesting of southern flying squirrels in Florida. Journal of Mammalogy 75, 110-120.

125 References

Le Duff M, 2000. An investigation into the impact of native habitat fragmentation on the marsupial sugar glider ( Petaurus breviceps ) and other arboreal marsupials in the south east of South Australia. Honours thesis, University of Adelaide.

Lindenmayer DB, Cunningham RB, Donnelly CF, 1993a. The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, south- east Australia, IV. The presence and abundance of arboreal marsupials in retained linear habitats (wildlife corridors) within logged forest. Biological Conservation 66, 207-221.

Lindenmayer DB, Cunningham RB, Donnelly CF, Tanton MT, Nix HA, 1993b. The abundance and development of cavities in eucalyptus trees: a case study in the montane forests of Victoria, southeastern Australia. Forest Ecology and Management 60, 77-104.

Lindenmayer DB, Cunningham RB, McCarthy MA, 1999a. The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, south-eastern Australia. VIII. Landscape analysis of the occurence of arboreal marsupials. Biological Conservation 89, 83-92.

Lindenmayer DB, Cunningham RB, Pope ML, Donnelly CF, 1999b. The response of arboreal marsupials to landscape context: a large-scale fragmentation study. Ecological Applications 9, 594-611.

Lindenmayer DB, Cunningham RB, Tanton MT, Smith AP, Nix HA, 1990. The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, south-west Australia: I. Factors influencing the occupancy of trees with hollows. Biological Conservation 54, 111-131.

Lindenmayer DB, MacGregor CI, Cunningham RB, Incoll RD, Crane M, Rawlins D, Michael DR, 2003. The use of nest boxes by arboreal marsupials in the forests of the central highlands of Victoria. Wildlife Research 30, 259-264.

Lindenmayer DB, McCarthy MA, Parris KM, Pope ML, 2000. Habitat fragmentation. landscape context, and mammalian assemblages in southeastern Australia. Journal of Mammalogy 81, 787-797.

Lindenmayer DB, Meggs RA, 1996. Use of den trees by leadbeater's possum. Australian Journal of Zoology 44, 625-38.

Lindenmayer DB, Welsh A, Donnelly CF, 1997. Use of nest trees by the mountain brushtail possum ( Trichosurus caninus ) (Phalangeridae: Marsupialia). III. Spatial configuration and co-occupancy of nest trees. Wildlife Research 24, 661- 677.

Lott DF, 1984. Intraspecific variation in the social systems of wild vertebrates. Behaviour 88, 266-325.

126 References

Mallick J, Stoddart DM, Jones I, Bradley AJ, 1994. Behavioral and endocrinologic correlates of social-status in the sale sugar glider Petaurus breviceps (Marsupialia, Petauridae). Physiology & Behavior 55, 1131-1134.

Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209-220.

Marshall TC, Slate J, Kruuk LEB, Pemberton JM, 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639-655.

Marshall TC, Spalton JA, 2000. Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Animal Conservation 3, 241-248.

Martin AP, 1993. Application of mtDNA sequence analysis to the problem of species identification of Sharks. NOAA Technical report NMFS 115, 53-59.

Maxwell S, Burbidge AA, Morris K, 1996. ' The 1996 Action Plan for australian Marsupials and Monotremes .' (Wildlife Australia: Canberra)

McAlpine CA, Eyre TJ, 2002. Testing landscape metrics as indicators of habitat loss and fragmentation in continuous eucalypt forests (Queensland, Australia). Landscape Ecology 17, 711-728.

McIllroy JC, 1978. The effects of forestry practices on wildlife in Australia: a review. Australian Forestry 41, 78-94.

McKay GM, 1988. Family Petauridae. In ''. (Eds DW Walton and BJ Richardson) pp. 665-678. (Australian Government Publishing Service: Canberra)

Meikle RD, 1957. What is the subspecies? Taxon 6, 102-105.

Menkhorst P, Knight F, 2004. ' A Field Guide to the .' (Oxford University Press: Melbourne)

Menkhorst PW, 1984a. The application of nest boxes in research and management of possums and gliders. In 'Possums and Gilders'. (Eds AP Smith and ID Hume) pp. 517-525. (Australian Mammal Society: Sydney)

Menkhorst PW, 1984b. Use of nest boxes by forest vertebrates in Gippsland: acceptance, preference and demand. Australian Wildlife Research 11, 255-264.

Menkhorst PW, 1995. Squirrel Glider. In 'Mammals of Victoria'. (Ed. PW Menkhorst) pp. 113-14. (Oxford University Press: Oxford)

Menkhorst PW, Weavers BW, Alexander JSA, 1988. Distribution, habitat and conservation status of the squirrel glider, Petaurus norfolcensis (Petauridae: Marsupialia) in Victoria. Australian Wildlife Research 15, 59-71.

127 References

Millis AL, 2000. Isolation and characterization of microsatellite loci in marsupial gliders ( Petaurus norfolcensis , P. breviceps and P. gracilis ). Molecular Ecology 9, 1681-1683.

Mills LS, Allendorf FW, 1996. The one-migrant-per-generation rule in conservation and management. Conservation Biology 10, 1509-1518.

Moore WS, 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear gene trees. Evolution 49,718-726.

Moore WS, 1997. Mitochondrial-gene trees versus nuclear-gene trees, a reply to Hoelzer. Evolution 52, 627-629.

Moritz C, 1994a. Application of mitochondrial DNA analysis in conservatin. Molecular Ecology 3, 401-411.

Moritz C, 1994b. Defining evolutionary significant units for conservation. Trends in Ecology and Evolution 9, 373-375.

Moritz C, 1995. Uses of molecular phylogenies for conservation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 349, 113-118.

Moritz C, Heideman A, Geffen E, McRae P, 1997. Genetic population structure of the greater bilby Macrotis lagotis , a marsupial in decline. Molecular Ecology 6, 925-936.

Moritz C, Patton JL, Schneider CJ, Smith TB, 2000. Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics 31, 533-563.

Moussalli A, Hugall AF, Moritz C, 2005. A mitochondrial phylogeny of the rainforest skink genus Saproscincus, Wells and Wellington (1984). Molecular Phylogenetics and Evolution 34, 190-202.

Nei M, 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583-590.

Nicholls JA, Austin JJ, 2005. Phylogeography of an east Australian wet-forest bird, the satin bowerbird ( Ptilonorhynchus violaceus ), derived from mtDNA, and its relationship to morphology. Molecular Ecology 14, 1485-1496.

Nix HA, Kalma JD, 1972. Climate as a dominant control in the biogeography of northern Australia and New Guinea. In 'Bridge and Barrier: The Natural and Cultural History of Torres Strait'. (Ed. D Walker) pp. 61–92. (Australian National University: Canberra)

Osborne MJ, Christidis L, 2001. Molecular phylogenetics of Australo-Papuan possums and gliders (family Petauridae). Molecular Phylogenetics and Evolution 20, 211- 224.

128 References

Osborne MJ, Christidis L, 2002. Molecular relationships of the , brushtail and scaly-tailed possums (Phalangerinae). Australian Journal of Zoology 50, 135- 149.

Osborne MJ, Christidis L, Norman JA, 2002. Molecular phylogenetics of the Diprotodontia (kangaroos, , koala, possums, and allies). Molecular Phylogenetics and Evolution 25, 219-228.

Pacheco NM, Congdon BC, Friesen VL, 2002. The utility of nuclear introns for investigating hybridization and genetic introgression: a case study involving Brachyramphus murrelets . Conservation Genetics 3, 175-182.

Palumbi S, Baker C, 1994. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution 11, 426-435.

Park SDE,2001.The excel microsatellite toolkit. In. (University of Dublin: Dublin, Ireland)

Parkhurst B, 2005 The ecology of the sugar glider ( Petaurus breviceps ) in a fragmented landscape; does sugar glider ecology vary between different size patches. Honours thesis, The University of Adelaide.

Peakall R, Smouse PE, 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288- 295.

Paetkau D, 1999. Using genetics to identify interspecific conservation units: a critique of current methods. Conservation Biology 13, 1507-1509.

Petit RJ, El Mousadik A, Pons O, 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844-855.

Pol D, 2004. Empirical problems of the hierarchical likelihood ratio test for model selection. Systematic Biology 53, 949-962.

Poldmaa T, Montgomerie R, Boag P, 1995. Mating system of the cooperatively breeding noisy miner Manorina melanocephala , as revealed by DNA profiling. Behavioral Ecology and Sociobiology 37, 137-143.

Pope LC, Estoup A, Moritz C, 2000. Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica , determined using mtDNA and microsatellites. Molecular Ecology 9, 2041-2053.

Pope ML, Lindenmayer DB, Cunningham RB, 2004. Patch use by the greater glider (Petauroides volans ) in a fragmented forest ecosystem. I. Home range size and movements. Wildlife Research 31, 559-568.

129 References

Posada D, Buckley TR, 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793-808.

Posada D, Crandall KA, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818.

Posada D, Crandall KA, Templeton AR, 2000. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology 9, 487-488.

Potts R, 1996. Evolution and climate variability. Science 273, 922-923.

Primack RB, 2006. ' Essentials of Conservation Biology .' (Sinauer Associates: Sunderland, MA)

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959.

Prychitko TM, Moore WS, 2003. Alignment and phylogenetic analysis of beta- fibrinogen intron 7 sequences among avian orders reveal conserved regions within the intron. Molecular Biology and Evolution 20, 762-771.

Purvis A, Gittleman JL, Brooks T, 2005. ' Phylogeny and Conservation .' (New York)

Pusey A, Wolf M, 1996. Inbreeding avoidance in animals. Trends in Ecology & Evolution 11, 201-206.

Quin D, Goldingay R, Churchill S, Engel D, 1996a. Feeding behaviour and food availability of the yellow-bellied glider in north Queensland. Wildlife Research 23, 637-646.

Quin DG, 1995. Population ecology of the squirrel glider ( Petaurus norfolcensis ) and the sugar glider ( P. breviceps ) (Marsupialia: Petauridae) at Limeburners Creek, on the central north coast of New South Wales. Wildlife Research 22, 471-505.

Quin DG, Smith AP, Green SW, Hines HB, 1992. Estimating the home ranges of sugar gliders ( Petaurus breviceps ) (Marsupialia: Petauridae), from grid-trapping and radiotelemetry. Wildlife Research 19, 471-487.

Quin DG, Smith AP, Norton TW, 1996b. Eco-geographic variation in size and sexual dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae). Australian Journal of Zoology 44, 19-45.

Rambaut A, Drummond AJ, 2003 Tracer version 1.3. Available at: http://evolve.zoo.ox.ac.uk/software.html?id=trace .

Randi E, 1996. A mitochondrial cytochrome b phylogeny of the Alectoris partridges. Molecular Phylogenetics and Evolution 6, 214-227.

130 References

Rao CR, 1964. The use and interpretation of Principal Component Analysis in applied research. Sankhya A 26, 329 -358.

Rawlings LH, Donnellan SC, 2003. Phylogeographic analysis of the green python, Morelia viridis , reveals cryptic diversity. Molecular Phylogenetics and Evolution 27, 36-44.

Raymond M, Rousset F, 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248-249.

Reed DH, 2004. Extinction risk in fragmented habitats. Animal Conservation 7, 181- 191.

Reed DH, Frankham R, 2003. Correlation between fitness and genetic diversity. Conservation Biology 17, 230-237.

Rhind SG, 2003. Communal nesting in the usually solitary marsupial, Phascogale tapoatafa . Journal of Zoology 261, 345-351.

Rice WR, 1989. Analyzing tables of statistical tests. Evolution 43, 223-225.

Rich PV, 1991. Monotremes, placental, and marsupials: their records in Australia and its biases. In 'Vertebrate palaeontology of Australasia'. (Eds PV Rich, EM Thompson and C Williams) pp. 893- 1004. (Pioneer Design Studio: Melbourne)

Richardson K, Carthew SM, 2004. Quest for the elusive feathertail glider Acrobates pygmaeus in South Australia. In 'The Bilogy of Austrlain Possums and Gliders'. (Eds RL Goldingay and SM Jackson) pp. 306-11. (Surrey Beatty and Sons: New South Wales, Australia)

Roca AL, Georgiadis N, O'Brien SJ, 2005. Cytonuclear genomic dissociation in African elephant species. Nature Genetics 37, 96-100.

Ross KG, 2001. Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Molecular Ecology 10, 265-284.

Rossmanith E, Grimm V, Blaum N, Jeltsch F, 2006. Behavioural flexibility in the mating system buffers population extinction: lessons from the lesser spotted woodpecker Picoides minor . Journal of Animal Ecology 75, 540-548.

Rowston C, Catterall CP, 2004. Habitat segregation, competition and selective deforestation: effects on the conservation status of two similar Petaurus gliders. In 'Conservation of Australia’s forest fauna'. (Ed. D Lunney) pp. 741-747. (Royal Zoological Society of New South Wales: Mossman, New South Wales)

Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497.

131 References

Ruedi M, Smith MF, Patton JL, 1997. Phylogenetic evidence of mitochondrial DNA introgression among pocket gophers in New Mexico (family Geomyidae). Molecular Ecology 6, 453-462.

Russell R, 1984. Social behaviour of the yellow-bellied glider, Petaurus australis in north Queensland. In 'Possums and Gliders'. (Eds AP Smith and ID Hume) pp. 343-53. (Australian Mammal Society: Sydney)

Rutschmann F, 2006. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions 12, 35-48.

Ryder OA, 1986. Species conservation and systematics: the dilemma of subspecies. Trends in Ecology & Evolution 1, 9-10.

Sadler LM, Ward SJ, 1999. Coalitions in male sugar gliders: are they natural? Journal of Zoology 248, 91-96.

Sanderson MJ, Kim J, 2000. Parametric phylogenetics? Systematic Biology 49, 817-829.

Saunders DA, Hobbs RJ, Margules CR, 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5, 18-32.

Schneider C, Moritz C, 1999. Rainforest refugia and evolution in Australia's Wet Tropics. Proceedings of the Royal Society of London Series B-Biological Sciences 266, 191-196.

Schneider CJ, Cunningham M, Moritz C, 1998. Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Molecular Ecology 7, 487-498.

Schneider CJ, Smith TB, Larison B, Moritz C, 1999. A test of alternative models of diversification in tropical rainforests: ecological gradients vs. rainforest refugia. Proceedings of the National Academy of Sciences of the United States of America 96, 13869-13873.

Simons AM, 2002. The continuity of microevolution and macroevolution. Journal of Evolutionary Biology 15, 688-701.

Slatkin M, 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics 16, 393-430.

Smith AP, 1982. Diet and feeding strategy of the sugar glider in temperate Australia. Journal of Animal Ecology 51, 149-166.

Smith AP, Ganzhorn JU, 1996. Convergence in community structure and dietary adaptation in Australian possums and gliders and Malagasy lemurs. Australian Journal of Ecology 21, 31-46.

132 References

Smith AP, Murray M, 2003. Habitat requirements of the squirrel glider ( Petaurus norfolcensis ) and associated possums and gliders on the New South Wales central coast. Wildlife Research 30, 291-301.

Smith GC, Agnew G, 2002. The value of 'bat boxes' for attracting hollow-dependent fauna to farm forestry plantations in southeast Queenlsand. Ecological Management and Restoration 3, 37-46.

Smith MJ, 1973. Petaurus breviceps . Mammalian Species 30, 1-5.

Soderquist T, Lill A, 1995. Natal dispersal and philopatry in the carnivorous marsupial Phascogale tapoatafa (Dasyuridae). Ethology 99, 297-312.

Soderquist TR, Mac Nally R, 2000. The conservation value of mesic gullies in dry forest landscapes: mammal populations in the box-ironbark ecosystem of southern Australia. Biological Conservation 93, 281-291.

Spencer PBS, Adams M, Marsh H, Miller DJ, Eldridge MDB, 1997. High levels of genetic variability in an isolated colony of rock-wallabies ( Petrogale assimilis ): evidence from three classes of molecular markers. Australian Journal of Zoology 45, 199-210.

SPSS. Inc, 2004.SPSS for windows v.13.0. In. (SPSS Inc: Chicago; IL)

Stephens M, Smith NJ, Donnelly P, 2001. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978-989.

Stow AJ, Sunnucks P, 2004. Inbreeding avoidance in Cunningham's skinks ( Egernia cunninghami ) in natural and fragmented habitat. Molecular Ecology 13, 443- 447.

Strahan R, 1995a. ' The Mammals of Australia: The National Photographic Index of Australian Wildlife .' (Reed Books: Sydney)

Strahan R, 1995b. Subfamily Petaurinae ; sugar glider ( Petaurus breviceps ). In. (Ed. R Strahan) pp. 229-231. (New Holland, Pty.Ltd: Sydney)

Suckling GC, 1982. Value of reserved habitat for mammal conservation in plantations. Australian Forestry 45, 19-27.

Suckling GC, 1983a. Squirrel glider ( Petaurus norfolcensis ). In 'The Australian Museum Complete Book of Australian Mammals'. (Ed. R Strahan) pp. 140-141. (Angus and Robertson: Sydney)

Suckling GC, 1983b. Sugar glider ( Petaurus breviceps ). In 'The Australian Museum Complete Book of Australian Mammals'. (Ed. R Strahan) pp. 138-139. (Angus and Robertson: Sydney)

133 References

Suckling GC, 1984. Population ecology of the sugar glider, Petaurus breviceps , in a system of fragmented habitats. Australian Wildlife Research 11, 49-75.

Suckling GC, Macfarlane MA, 1983. Introduction of the Sugar Glider, Petaurus- Breviceps, into Re-Established Forest of the Tower-Hill State Game Reserve, Vic. Australian Wildlife Research 10, 249-258.

Swihart RK, Lusk JJ, Duchamp JE, Rizkalla CE, Moore JE, 2006. The roles of landscape context, niche breadth, and range boundaries in predicting species responses to habitat alteration. Diversity and Distributions 12, 277-287.

Swofford DL,2002. PAUP*. Phylogenetic Analysis using Parsimony and other methods. Version 4.0b10. In. (Sinauer Associates)

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF, 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, 453-464.

Taylor AC, Sherwin WB, Wayne RK, 1994. Genetic variation of microsatellite loci in a bottlenecked species, the northern hairy-nosed Wombat krefftii . Molecular Ecology 3, 277-290.

Templeton AR, 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7, 381- 397.

Templeton AR, Boerwinkle E, Sing CF, 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping, basic theory and an analysis of alcohol-dehydrogenase activity in Drosophila . Genetics 117, 343-351.

Templeton AR, Crandall KA, Sing CF, 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data .3. cladogram estimation. Genetics 132, 619-633.

Templeton AR, Routman E, Phillips CA, 1995. Separating population structure from population history; a cladistic analysis of the geographical-distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum . Genetics 140, 767-782.

Theodorou K, Couvet D, 2006. On the expected relationship between inbreeding, fitness, and extinction. Genetics Selection Evolution 38, 371-387.

Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B, 2001. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proceedings of the Royal Society of London Series B-Biological Sciences 268, 1791-1796.

Thomas O, 1923. On some Queensland Phalangeridae. Annals and Magazine of Natural History Series 9, 246-249.

134 References

Tolley KA, Burger M, Turner AA, Matthee CA, 2006. Biogeographic patterns and phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity hotspot. Molecular Ecology 15, 781-793.

Traill BJ, Lill A, 1997. Use of tree hollows by two sympatric gliding possums, the squirrel glider, Petaurus norfolcensis and the sugar glider, P. breviceps . Australian Mammalogy 20, 79-88.

Troughton E, 1945. Diagnosis of new mammals from the south-west Pacific. Records of the Australian Museum , 373–375.

Ulmer FA, 1940. Zoological results of the Denison-Crockett South Pacific expedition for the Academy of Natural Sciences of Philadelphia,1937-38. Part VI. A new race of the New Guinea short-headed Flying from Biak Island. Notuale Naturae of the Academy of Natural Science of Philadelphia 52, 1-3. van der Ree R, 2002. The population ecology of the squirrel glider ( Petaurus norfolcensis ) within a network of remnant linear habitats. Wildlife Research 29, 329-340. van der Ree R, Bennett AE, 2003. Home range of the squirrel glider ( Petaurus norfolcensis ) in a network of remnant linear habitats. Journal of Zoology 259, 327-336. van der Ree R, Soderquist TR, Bennett AF, 2001. Home-range use by the brush-tailed phascogale (Phascogale tapoatafa ) (Marsupialia) in high-quality, spatially limited habitat. Wildlife Research 28, 517-525.

Van Dyck S, 1990. Belideus gracilis - soaring problems for an old de Vis glider. Memoirs of the Queensland Museum 28, 329-336.

Van Dyck S, 1993. The taxonomy and distribution of Petaurus gracilis (Marsupialia: Petauridae), with notes on its ecology and conservation status. Memoirs of the Queensland Museum 33, 77-122.

Vane-Wright RI, Humphries CJ, Williams PH, 1991. What to protect? systematics and the agony of choice. Biological Conservation 55, 235-254.

Weins J, 1997. Metapopulation dynamics and landscape ecology. In 'Metapopulation Biology: Ecology, Genetics, and Evolution'. (Eds I Hanski and ME Gilpin). (Academic Press: San Diego, CA)

Wheeler D, Hope R, Cooper SJB, Dolman G, Webb GC, Bottema CDK, Gooley AA, Goodman M, Holland RAB, 2001. An orphaned mammalian [beta]-globin gene of ancient evolutionary origin. Proceedings of the National Academy of Sciences of the United States of America 98, 1101-1106.

Wheeler D, Hope RM, Cooper SJB, Gooley AA, Holland RAB, 2004. Linkage of the [beta]-like [omega]-globin gene to [alpha]-like globin genes in an Australian

135 References

marsupial supports the chromosome duplication model for separation of globin gene clusters. Journal of Molecular Evolution 58, 642-652.

Withers PC, Jarvis JUM, 1980. The effect of huddling on thermoregulation and oxygen- consumption for the naked mole-rat. Comparative Biochemistry and Physiology, A-Physiology 66, 215-219.

Woinarski JCZ, McCosker JC, Gordon G, Lawrie B, James C, Augusteyn J, Slater L, Danvers T, 2006. Monitoring change in the vertebrate fauna of central Queensland, Australia, over a period of broad-scale vegetation clearance, 1973- 2002. Wildlife Research 33, 263-274.

Wolff JO, Lidicker WZ, 1981. Communal winter nesting and food sharing in Taiga voles. Behavioral Ecology and Sociobiology 9, 237-240.

Wong MYL, Munday PL, Jones GP, 2005. Habitat patch size, facultative monogamy and sex change in a coral-dwelling fish, Caracanthus unipinna . Environmental Biology of Fishes 74, 141-150.

Wright S, 1969. ' Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies .' (University of Chicago Press: Chicago)

Yang Z, Goldman N, Friday A, 1994. Comparison of models for nucleotide substitution used in maximum- likelihood phylogenetic estimation. Molecular Biology and Evolution 11, 316-324.

Yang ZH, 1996. Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367-372.

Yeh FC, Yang R-C, Boyle T, Ye Z-H, Mao JX,1997. POPGENE, the user-friendly shareware for population genetic analysis. In. (Molecular Biology and Biotechnology Centre: University of Alberta, Canada)

Zenger KR, Eldridge MDB, Cooper DW, 2003. Intraspecific variation, sex-biased dispersal and phylogeography of the ( Macropus giganteus ). Heredity 91, 153-162.

Ziegler AC, 1981. Petaurus abidi , new species of glider (Marsupialia, Petauridae) from Papua New Guinea. Australian Mammalogy 4, 81-88.

Zink RM, 2004. The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proceedings of the Royal Society of London Series B-Biological Sciences 271, 561-564.

136 Appendices

Appendix 1

Sample and locality data for Petaurus specimens sequenced and phylogenetically analysed in Chapter two.

The samples are listed according to species name and region or nation. Australian DNA ids are provided from Biological Tissue Collection (ABTC), the South Australian Museum; Australian Museum registration numbers (M), Queensland Museum registration numbers(QM), Museum and Art Gallery of the Northern Territory (U) and field samples (^).

Region/ Species Location DNA Id Latitude Longitude Nation P. breviceps New Guinea Namosado ABTC 46098 -5.25 142.70 ABTC 46200 ABTC 45397 ABTC 45398 Tifalmin M 19975 -5.11 141.41 M 19968 Waro ABTC 44768 -6.25 142.78 Karkar Island ABTC 49347 -4.7 145.91 ABTC 49349 Noru ABTC 43395 -6.58 144.65 ABTC 43552 Yuro ABTC 43193 -6.50 144.85 ABTC 43100 ABTC 43068 ABTC 43069 Normanby M 20224 -10.00 151.25 Island M 20223 Wigote M 16002 -3.41 142.15 Mt Sulen ABTC 44206 -3.41 142.15 Bundi ABTC 49310 -5.75 145.23 ABTC 49311

Gali ABTC 49016 -5.93 146.6

Solriver ABTC 47131 -5.1 141.7 ABTC 47133 ABTC 47134

Ofekaman ABTC 43650 -5.08 141.5

Indonesia Irian Jaya M 30682 -4.00 138.2

Kai Besar M 42882 -5.62 132.97

Island M 42672

M 42674

Australia Port ABTC 85524 -33.01 150.03 Macquarie- NSW North of ABTC 85525 -33.63 151.28

137 Appendices

Sydney- NSW Thornleigh, ABTC 85531 -33.72 151.07 Sydney- NSW P. breviceps Australia Lismore- NSW ABTC 85530 -28.82 153.28 Martinsville- ABTC 85533 -33.05 151.40 NSW Byron Bay- ABTC 85534 -28.63 153.61 NSW Viola St QM JM16138 -27.63 153.25 Redland -QLD Carnarvon QM JM16137 -24.973 147.993 National Park- QLD Tumoulin State ABTC 80833 -17.61 145.50 Forest-QLD ABTC 80835 Snowgum- SA ABTC 81258 -37.93 140.93 Western Flat- ABTC 27086 -36.52 140.74 SA ABTC 27102 Grundys- SA ABTC 81225 -37.70 140.73 Rennick State Ren5^ -37.90 140.99 Forest-VIC Ren7^ Euroa- VIC M5^ -36.77 145.50 Candle park - CandlP^ -37.73 145.14 VIC Melville ABTC 29964 -11.558 130.933 Island- NT Gregory U433 -15.36 131.08 National Park- NT Darwin-NT U434 -12.27 130.5 Howard U5370 -12.27 131.03 Springs-NT P. Bordertown- ABTC 27042 -36.31 140.77 SA ABTC 27085 norfolcensis Whiteman ABTC 85528 -29.58 152.85 creek- NSW Ngawe ,- NSW 190^ -35.96 151.74 Lake Lonsdale, 19^ -37.00 142.547 Grampians-Vic QLD ABTC 85783 P. gracilis Australia VIC ABTC 76608 (R9) -37.90 140.99 ABTC 76609 (R10) P. australis QLD ABTC 80840 -17.619 145.506 Australia NSW B336^ P. abidi Papua New West of M 27670 -3.42 142.1 Guinea Wilbeite, West M 21664 Sepik province M 21350 M 19216 Petauroides Australia NSW ABTC 13802 -36.53 140.75 volans

138 Appendices

Appendix 2

Sequence alignment of combined mitochondrial genes ND2 (1- 695) and ND4 (696- 1393) for 57 individuals of Petaurus species used in Chapter two

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 60 70 M19216_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA M21350_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA M27670_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA M30682_Irian.jaya ?????????? ?????????? ?????????? AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 44768PNG_Waro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 46098PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 46200PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 45397PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 45398PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M19975_Tifalmin CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M19968_Tifalmin CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 49347PNG_KarkarIS CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 49349PNG_Karkar. CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 43395PNG_Noru CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 43193PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 43552PNG_Noru CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 43068PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 43069PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 43100PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M42882_kai.Is CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M42672_kai.Is CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M20223_Normanby ?ATCCCACTC TCATCTGGCA TAATCTTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M20224_Normanby ?ATCCCACTC TCATCTGGCA TAATCTTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA M16002_Wigote CATCCCACTA TCATCTGGCA TAATTCTACT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 44206PMG_Mt.sulen CATCCCACTA TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 47131PNG_Solriver CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 43650PNG_Ofekaman CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 47133PNG_Solriver CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 47134PNG_Solriver CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 49311PNG_Bundi CATTCCTCTC TCATCCGGCA TAATCCTATT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 49310PNG_Bundi CATTCCTCTC TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 49016Gali CATTCCTCTC TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA 27042_P.norfolcensis CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA 27085_P.norfolcensis CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA 85528_P.norfolcensisNSW CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA P.gracilis_QLD CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA 29964NT_Melvill.IS CATCCCACTC TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA P.brevicep_27086SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 27102_P.breviceps.SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 81258_P.breviceps.SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA Euroa.M5_P.breviceps.Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA Ren5_P.breviceps.Vic CATCCCACTA TCATCTGGCA TTATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 81225_P.breviceps.SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA CandlP_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 80833_P.breviceps.QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 80835_P.breviceps.QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 16137_P.brevicepsQLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA 85533_P.breviceps.NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA 85525_P.brevicepsNSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA 85531_P.breviceps.NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA 85534_P.brevicepsNSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA 16138_P.breviceps.QLD CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA 85530_P.breviceps.NSW CATCCCACTC TCATCTGGCA TAGTTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA P.australis_R9 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA P.australis_D3609 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACCTCGCT GCTATACCAA P.australis_R10 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA P.australis_B336 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACCTCACT GCTATATCAA

139 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 80 90 100 110 120 130 140 M19216_P.abidi ATCTCACCAT CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG M21350_P.abidi ATCTCACCAT CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG M27670_P.abidi ATCTCACCAT CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG M30682_Irian.jaya ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 44768PNG_Waro ATTTCACCAT CCCTGAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 46098PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 46200PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 45397PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATTCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 45398PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATTCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG M19975_Tifalmin ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG M19968_Tifalmin ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 49347PNG_KarkarIS ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 49349PNG_Karkar. ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 43395PNG_Noru ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 43193PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 43552PNG_Noru ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG 43068PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTCTGTC AACAGTACTA GGAGGCTGAG 43069PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTCTGTC AACAGTACTA GGAGGCTGAG 43100PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTCTGTC AACAGTACTA GGAGGCTGAG M42882_kai.Is ATCTCACCAT CACTGAATAT AGAAATCCTA ATTATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG M42672_kai.Is ATCTCACCAT CACTGAATAT AGAAATCCTA ATTATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG M20223_Normanby ATTTCACCAT CCCTGAACAT AGAAATCCTA ATCATATTAG CCATTTTATC AACTTTACTA GGAGGCTGAG M20224_Normanby ATTTCACCAT CCCTGAACAT AGAAATCCTA ATCATATTAG CCATTTTATC AACTTTACTA GGAGGCTGAG M16002_Wigote ATTTCACCGT CCCTAAATAT AGAAATCCTG ATTATACTAG CCATTTTATC AACAATGTTA GGAGGCTGAG 44206PMG_Mt.sulen ATTTCACCAT CCCTAAATAT AGAAATCCTG ATTATACTAG CCATTTTATC AACAATGTTA GGAGGCTGAG 47131PNG_Solriver ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 43650PNG_Ofekaman ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 47133PNG_Solriver ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 47134PNG_Solriver ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 49311PNG_Bundi ATTTCACCAT CCCTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 49310PNG_Bundi ATTTCACCAT CCCTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 49016Gali ATTTCACCAT CCCTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG 27042_P.norfolcensis ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG 27085_P.norfolcensis ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG 85528_P.norfolcensisNSW ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG P.gracilis_QLD ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTT GGAGGCTGAG 29964NT_Melvill.IS ATCTCACCGT CCTTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG P.brevicep_27086SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 27102_P.breviceps.SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 81258_P.breviceps.SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG Euroa.M5_P.breviceps.Vic ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG Ren5_P.breviceps.Vic ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 81225_P.breviceps.SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG CandlP_Vic ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 80833_P.breviceps.QLD ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 80835_P.breviceps.QLD ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 16137_P.brevicepsQLD ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG 85533_P.breviceps.NSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG 85525_P.brevicepsNSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG 85531_P.breviceps.NSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG 85534_P.brevicepsNSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG 16138_P.breviceps.QLD ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG 85530_P.breviceps.NSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATACTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG P.australis_R9 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG P.australis_D3609 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGGG P.australis_R10 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG P.australis_B336 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG

140 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 150 160 170 180 190 200 210 M19216_P.abidi GCGGACTTAA TCAGACCCAC TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT M21350_P.abidi GCGGACTTAA TCAGACCCAC TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT M27670_P.abidi GCGGACTTAA TCAGACCCAC TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT M30682_Irian.jaya GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 44768PNG_Waro GTGGGCTCAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 46098PNG_Namosado GTGGGCTCAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 46200PNG_Namosado GTGGGCTCAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 45397PNG_Namosado GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 45398PNG_Namosado GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT M19975_Tifalmin GTGGACTCAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT M19968_Tifalmin GTGGACTCAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT 49347PNG_KarkarIS GTGGGCTCAA CCAAACCCAA ATACGAAAAA TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT 49349PNG_Karkar. GTGGGCTCAA CCAAACCCAA ATACGAAAAA TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT 43395PNG_Noru GGGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT 43193PNG_Yuro GGGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT 43552PNG_Noru GGGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT 43068PNG_Yuro GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 43069PNG_Yuro GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 43100PNG_Yuro GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT M42882_kai.Is GTGGACTCAA TCAAACCCAA ATGCGAAAAG TCTTAGCTTA TTCATCAATC GCACACATAG GATGAACAGT M42672_kai.Is GTGGACTCAA TCAAACCCAA ATGCGAAAAG TCTTAGCTTA TTCATCAATC GCACACATAG GATGAACAGT M20223_Normanby GCGGACTTAA TCAAACCCAA ATACGGAAAA TTTTAGCCTA TTCATCAATT GCCCATATAG GATGGACAGT M20224_Normanby GCGGACTTAA TCAAACCCAA ATACGGAAAA TTTTAGCCTA TTCATCAATT GCCCATATAG GATGGACAGT M16002_Wigote GTGGACTTAA TCAAACCCAT ATACGAAAAG TTTTAGCCTA TTCATCAATT GCCCACATGG GATGGACAGT 44206PMG_Mt.sulen GTGGACTTAA TCAAACCCAT ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATGG GATGGACAGT 47131PNG_Solriver GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 43650PNG_Ofekaman GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 47133PNG_Solriver GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 47134PNG_Solriver GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 49311PNG_Bundi GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 49310PNG_Bundi GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT 49016Gali GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCTCATATGG GATGGACAGT 27042_P.norfolcensis GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAAT 27085_P.norfolcensis GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAAT 85528_P.norfolcensisNSW GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAGT P.gracilis_QLD GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAGT 29964NT_Melvill.IS GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATAG GATGAACGGT P.brevicep_27086SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 27102_P.breviceps.SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 81258_P.breviceps.SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT Euroa.M5_P.breviceps.Vic GGGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT Ren5_P.breviceps.Vic GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 81225_P.breviceps.SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT CandlP_Vic GGGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT 80833_P.breviceps.QLD GAGGACTTAA TCAAACCCAA ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT 80835_P.breviceps.QLD GAGGACTTAA TCAAACCCAA ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT 16137_P.brevicepsQLD GGGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT 85533_P.breviceps.NSW GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT 85525_P.brevicepsNSW GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT 85531_P.breviceps.NSW GTGGCCTTAA TCAAACCCAA ATACGAAAAA TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT 85534_P.brevicepsNSW GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT 16138_P.breviceps.QLD GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT 85530_P.breviceps.NSW GTGGCCTTAA TCAGACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT P.australis_R9 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT P.australis_D3609 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCCCACATAG GCTGAATAAT P.australis_R10 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT P.australis_B336 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCCCACATAG GCTGAATAGT

141 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 220 230 240 250 260 270 280 M19216_P.abidi AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT M21350_P.abidi AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT M27670_P.abidi AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT M30682_Irian.jaya AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 44768PNG_Waro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTTAGC CTAATAATCT ACATCATTAC TACTCTAACC 46098PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTTAGC CTAATAATCT ACATCATTAC TACTCTAACC 46200PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTTAGC CTAATAATCT ACATCATTAC TACTCTAACC 45397PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 45398PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC M19975_Tifalmin AATTATTGCC CTTGTTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC M19968_Tifalmin AATTATTGCC CTTGTTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 49347PNG_KarkarIS AATTATTGCC CTTATTAACC CAAACCTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 49349PNG_Karkar. AATTATTGCC CTTATTAACC CAAACCTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 43395PNG_Noru AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 43193PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 43552PNG_Noru AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 43068PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 43069PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC 43100PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC M42882_kai.Is GATTATCGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAGTCT ATATCATGAC TACTCTAACC M42672_kai.Is GATTATCGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAGTCT ATATCATGAC TACTCTAACC M20223_Normanby AATTATTGCC CTCATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ATATCATGAC TACACTAACC M20224_Normanby AATTATTGCC CTCATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ATATCATGAC TACACTAACC M16002_Wigote AATTATTGCC ATTATTAACC CTGACCTAAC TATCCTAAGC CTAATAATCT ATATCATGAC TACCTTAACC 44206PMG_Mt.sulen AATTATTGTC ATTATTAATC CTAACCTAAC TATCCTAAGC CTAATAATCT ACATCATGAC TACCTTAACC 47131PNG_Solriver AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 43650PNG_Ofekaman AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 47133PNG_Solriver AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 47134PNG_Solriver AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 49311PNG_Bundi AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 49310PNG_Bundi AATCATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ATATCATGAC TACCCTAACC 49016Gali AATCATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC 27042_P.norfolcensis AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATCT ATATTATAAC TACACTAACC 27085_P.norfolcensis AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATCT ATATTATAAC TACACTAACC 85528_P.norfolcensisNSW AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATCT ATATTATAAC TACACTAACC P.gracilis_QLD AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATTT ATATTATAAC TACACTAACC 29964NT_Melvill.IS AATTATTGCT CTTATCAACC CAAACCTAAC TATCCTAAGC CTAATAATTT ATATTATAAC TACACTAACC P.brevicep_27086SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 27102_P.breviceps.SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 81258_P.breviceps.SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC Euroa.M5_P.breviceps.Vic AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC Ren5_P.breviceps.Vic AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 81225_P.breviceps.SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CandlP_Vic AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 80833_P.breviceps.QLD AATTATTGCC CTAATAAACC CAAACCTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 80835_P.breviceps.QLD AATTATTGCC CTAATAAACC CAAACCTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 16137_P.brevicepsQLD AATTATTGCC CTAATAAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC 85533_P.breviceps.NSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC 85525_P.brevicepsNSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC 85531_P.breviceps.NSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC 85534_P.brevicepsNSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC 16138_P.breviceps.QLD AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC 85530_P.breviceps.NSW AATTATCGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC P.australis_R9 AATTATCGTC CTCATCAACC CTGACTTAAC CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC P.australis_D3609 GATTATCGTC CTAATCAACC CTGACTTAAC CTTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC P.australis_R10 AATTATCGTC CTCATCAACC CTGACTTAAC CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC P.australis_B336 AATTATCGTC CTAATCAACC CTGACTTAAC CTTCCTAAGC CTAATAATTT ATATTACAAC TACACTAACC

142 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 290 300 310 320 330 340 350 M19216_P.abidi CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA AATCAATCAG CAACCTATGA AACAAATCAA M21350_P.abidi CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA AATCAATCAG CAACCTATGA AACAAATCAA M27670_P.abidi CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA AATCAATCAG CAACCTATGA AACAAATCAA M30682_Irian.jaya CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 44768PNG_Waro CTATTTATGA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 46098PNG_Namosado CTATTTATGA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 46200PNG_Namosado CTATTTATGA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 45397PNG_Namosado CTATTTATAA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 45398PNG_Namosado CTATTTATAA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA M19975_Tifalmin CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA M19968_Tifalmin CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 49347PNG_KarkarIS CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 49349PNG_Karkar. CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 43395PNG_Noru CTATTTATGA CACTAAACTT ATCTTCAACG ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 43193PNG_Yuro CTATTTATGA CATTAAACTT ATCTTCAACG ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 43552PNG_Noru CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 43068PNG_Yuro CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 43069PNG_Yuro CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA 43100PNG_Yuro CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA M42882_kai.Is CTATTTATGA CACTAAACTT ATCTTCAACA ACAAAAATCA AATCAATTAG CAATTTATGA AACAAATCAA M42672_kai.Is CTATTTATGA CACTAAACTT ATCTTCAACA ACAAAAATCA AATCAATTAG CAATTTATGA AACAAATCAA M20223_Normanby CTATTTATAA CACTAAACTT ATCCTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA M20224_Normanby CTATTTATAA CACTAAACTT ATCCTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA M16002_Wigote TTGTTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AATAAGTCAA 44206PMG_Mt.sulen TTGTTTATTA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AATAAATCAA 47131PNG_Solriver CTATTTATAA CACTTAATTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 43650PNG_Ofekaman CTATTTATAA CACTTAATTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 47133PNG_Solriver CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 47134PNG_Solriver CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 49311PNG_Bundi CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 49310PNG_Bundi CTATTTATAA CACTCAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 49016Gali CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA 27042_P.norfolcensis CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA 27085_P.norfolcensis CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA 85528_P.norfolcensisNSW CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA P.gracilis_QLD CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA 29964NT_Melvill.IS CTATTCATAA CACTAAATTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA P.brevicep_27086SA CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 27102_P.breviceps.SA CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 81258_P.breviceps.SA CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA Euroa.M5_P.breviceps.Vic CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA Ren5_P.breviceps.Vic CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 81225_P.breviceps.SA CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA CandlP_Vic CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 80833_P.breviceps.QLD CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 80835_P.breviceps.QLD CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 16137_P.brevicepsQLD CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA 85533_P.breviceps.NSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA 85525_P.brevicepsNSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA 85531_P.breviceps.NSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA 85534_P.brevicepsNSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA 16138_P.breviceps.QLD CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA 85530_P.breviceps.NSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG CAATTTATGA AATAAATCAA P.australis_R9 ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA P.australis_D3609 ATATTTATAA CACTGAACCT TTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA P.australis_R10 ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA P.australis_B336 ATATTTATAA CACTAAACCT CTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA

143 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 360 370 380 390 400 410 420 M19216_P.abidi CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA CCTCCACTAA CCGGATTTAT M21350_P.abidi CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA CCTCCACTAA CCGGATTTAT M27670_P.abidi CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA CCTCCACTAA CCGGATTTAT M30682_Irian.jaya CCCCTATAAC CATAATTGTC TTCCTCACTC TCCTCTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT 44768PNG_Waro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCTCCATTAA CTGGATTCAT 46098PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCTCCATTAA CTGGATTCAT 46200PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCTTA CCTCCATTAA CTGGATTCAT 45397PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCCCCATTAA CTGGATTCAT 45398PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCCCCATTAA CTGGATTCAT M19975_Tifalmin CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT M19968_Tifalmin CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT 49347PNG_KarkarIS CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTCAT 49349PNG_Karkar. CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTCAT 43395PNG_Noru CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT 43193PNG_Yuro CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT 43552PNG_Noru CTCCCATAAC AATAATTGTT TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT 43068PNG_Yuro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT 43069PNG_Yuro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT 43100PNG_Yuro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT M42882_kai.Is CTCCCATAAC CATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGACTA CCACCATTAA CTGGATTTAT M42672_kai.Is CTCCCATAAC CATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGACTA CCACCATTAA CTGGATTTAT M20223_Normanby CCCCTATAAC CATAATTGTC TTCCTCACTC TCCTCTCACT GGGAGGACTA CCTCCATTAA CTGGGTTTAT M20224_Normanby CCCCTATAAC CATAATTGTC TTCCTCACTC TCCTCTCACT GGGAGGACTA CCTCCATTAA CTGGGTTTAT M16002_Wigote CTCCTATAAC CATGATTGTC TTCCTCACTC TCCTCTCACT AGGAGGACTG CCCCCATTAA CTGGATTTAT 44206PMG_Mt.sulen CTCCTATAAC AATAATTGTT TTCCTCACTC TCCTCTCACT AGGAGGACTG CCCCCATTAA CTGGATTCAT 47131PNG_Solriver CCACTATAAC CATAATTGTC TTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT 43650PNG_Ofekaman CCACTATAAC CATAATTGTC TTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT 47133PNG_Solriver CCCCTATAAC CATAATTGTC CTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT 47134PNG_Solriver CCCCTATAAC CATAATTGTC CTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT 49311PNG_Bundi CCCCTATAAC CATAATTGTT TTCCTCACTC TCCTTTCACT AGGAGGATTA CCCCCATTAA CTGGATTTAT 49310PNG_Bundi CCCCTATAAC CATAATTGTT TTCCTCACTC TCCTTTCACT AGGAGGATTA CCCCCATTAA CTGGATTCAT 49016Gali CTCCTATAAC CATAATTGTT TTCCTCACTC TCCTTTCACT AGGAGGATTA CCCCCATTAA CTGGATTCAT 27042_P.norfolcensis CCCCTATGAC TATAATTGTA TTCCTCACTC TCCTCTCATT AGGAGGATTA CCTCCACTAA CTGGATTCAT 27085_P.norfolcensis CCCCTATGAC TATAATTGTA TTCCTCACTC TCCTCTCATT AGGAGGATTA CCTCCACTAA CTGGATTCAT 85528_P.norfolcensisNSW CCCCCATGAC TATAATTGTA TTCCTCACTC TCCTCTCATT GGGAGGATTA CCTCCACTAA CTGGATTCAT P.gracilis_QLD CCCCTATGAC TATAATTGTC TTCCTTACTC TCCTCTCATT GGGAGGACTA CCTCCACTAA CTGGATTCAT 29964NT_Melvill.IS CCCCTATAAC TATAATCGTC TTCCTCACTC TCCTCTCATT GGGAGGACTA CCTCCACTAA CTGGATTCAT P.brevicep_27086SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT 27102_P.breviceps.SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT 81258_P.breviceps.SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT Euroa.M5_P.breviceps.Vic CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT Ren5_P.breviceps.Vic CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT 81225_P.breviceps.SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT CandlP_Vic CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT 80833_P.breviceps.QLD CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA CCACCACTAA CTGGATTCAT 80835_P.breviceps.QLD CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA CCACCACTAA CTGGATTCAT 16137_P.brevicepsQLD CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA CCACCACTAA CTGGATTCAT 85533_P.breviceps.NSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT 85525_P.brevicepsNSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT 85531_P.breviceps.NSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT 85534_P.brevicepsNSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT 16138_P.breviceps.QLD CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGATTA CCACCACTAA CTGGATTCAT 85530_P.breviceps.NSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT P.australis_R9 CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA CCCCCGCTAA CCGGATTTAT P.australis_D3609 CCCCTACAAC CATAATCATT TTCCTAGCTC TACTATCACT AGGAGGCCTA CCCCCACTAA CCGGATTTAT P.australis_R10 CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA CCCCCGCTAA CCGGATTTAT P.australis_B336 CCCCTATAAC CATAATCATT TTCCTCGCTC TACTATCACT AGGAGGCCTA CCCCCACTAA CCGGATTTAT

144 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 430 440 450 460 470 480 490 M19216_P.abidi ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT AATAGCTCTC M21350_P.abidi ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT AATAGCTCTC M27670_P.abidi ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT AATAGCTCTC M30682_Irian.jaya ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC 44768PNG_Waro GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 46098PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 46200PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 45397PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 45398PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC M19975_Tifalmin GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC M19968_Tifalmin GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 49347PNG_KarkarIS GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAT AACCCCACCA TAGCTATTAT TATAGCCCTC 49349PNG_Karkar. GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAT AACCCCACCA TAGCTATTAT TATAGCCCTC 43395PNG_Noru GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 43193PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 43552PNG_Noru GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 43068PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 43069PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 43100PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC M42882_kai.Is ACCAAAATGA CTAATTTTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC M42672_kai.Is ACCAAAATGA CTAATTTTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC M20223_Normanby ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCAACCA TAGCTATTAT TATAGCCCTC M20224_Normanby ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCAACCA TAGCTATTAT TATAGCCCTC M16002_Wigote ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AATCCCACCA TAGCCATTAT TATAGCCCTC 44206PMG_Mt.sulen ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCCATTAT TATAGCCCTC 47131PNG_Solriver ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC 43650PNG_Ofekaman ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC 47133PNG_Solriver ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC 47134PNG_Solriver ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC 49311PNG_Bundi ACCAAAATGA CTAATTCTAC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC 49310PNG_Bundi ACCAAAATGG CTAATTCTAC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCCATTAT TATAGCCCTC 49016Gali GCCAAAATGA CTAATTCTAC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCCATTAT TATGGCCCTC 27042_P.norfolcensis ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 27085_P.norfolcensis ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 85528_P.norfolcensisNSW ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC P.gracilis_QLD ACCAAAATGA TTAATTCTTC AGGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC 29964NT_Melvill.IS ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC P.brevicep_27086SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 27102_P.breviceps.SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 81258_P.breviceps.SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC Euroa.M5_P.breviceps.Vic ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC Ren5_P.breviceps.Vic ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 81225_P.breviceps.SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC CandlP_Vic ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 80833_P.breviceps.QLD ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 80835_P.breviceps.QLD ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 16137_P.brevicepsQLD ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC 85533_P.breviceps.NSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT AATGGCCCTC 85525_P.brevicepsNSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT AATGGCCCTC 85531_P.breviceps.NSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCAACAA TAGCTATTGT AATGGCCCTC 85534_P.brevicepsNSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT AATGGCCCTC 16138_P.breviceps.QLD GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT AATGGCCCTC 85530_P.breviceps.NSW ACCAAAATGA CTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT AATGGCCCTC P.australis_R9 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT AATAGCCCTA P.australis_D3609 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT AATAGCCCTA P.australis_R10 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT AATAGCCCTA P.australis_B336 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAATAAC AACCCTGCTA TAGCCACTCT AATAGCCCTA

145 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 500 510 520 530 540 550 560 M19216_P.abidi TCAGCTCTAC TAAACCTATT TTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA M21350_P.abidi TCAGCTCTAC TAAACCTATT CTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA M27670_P.abidi TCAGCTCTAC TAAACCTATT TTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA M30682_Irian.jaya TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 44768PNG_Waro TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA 46098PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA 46200PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA 45397PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA 45398PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA M19975_Tifalmin TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATCATCT ATGTGTCATC ATTAACAATA TTTCCAACCA M19968_Tifalmin TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATCATCT ATGTGTCATC ATTAACAATA TTTCCAACCA 49347PNG_KarkarIS TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ATGTGTCATC ATTAACAATA TTTCCAACCA 49349PNG_Karkar. TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ATGTGTCATC ATTAACAATA TTTCCAACCA 43395PNG_Noru TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTGACAATA TTTCCAACCA 43193PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA 43552PNG_Noru TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA 43068PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA 43069PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA 43100PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA M42882_kai.Is TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTATCATC ATTAACAATA TTCCCAACCA M42672_kai.Is TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTATCATC ATTAACAATA TTCCCAACCA M20223_Normanby TCAGCTCTAC TCAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACTATA TTTCCAACCA M20224_Normanby TCAGCTCTAC TCAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACTATA TTTCCAACCA M16002_Wigote TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCAACCA 44206PMG_Mt.sulen TCAGCTCTAC TAAACTTATT TTTTTACATA CGAATCATCT ACGTATCATC ACTAACAATA TTTCCAACCA 47131PNG_Solriver TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 43650PNG_Ofekaman TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 47133PNG_Solriver TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 47134PNG_Solriver TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 49311PNG_Bundi TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCAACCA 49310PNG_Bundi TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 49016Gali TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA 27042_P.norfolcensis TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA 27085_P.norfolcensis TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA 85528_P.norfolcensisNSW TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA P.gracilis_QLD TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA 29964NT_Melvill.IS TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ATGTGTCATC ACTAACAATA TTTCCAACCA P.brevicep_27086SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 27102_P.breviceps.SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81258_P.breviceps.SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Euroa.M5_P.breviceps.Vic TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Ren5_P.breviceps.Vic TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81225_P.breviceps.SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA CandlP_Vic TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80833_P.breviceps.QLD TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80835_P.breviceps.QLD TCAGCCCTAC TAAACCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 16137_P.brevicepsQLD TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 85533_P.breviceps.NSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85525_P.brevicepsNSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85531_P.breviceps.NSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85534_P.brevicepsNSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 16138_P.breviceps.QLD TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85530_P.breviceps.NSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGCATCATC CCTAACAATG TTTCCAACCA P.australis_R9 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA P.australis_D3609 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA P.australis_R10 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA P.australis_B336 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCAACCA

146 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 570 580 590 600 610 620 630 M19216_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT M21350_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT M27670_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT M30682_Irian.jaya ATAATAGCTC AAAACATCAC TGATTCTTCA CAACAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 44768PNG_Waro GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAT 46098PNG_Namosado GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAT 46200PNG_Namosado GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAT 45397PNG_Namosado GTAATAACTT AAAACACCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAC 45398PNG_Namosado GTAATAACTT AAAACACCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAC M19975_Tifalmin GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC M19968_Tifalmin GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 49347PNG_KarkarIS GTAATAACTT GAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 49349PNG_Karkar. GTAATAACTT GAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 43395PNG_Noru ATAATAACCT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 43193PNG_Yuro ATAATAACCT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 43552PNG_Noru ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 43068PNG_Yuro ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 43069PNG_Yuro ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC 43100PNG_Yuro ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC M42882_kai.Is ATAATAACTT AAAACATCAC TGATTTTTCT CCCAGACAAA AACCACTAAT ATAATCCCTA CCTTAACTAC M42672_kai.Is ATAATAACTT AAAACATCAC TGATTTTTCT CCCAGACAAA AACCACTAAT ATAATCCCCA CCTTAACTAC M20223_Normanby ATAACAGCTT AAAACATCAC TGATTCTTCA CCCAAACAAA AACTACTAAC ATTATTCCTA CCTTAACTAC M20224_Normanby ATAACAGCTT AAAACATCAC TGATTCTTCA CCCAAACAAA AACTACTAAC ATTATTCCTA CCTTAACTAC M16002_Wigote ATAATAGCTC AAAACACCAC TGATTCTTCA CTCCAACAAA AACTACTAAT ATTATTCCTA CCTTAACTAT 44206PMG_Mt.sulen ATAATAGCTC AAAACACCAC TGATTCTTCA CTCCAACAAA AACCACTAAC ATCATTCCTA CCTTAACTAT 47131PNG_Solriver ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 43650PNG_Ofekaman ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 47133PNG_Solriver ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 47134PNG_Solriver ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 49311PNG_Bundi ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 49310PNG_Bundi ATAATAACTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 49016Gali ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT 27042_P.norfolcensis GTAATAACTC AAAACATCAC TGATTTTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAT 27085_P.norfolcensis GTAATAACTC AAAACATCAC TGATTTTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAT 85528_P.norfolcensisNSW GTAATAACTC AAAACATCAC TGATTTTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAC P.gracilis_QLD GTAACAACTC AAAACATCAC TGATTCTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAC 29964NT_Melvill.IS GTAATAACTC AAAACATCAC TGATTCTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACTAC P.brevicep_27086SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC 27102_P.breviceps.SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC 81258_P.breviceps.SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC Euroa.M5_P.breviceps.Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC Ren5_P.breviceps.Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC 81225_P.breviceps.SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC CandlP_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC 80833_P.breviceps.QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC 80835_P.breviceps.QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AGCCACTAAC ATAATCCCAA CCCTAACTAC 16137_P.brevicepsQLD ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC 85533_P.breviceps.NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC 85525_P.brevicepsNSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC 85531_P.breviceps.NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC 85534_P.brevicepsNSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC 16138_P.breviceps.QLD ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACCAAT TTAATTCCTA TTCTGACTAC 85530_P.breviceps.NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAGTAAA AACCACTAAT TTAATTCCTA CCCTGACTAC P.australis_R9 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT P.australis_D3609 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAGCCAA ATCAACTCAC ATAATCCCAA CACTAACCAT P.australis_R10 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT P.australis_B336 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACTCAC ATAATTCCAA CACTAACCAT

147 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 640 650 660 670 680 690 700 M19216_P.abidi CATCTCATCT ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACAT???AC M21350_P.abidi CATCTCATCT ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACAT???AC M27670_P.abidi CATCTCATCT ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACAT???AC M30682_Irian.jaya CATCTCATCC ATATTACTCC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AC 44768PNG_Waro CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT 46098PNG_Namosado CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT 46200PNG_Namosado CATTTCATCA ATATTACTCC CACTAACTCC AATTATCATT ATTATAACCT AACTAAGAAT TACAT???AT 45397PNG_Namosado CATTTCATCG ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT 45398PNG_Namosado CATTTCATCG ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT M19975_Tifalmin CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT M19968_Tifalmin CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT 49347PNG_KarkarIS CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT 49349PNG_Karkar. CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT 43395PNG_Noru CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT AATATAACCT AACTAAGAAT TACAT???AT 43193PNG_Yuro CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT AATATAACCT AACTAAGAAT TACAT???AT 43552PNG_Noru CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT AATATAACCT AACTAAGAAT TACAT???AT 43068PNG_Yuro CATTTCATCA ATATTACTCC CATTAACTCC AATTCTCATT AACATAACCT AACTAAGAAT TACAT???AT 43069PNG_Yuro CATTTCATCA ATATTACTCC CATTAACTCC AATTCTCATT AACATAACCT AACTAAGAAT TACAT???AT 43100PNG_Yuro CATTTCATCA ATATTACTCC CATTAACTCC AATTCTCATT AACATAACCT AACTAAGAAT TACAT???AT M42882_kai.Is CATTTCATCC ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT M42672_kai.Is CATTTCATCC ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT M20223_Normanby CATTTCATCA ATATTACTCC CACTAACTCC AATCCTCATT ATTATCACCT AACTAAGAAT TACAT???AC M20224_Normanby CATTTCATCA ATATTACTCC CACTAACTCC AATCCTCATT ATTATCACCT AACTAAGAAT TACAT???AC M16002_Wigote CATTTCATCC ATACTACTAC CACTAACTCC AATCCTCATT ATTATTACCT AACTAAGAAT TACAT???AT 44206PMG_Mt.sulen CATTTCATCC ATACTTCTAC CACTAACTCC AATCCTTATT ATTATTACCT AACTAAGAAT TACAT???AT 47131PNG_Solriver CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT 43650PNG_Ofekaman CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT 47133PNG_Solriver CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATA ATTATAACTT AACTAAGAAT TACAT???AT 47134PNG_Solriver CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATA ATTATAACTT AACTAAGAAT TACAT???AT 49311PNG_Bundi AATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT 49310PNG_Bundi CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT 49016Gali CATCTCATCC ATATTACTTC CACTAATTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT 27042_P.norfolcensis CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AC 27085_P.norfolcensis CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AT 85528_P.norfolcensisNSW CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AACTAAGAAT TACAC???AT P.gracilis_QLD CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AT 29964NT_Melvill.IS CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AT P.brevicep_27086SA TATTTCATCA ATACTACTCC CATTAACCCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC 27102_P.breviceps.SA TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC 81258_P.breviceps.SA TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ACCATATCCT AAATAAGAAT TACAT???AC Euroa.M5_P.breviceps.Vic TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC Ren5_P.breviceps.Vic TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC 81225_P.breviceps.SA TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC CandlP_Vic TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC 80833_P.breviceps.QLD TATTTCATCT ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACAT???AT 80835_P.breviceps.QLD TATTTCATCT ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACAT???AT 16137_P.brevicepsQLD TATTTCATCT ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACAT???AT 85533_P.breviceps.NSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC 85525_P.brevicepsNSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC 85531_P.breviceps.NSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC 85534_P.brevicepsNSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC 16138_P.breviceps.QLD TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TAC?C???AC 85530_P.breviceps.NSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATT ACTATAACCT AATTAAGAAT TACAC???AC P.australis_R9 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT P.australis_D3609 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT P.australis_R10 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT P.australis_B336 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT

148 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 710 720 730 7 40 750 760 770 M19216_P.abidi TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT M21350_P.abidi TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT M27670_P.abidi TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT M30682_Irian.jaya TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT 44768PNG_Waro TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 46098PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 46200PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 45397PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 45398PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT M19975_Tifalmin TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT M19968_Tifalmin TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 49347PNG_KarkarIS TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 49349PNG_Karkar. TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 43395PNG_Noru TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 43193PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 43552PNG_Noru TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 43068PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 43069PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT 43100PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT M42882_kai.Is TACCCCTTTA TTATTCTTTC TTTATGAGGC ATGATTATAA CAAGCTCCAT CTGCCTTCGC CAAACAGACT M42672_kai.Is TACCCCTTTA TTATTCTTTC TTTATGAGGC ATGATTATAA CAAGCTCCAT CTGCCTTCGC CAAACAGACT M20223_Normanby TATCCATTTA TCATTCTTTC CATATGAGGC ATGGTTATAA CTAGCTCCAT CTGCCTTCGC CAAACAGACT M20224_Normanby TATCCATTTA TCATTCTTTC CATATGAGGC ATGGTTATAA CTAGCTCCAT CTGCCTTCGC CAAACAGACT M16002_Wigote TATCCATTTA TTATTCTTTC TATATGAGGC ATAATTATAA CAAGCTCAAT CTGTCTACGC CAAACAGACT 44206PMG_Mt.sulen TATCCGTTTA TTATCCTTTC TATATGAGGT ATAATTATAA CAAGCTCAAT CTGCCTACGC CAAACAGACT 47131PNG_Solriver TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 43650PNG_Ofekaman TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 47133PNG_Solriver TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 47134PNG_Solriver TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 49311PNG_Bundi TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 49310PNG_Bundi TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 49016Gali TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT 27042_P.norfolcensis TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT TTGCCTACGC CAGACAGACT 27085_P.norfolcensis TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCTTACGC CAGACAGACT 85528_P.norfolcensisNSW TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCCTACGC CAGACAGACT P.gracilis_QLD TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCCTACGC CAGACAGACT 29964NT_Melvill.IS TATCCCTTTA TTATCCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCCTACGC CAGACAGACT P.brevicep_27086SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 27102_P.breviceps.SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 81258_P.breviceps.SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT Euroa.M5_P.breviceps.Vic TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT Ren5_P.breviceps.Vic TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 81225_P.breviceps.SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT CandlP_Vic TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 80833_P.breviceps.QLD TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 80835_P.breviceps.QLD TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 16137_P.brevicepsQLD TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT 85533_P.breviceps.NSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT 85525_P.brevicepsNSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT 85531_P.breviceps.NSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT 85534_P.brevicepsNSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT 16138_P.breviceps.QLD TACCCATTTA TTATCCTATC TATATGGGGG ATAATTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT 85530_P.breviceps.NSW TACCCGTTTA TTATCTTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT P.australis_R9 TACCCATTCA TCATCCTATC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC P.australis_D3609 TACCCATTCA TCATCCTATC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC P.australis_R10 TATCCATTTA TCATCCTATC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC P.australis_B336 TATCCATTCA TCATCCTGTC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC

149 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 780 790 800 810 820 830 840 M19216_P.abidi TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC M21350_P.abidi TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC M27670_P.abidi TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC M30682_Irian.jaya TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 44768PNG_Waro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 46098PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 46200PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 45397PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 45398PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC M19975_Tifalmin TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC M19968_Tifalmin TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 49347PNG_KarkarIS TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 49349PNG_Karkar. TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 43395PNG_Noru TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 43193PNG_Yuro TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 43552PNG_Noru TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 43068PNG_Yuro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 43069PNG_Yuro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC 43100PNG_Yuro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC M42882_kai.Is TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG GCTAGTAATC GTAGCAGCCC TTATACAATC M42672_kai.Is TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG GCTAGTAATC GTAGCAGCCC TTATACAATC M20223_Normanby TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTTATT GTAGCAGCCC TTATACAATC M20224_Normanby TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTTATT GTAGCAGCCC TTATACAATC M16002_Wigote TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG ACTAGTAATT GTAGCAGCCC TCATACAATC 44206PMG_Mt.sulen TAAAATCCTT AATCGCTTAC TCTTCAGTAA GCCATATAGG ACTAGTAATT ATAGCAGCTC TTATACAATC 47131PNG_Solriver TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 43650PNG_Ofekaman TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 47133PNG_Solriver TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 47134PNG_Solriver TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 49311PNG_Bundi TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 49310PNG_Bundi TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 49016Gali TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC 27042_P.norfolcensis TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ACTAGTGATC GTAGCTGCCC TTATACAATC 27085_P.norfolcensis TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ACTAGTGATC GTAGCTGCCC TTATACAGTC 85528_P.norfolcensisNSW TAAAATCCTT AATTGCCTAC TCCTCAGTAA GCCATATAGG ACTAGTAATC GTAGCTGCCC TTATACAGTC P.gracilis_QLD TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ATTAGTAATC GTAGCTGCCC TTATACAGTC 29964NT_Melvill.IS TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ACTAGTAATC GTAGCTGCCC TTATACAGTC P.brevicep_27086SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 27102_P.breviceps.SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 81258_P.breviceps.SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC Euroa.M5_P.breviceps.Vic TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC Ren5_P.breviceps.Vic TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 81225_P.breviceps.SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC CandlP_Vic TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 80833_P.breviceps.QLD TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 80835_P.breviceps.QLD TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 16137_P.brevicepsQLD TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC 85533_P.breviceps.NSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC 85525_P.brevicepsNSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC 85531_P.breviceps.NSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC 85534_P.brevicepsNSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC 16138_P.breviceps.QLD TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TTTAGTAATT GTGGCAGCCC TTATACAATC 85530_P.breviceps.NSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC P.australis_R9 TAAAATCACT AATCGCTTAT TCCTCCGTTA GTCACATGGC TCTAGTAATC ATTGCCGCAC TCATACAAAC P.australis_D3609 TAAAATCACT AATCGCTTAT TCCTCCGTTA GTCACATGGC TCTAGTAATC ATTGCCGCAC TCATACAAAC P.australis_R10 TAAAATCACT AATCGCTTAT TCCTCCGTTA GCCACATAGC TCTAGTAATC ATTGCCGCAC TCATACAAAC P.australis_B336 TAAAATCACT AATCGCTTAT TCCTCCGTTA GCCACATAGC TCTAGTAATC ATTGCCGCAC TCATACAAAC

150 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 850 860 870 880 890 900 910 M19216_P.abidi AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC M21350_P.abidi AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC M27670_P.abidi AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC M30682_Irian.jaya AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC 44768PNG_Waro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 46098PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTCA CATCTTCTAT ATTATTTTGT 46200PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 45397PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 45398PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT M19975_Tifalmin TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT M19968_Tifalmin TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 49347PNG_KarkarIS TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 49349PNG_Karkar. TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 43395PNG_Noru TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ACTATTTTGT 43193PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ACTATTTTGT 43552PNG_Noru TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTCA CATCTTCTAT ACTATTTTGT 43068PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 43069PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT 43100PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT M42882_kai.Is AACCCTTAGT TTCATAGGGG CTACAACCCT GATAATTGCA CACGGGCTTA CATCTTCCAT ATTATTTTGT M42672_kai.Is AACCCTTAGT TTCATAGGGG CTACAACCCT GATAATTGCA CACGGGCTTA CATCTTCCAT ATTATTTTGT M20223_Normanby AACCCTCAGT TTCATAGGAG CTACAACCCT TATAATCGCT CACGGACTTA CATCTTCTAT ATTATTTTGT M20224_Normanby AACCCTCAGT TTCATAGGAG CTACAACCCT TATAATCGCT CACGGACTTA CATCTTCTAT ATTATTTTGT M16002_Wigote TACCCTCAGT TTCATAGGGG CTACAACCCT CATAATCGCC CATGGGCTTA CATCCTCCAT ATTATTTTGT 44206PMG_Mt.sulen TACCCTCAGT TTCATAGGGG CTACAACCCT CATAATTGCC CATGGGCTTA CATCCTCCAT ATTATTTTGT 47131PNG_Solriver CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 43650PNG_Ofekaman CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 47133PNG_Solriver CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 47134PNG_Solriver CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 49311PNG_Bundi CACCCTCAGT TTCATAGGGG CTACAACTCT GATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 49310PNG_Bundi CACCCTCAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 49016Gali CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT 27042_P.norfolcensis CACTCTCAGC TTCATAGGGG CTACAACCCT AATAATTGCC CACGGACTTA CATCTTCCAT ATTATTTTGT 27085_P.norfolcensis CACTCTCAGC TTCATAGGGG CTACAACCCT AATAATTGCC CACGGACTTA CATCTTCCAT ATTATTTTGT 85528_P.norfolcensisNSW CACTCTCAGC TTCATAGGGG CTACAACCCT AATAATTGCC CACGGACTTA CATCTTCCAT ATTATTTTGT P.gracilis_QLD CACTCTCAGT TTCATAGGGG CTACAACCCT AATAATTGCC CATGGACTTA CATCTTCCAT ATTATTTTGT 29964NT_Melvill.IS CACTCTCAGT TTCATAGGGG CTACAACCCT AATAATTGCC CATGGACTTA CATCTTCCAT ATTATTTTGT P.brevicep_27086SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 27102_P.breviceps.SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 81258_P.breviceps.SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT Euroa.M5_P.breviceps.Vic CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT Ren5_P.breviceps.Vic CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 81225_P.breviceps.SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT CandlP_Vic CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 80833_P.breviceps.QLD CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 80835_P.breviceps.QLD CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 16137_P.brevicepsQLD CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT 85533_P.breviceps.NSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT 85525_P.brevicepsNSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT 85531_P.breviceps.NSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT 85534_P.brevicepsNSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT 16138_P.breviceps.QLD CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT 85530_P.breviceps.NSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT P.australis_R9 AACCCTAAGT TTCATAGGCG CTACAGCTCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC P.australis_D3609 AACCCTAAGT TTCATAGGCG CTACAGCTCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC P.australis_R10 AACCCTAAGT TTCATAGGCG CTACAGCCCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC P.australis_B336 AACCCTAAGT TTCATAGGCG CTACAGCCCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC

151 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 920 930 940 950 960 970 980 M19216_P.abidi CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC M21350_P.abidi CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC M27670_P.abidi CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC M30682_Irian.jaya CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC 44768PNG_Waro CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 46098PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 46200PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 45397PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 45398PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC M19975_Tifalmin CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC M19968_Tifalmin CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 49347PNG_KarkarIS CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 49349PNG_Karkar. CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 43395PNG_Noru CTTGCTAACA CTAACTATGA ACGTATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 43193PNG_Yuro CTTGCTAACA CTAACTATGA ACGTATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 43552PNG_Noru CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 43068PNG_Yuro CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 43069PNG_Yuro CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC 43100PNG_Yuro CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC M42882_kai.Is CTTGCTAACA CTAACTACG? ?????????? ?????????? ?????????? ?????????? ?????????? M42672_kai.Is CTTGCTAACA CTAACTACGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCCTA CAAACAGCCC M20223_Normanby CTTGCTAACA CTAACTACGA ACGCATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC M20224_Normanby CTTGCTAACA CTAACTACGA ACGCATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC M16002_Wigote CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGGACAA TAATACTAGC TCGAGGCCTA CAAACAGCCC 44206PMG_Mt.sulen CTTGCTAACA CTAACTACGA ACGTATCCAC AGCCGGACAA TAATACTAGC TCGAGGCCTA CAAACAGCCC 47131PNG_Solriver CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 43650PNG_Ofekaman CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 47133PNG_Solriver CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 47134PNG_Solriver CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 49311PNG_Bundi CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 49310PNG_Bundi CTTGCTAACA CTAACTATGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 49016Gali CTTGCTAACA CTAACTATGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC 27042_P.norfolcensis CTTGCTAACA CTAACTATGA ACGTATTCAT AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 27085_P.norfolcensis CTTGCTAACA CTAACTATGA ACGTATTCAT AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC 85528_P.norfolcensisNSW CTTGCTAACA CTAACTATGA ACGCATTCAT AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC P.gracilis_QLD CTTGCTAACA CTAACTATGA ACGTATTCAC AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC 29964NT_Melvill.IS CTTGCTAACA CTAACTATGA ACGTATTCAC AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC P.brevicep_27086SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 27102_P.breviceps.SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 81258_P.breviceps.SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC Euroa.M5_P.breviceps.Vic CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC Ren5_P.breviceps.Vic CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 81225_P.breviceps.SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC CandlP_Vic CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 80833_P.breviceps.QLD CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 80835_P.breviceps.QLD CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 16137_P.brevicepsQLD CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 85533_P.breviceps.NSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 85525_P.brevicepsNSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 85531_P.breviceps.NSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 85534_P.brevicepsNSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 16138_P.breviceps.QLD CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC 85530_P.breviceps.NSW CTCGCCAACA CTAACTATGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC P.australis_R9 CTAGCCAATA CTAACTACGA ACGAATTCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT P.australis_D3609 CTAGCCAATA CTAACTACGA ACGAATTCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT P.australis_R10 CTAGCCAATA CTAACTACGA ACGAATCCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT P.australis_B336 CTAGCCAATA CTAACTACGA ACGAATCCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT

152 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 990 1000 1010 1020 1030 1040 1050 M19216_P.abidi TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT M21350_P.abidi TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT M27670_P.abidi TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT M30682_Irian.jaya TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT 44768PNG_Waro TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 46098PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 46200PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 45397PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 45398PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT M19975_Tifalmin TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT M19968_Tifalmin TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT 49347PNG_KarkarIS TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT 49349PNG_Karkar. TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT 43395PNG_Noru TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 43193PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 43552PNG_Noru TTCCACTTAT ATGCATATGG TGACTTATAG CGAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 43068PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACCT 43069PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACCT 43100PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACCT M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M42672_kai.Is TTCCACTTAT ATGCGTTTGA TGACTAATAG CAAGTCTAAC TAATCTAGCC CTTCCACCAA CAATTAATCT M20223_Normanby TTCCACTTAT ATGCATGTGA TGACTCATAG CAAGCCTTAC TAATCTAGCC CTGCCACCAA CAATTAACCT M20224_Normanby TTCCACTTAT ATGCATGTGA TGACTCATAG CAAGCCTTAC TAATCTAGCC CTGCCACCAA CAATTAACCT M16002_Wigote TTCCACTTAT ATGCATGTGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATTT 44206PMG_Mt.sulen TTCCACTTAT GTGCATGTGA TGACTCATAG CAAGCCTAAC TAATCTAGCT CTCCCACCAA CAATTAATTT 47131PNG_Solriver TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 43650PNG_Ofekaman TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 47133PNG_Solriver TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 47134PNG_Solriver TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 49311PNG_Bundi TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 49310PNG_Bundi TTCCACTTAT ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 49016Gali TTCCACTTAT ATGTATCTGG TGACTCATGG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT 27042_P.norfolcensis TCCCACTCAT ATGTATGTGG TGACTCATAG CAAGCCTAAC TAATCTAGCC CTACCACCAA CAATCAATTT 27085_P.norfolcensis TCCCACTCAT ATGTATGTGG TGACTAATAG CAAGCCTAAC TAATCTAGCC CTACCACCAA CAATCAATTT 85528_P.norfolcensisNSW TCCCACTCAT ATGTATGTGG TGACTAATAG CAAGCCTAAC TAATCTAGCC CTACCACCAA CAATCAATTT P.gracilis_QLD TCCCACTCAT ATGTATGTGG TGACTAATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATCAATTT 29964NT_Melvill.IS TCCCACTCAT GTGTATGTGA TGACTAATAG CAAGCTTAAC TAACCTAGCC CTGCCACCAA CAATCAACTT P.brevicep_27086SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT 27102_P.breviceps.SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT 81258_P.breviceps.SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT Euroa.M5_P.breviceps.Vic TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT Ren5_P.breviceps.Vic TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT 81225_P.breviceps.SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT CandlP_Vic TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT 80833_P.breviceps.QLD TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACAT 80835_P.breviceps.QLD TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACAT 16137_P.brevicepsQLD TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACAT 85533_P.breviceps.NSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT 85525_P.brevicepsNSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT 85531_P.breviceps.NSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAC 85534_P.brevicepsNSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT 16138_P.breviceps.QLD TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT 85530_P.breviceps.NSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT P.australis_R9 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTCGC CAACCTAGCC ATTCCCCCAA CAATCAACCT P.australis_D3609 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTCGC CAACCTAGCC ATTCCCCCAA CAATCAACCT P.australis_R10 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTTGC CAACCTAGCC ATTCCCCCAA CAATCAACCT P.australis_B336 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTTGC CAACCTAGCC ATTCCCCCGA CAATCAACCT

153 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1060 1070 1080 1090 1100 1110 1120 M19216_P.abidi ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA M21350_P.abidi ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA M27670_P.abidi ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA M30682_Irian.jaya ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA 44768PNG_Waro GCTAGGGGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 46098PNG_Namosado GCTAGGGGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 46200PNG_Namosado GCTAGGGGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 45397PNG_Namosado GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 45398PNG_Namosado GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA M19975_Tifalmin GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG M19968_Tifalmin GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG 49347PNG_KarkarIS GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG 49349PNG_Karkar. GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG 43395PNG_Noru GCTAGGAGAA TTGAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG 43193PNG_Yuro GCTAGGAGAA TTGAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG 43552PNG_Noru GCTAGGAGAA TTGAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG 43068PNG_Yuro GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 43069PNG_Yuro GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 43100PNG_Yuro GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M42672_kai.Is ACTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAATTTCT CCATCATCCT CCTAGGCCTA M20223_Normanby ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CTATTATTCT ATTAGGCATA M20224_Normanby ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CTATTATTCT ATTAGGCATA M16002_Wigote ACTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 44206PMG_Mt.sulen ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA 47131PNG_Solriver ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA 43650PNG_Ofekaman ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA 47133PNG_Solriver ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATTATCCT ATTAGGCCTA 47134PNG_Solriver ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATTATCCT ATTAGGCCTA 49311PNG_Bundi TCTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA 49310PNG_Bundi ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAGCTTCT CCATTATCCT ATTAGGCCTA 49016Gali ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA 27042_P.norfolcensis ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA 27085_P.norfolcensis ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA 85528_P.norfolcensisNSW ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA P.gracilis_QLD ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA 29964NT_Melvill.IS ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCATGA TCTAACTTCT CCATCACCCT ATTAGGCCTA P.brevicep_27086SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA 27102_P.breviceps.SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA 81258_P.breviceps.SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA Euroa.M5_P.breviceps.Vic ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA Ren5_P.breviceps.Vic ACTGGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA 81225_P.breviceps.SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA CandlP_Vic ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA 80833_P.breviceps.QLD ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAATTTCT CCATCATTCT CCTGGGCCTA 80835_P.breviceps.QLD ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAATTTCT CCATCATTCT CCTGGGACTA 16137_P.brevicepsQLD ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAATTTCT CCATCATTCT CCTGGGCCTA 85533_P.breviceps.NSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA 85525_P.brevicepsNSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA 85531_P.breviceps.NSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCTTA 85534_P.brevicepsNSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA 16138_P.breviceps.QLD ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA 85530_P.breviceps.NSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGGCTA P.australis_R9 ATTAGGTGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATCATTCT ACTAGGCCTG P.australis_D3609 ATTAGGTGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATCATTCT ACTAGGCCTG P.australis_R10 ACTAGGCGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATCATTCT ACTAGGCCTA P.australis_B336 ACTAGGCGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATTATTCT ACTAGGCCTG

154 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1130 1140 1150 1160 1170 1180 1190 M19216_P.abidi AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC M21350_P.abidi AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC M27670_P.abidi AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC M30682_Irian.jaya AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC 44768PNG_Waro AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 46098PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 46200PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 45397PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 45398PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC M19975_Tifalmin AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC M19968_Tifalmin AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 49347PNG_KarkarIS AATACTGTAA TCACAGGTCT CTACTCGCTT TACATATTTA TTACATCCCA ACGAGGCAAG TTTACACATC 49349PNG_Karkar. AATACTGTAA TCACAGGTCT CTACTCGCTT TACATATTTA TTACATCCCA ACGAGGCAAG TTTACACATC 43395PNG_Noru AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTTACACATC 43193PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTTACACATC 43552PNG_Noru AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTTACACATC 43068PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 43069PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC 43100PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M42672_kai.Is AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTATATCTCA ACGAGGCAAG TTTACACACC M20223_Normanby AATACTGTAA TTACAGGCCT CTATTCACTA TATATATTTG TTACATCCCA ACGAGGCAAA TTTACACACC M20224_Normanby AATACTGTAA TTACAGGCCT CTATTCACTA TATATATTTG TTACATCCCA ACGAGGCAAA TTTACACACC M16002_Wigote AATACTGTAA TCACTGGCCT CTACTCACTA TACATATTTG TCTCATCCCA ACGAGGCAAA TTTACACACC 44206PMG_Mt.sulen AATACTGTAA TCACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC 47131PNG_Solriver AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC 43650PNG_Ofekaman AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTCACACACC 47133PNG_Solriver AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTCACACACC 47134PNG_Solriver AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTCACACACC 49311PNG_Bundi AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC 49310PNG_Bundi AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC 49016Gali AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC 27042_P.norfolcensis AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC 27085_P.norfolcensis AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC 85528_P.norfolcensisNSW AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC P.gracilis_QLD AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC 29964NT_Melvill.IS AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC P.brevicep_27086SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC 27102_P.breviceps.SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC 81258_P.breviceps.SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC Euroa.M5_P.breviceps.Vic AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC Ren5_P.breviceps.Vic AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC 81225_P.breviceps.SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC CandlP_Vic AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC 80833_P.breviceps.QLD AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTCACACATC 80835_P.breviceps.QLD AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTCACACATC 16137_P.brevicepsQLD AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTCACACATC 85533_P.breviceps.NSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC 85525_P.brevicepsNSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC 85531_P.breviceps.NSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC 85534_P.brevicepsNSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC 16138_P.breviceps.QLD AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC 85530_P.breviceps.NSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC P.australis_R9 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTACACC P.australis_D3609 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTACACC P.australis_R10 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTATACC P.australis_B336 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTACACC

155 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1200 1210 1220 1230 1240 1250 1260 M19216_P.abidi ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT M21350_P.abidi ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT M27670_P.abidi ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT M30682_Irian.jaya ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT 44768PNG_Waro ACCTACACCC GATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT 46098PNG_Namosado ACCTACACCC GATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT 46200PNG_Namosado ACCTACACCC GATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT 45397PNG_Namosado ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT 45398PNG_Namosado ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT M19975_Tifalmin ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT M19968_Tifalmin ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 49347PNG_KarkarIS ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 49349PNG_Karkar. ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 43395PNG_Noru ACCTACACCC AATTAACCCA TCATTTACAC GAGAACATAC CCTTATATCT CTTCACCTAA TCCCCCTTAT 43193PNG_Yuro ACCTACACCC AATTAACCCA TCATTTACAC GAGAACATAC CCTTATATCT CTTCACCTAA TCCCCCTTAT 43552PNG_Noru ACCTACACCC AATTAACCCA TCATTTACAC GAGAACATAT CCTTATATCT CTTCACCTAA TCCCCCTTAT 43068PNG_Yuro ACCTATATCC AATTAACCCA TCATTCACAC GAGAACATAC GCTTATATCT CTTCACCTAA TCCCCCTTAT 43069PNG_Yuro ACCTATATCC AATTAACCCA TCATTCACAC GAGAACATAC GCTTATATCT CTTCACCTAA TCCCCCTTAT 43100PNG_Yuro ACCTATATCC AATTAACCCA TCATTCACAC GAGAACATAC GCTTATATCT CTTCACCTAA TCCCCCTTAT M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M42672_kai.Is ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCC CTCCACCTAA TCCCCCTTAC M20223_Normanby ACCTTCACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCATCTAA TCCCCCTTAT M20224_Normanby ACCTTCACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCATCTAA TCCCCCTTAT M16002_Wigote ACCTACGCCC AATTAACCCG TCATTCACAC GAGAACACAT ACTTATGTCT CTTCACCTAA TTCCCCTTAT 44206PMG_Mt.sulen ACCTACGCCC AATTAACCCG TCATTCACAC GAGAACACAT ACTTATAACT CTTCACCTAA TTCCCCTTAT 47131PNG_Solriver ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT 43650PNG_Ofekaman ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT 47133PNG_Solriver ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT 47134PNG_Solriver ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT 49311PNG_Bundi ACCTATACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 49310PNG_Bundi ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 49016Gali ACCTATACCC AATTAACCCG TCATTCACAC GAGAACATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT 27042_P.norfolcensis ACCTATACCC AATTAACCCA TCATTCACGC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 27085_P.norfolcensis ACCTATACCC AATTAACCCA TCATTCACGC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 85528_P.norfolcensisNSW ACCTATACCC AATTAACCCA TCATTCACGC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT P.gracilis_QLD ACCTATACCC GATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT 29964NT_Melvill.IS ACCTATACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT P.brevicep_27086SA ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT 27102_P.breviceps.SA ATCTGTACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT 81258_P.breviceps.SA ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT Euroa.M5_P.breviceps.Vic ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT Ren5_P.breviceps.Vic ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT 81225_P.breviceps.SA ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT CandlP_Vic ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT 80833_P.breviceps.QLD ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAT ACTCATATCC CTTCACCTAG TTCCCCTTAT 80835_P.breviceps.QLD ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAT ACTCATATCC CTTCACCTAG TTCCCCTTAT 16137_P.brevicepsQLD ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAT ACTCATATCC CTTCACCTAG TTCCCCTTAT 85533_P.breviceps.NSW ATCTATACCC AATCAGCCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC 85525_P.brevicepsNSW ATCTATACCC AATCAGCCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC 85531_P.breviceps.NSW ATCTATACCC AATCAGCCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC 85534_P.brevicepsNSW ATCTATACCC AATCAACCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGA TCCCCCTTAC 16138_P.breviceps.QLD ATCTATACCC AATCAACCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC 85530_P.breviceps.NSW ATCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAT ACTTATATCC TTTCACCTGG TCCCCCTTAC P.australis_R9 ACCTATACCC AATCAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC P.australis_D3609 ACCTATACCC AATCAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC P.australis_R10 ACCTGTACCC AATTAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC P.australis_B336 ACCTGTACCC AATCAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC

156 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1270 1280 1290 1300 1310 1320 1330 M19216_P.abidi AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA M21350_P.abidi AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA M27670_P.abidi AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA M30682_Irian.jaya AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA 44768PNG_Waro GATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 46098PNG_Namosado GATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 46200PNG_Namosado GATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 45397PNG_Namosado AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 45398PNG_Namosado AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA M19975_Tifalmin AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TATTGTAAAT ATAGTTTAAC TAAAACATTA M19968_Tifalmin AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TATTGTAAAT ATAGTTTAAC TAAAACATTA 49347PNG_KarkarIS AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 49349PNG_Karkar. AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43395PNG_Noru AATATTATCT ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43193PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43552PNG_Noru AATATTATCT ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43068PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43069PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43100PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M42672_kai.Is AATATTATCC ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA M20223_Normanby AATATTATCT ATCAACCCAA AACTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA M20224_Normanby AATATTATCT ATCAACCCAA AACTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA M16002_Wigote AATACTATCT ATCAGCCCAA AACTCATTCT AGGTATTACG TACTGTAAAT ATAGTTTAAC TAAAACATTA 44206PMG_Mt.sulen AATACTATCT ATTAGCCCAA AACTCATTCT AGGAATTACA TACTGTAAAT ATAGTTTAAT TAAAACATTA 47131PNG_Solriver TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 43650PNG_Ofekaman TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 47133PNG_Solriver TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 47134PNG_Solriver TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 49311PNG_Bundi TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 49310PNG_Bundi TATACTATCT ATCAATCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 49016Gali TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 27042_P.norfolcensis AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 27085_P.norfolcensis AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 85528_P.norfolcensisNSW AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA P.gracilis_QLD AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 29964NT_Melvill.IS AATATTATCT ATTAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA P.brevicep_27086SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 27102_P.breviceps.SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 81258_P.breviceps.SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA Euroa.M5_P.breviceps.Vic AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA Ren5_P.breviceps.Vic AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 81225_P.breviceps.SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA CandlP_Vic AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 80833_P.breviceps.QLD AATATTATCT ATCAACCCAA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 80835_P.breviceps.QLD AATATTATCT ATCAACCCAA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 16137_P.brevicepsQLD AATATTATCT ATCAACCCAA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA 85533_P.breviceps.NSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 85525_P.brevicepsNSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 85531_P.breviceps.NSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 85534_P.brevicepsNSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 16138_P.breviceps.QLD AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA 85530_P.breviceps.NSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA P.australis_R9 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA P.australis_D3609 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA P.australis_R10 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA P.australis_B336 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA

157 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| .... 1340 1350 1360 1370 1380 1390 M19216_P.abidi GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA M21350_P.abidi GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA M27670_P.abidi GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA M30682_Irian.jaya GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA 44768PNG_Waro GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 46098PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 46200PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 45397PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 45398PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA M19975_Tifalmin GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCTAAGAAC TGCTA M19968_Tifalmin GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCTAAGAAC TGCTA 49347PNG_KarkarIS GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 49349PNG_Karkar. GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 43395PNG_Noru GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 43193PNG_Yuro GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 43552PNG_Noru GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 43068PNG_Yuro GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 43069PNG_Yuro GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 43100PNG_Yuro GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ????? M42672_kai.Is GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA M20223_Normanby GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA M20224_Normanby GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA M16002_Wigote GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 44206PMG_Mt.sulen GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 47131PNG_Solriver GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 43650PNG_Ofekaman GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 47133PNG_Solriver GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 47134PNG_Solriver GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 49311PNG_Bundi GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 49310PNG_Bundi GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 49016Gali GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA 27042_P.norfolcensis GATTGTGAAT CTAAAAATAG GAGTTTAAAC CCCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 27085_P.norfolcensis GATTGTGAAT CTAAAAATAG GAGTTTAAAC CCCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA 85528_P.norfolcensisNSW GATTGTGAAT CTAAAAATAG GAGTTTAAAC CCCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA P.gracilis_QLD GATTGTGAAT CTAAAAATAG GAGTTCAAAC CTCCTTGTAA CCCAAGAAAG ACCCAAGAAC TGCTA 29964NT_Melvill.IS GATTGTGGAT CTAAAAATAG GAGTTTAAAC CTCCTTATAT ACC??????? ?????????? ????? P.brevicep_27086SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA 27102_P.breviceps.SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCA?????? ?????????? ????? 81258_P.breviceps.SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA Euroa.M5_P.breviceps.Vic GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA Ren5_P.breviceps.Vic GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA 81225_P.breviceps.SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA CandlP_Vic GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA 80833_P.breviceps.QLD GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACC??????? ?????????? ????? 80835_P.breviceps.QLD GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA 16137_P.brevicepsQLD GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA 85533_P.breviceps.NSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA 85525_P.brevicepsNSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA 85531_P.breviceps.NSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA 85534_P.brevicepsNSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA 16138_P.breviceps.QLD GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT AC???????? ?????????? ????? 85530_P.breviceps.NSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA P.australis_R9 GATTGTGAAT CTAAAAATAA GAGTTTAACC CTCCTTATAT GCCAAGAAAG AACCAAGAAC TGCTA P.australis_D3609 GATTGTGAAT CTAAAAATAA GAGTTTAACC CTCCTTATAT GCCAAGAAAG AACCAAGAAC TGCTA P.australis_R10 GATTGTGAAT CTAAAAATAA GAGTTTAACC CTCCTTATAT GCCAAGAAAG AACCAAGAAC TGCTA

158 Appendices

Appendix 3

The ω-globin sequence alignment of Petaurus samples used in Chapter two, consisting

of Exon2 (1-67), Intron2 (68-596) and Exon3 (597-705)

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 60 70 80

M19216_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M21350_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M21664_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M27670_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 85534_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 85531_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 85525_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 16138_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M30682_IrianJaya ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M19968_NG_Tifalmin ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?TTCAGAGTG AGTACCCCTC M19975_NG_Tifalmin ?????????? ?????????? ?????????? ?????????? ?????????? ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 44206_NG_Mt.sulen GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M16002_NG_Wigote GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M20223_Normanby.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 49347_NG_Karkar.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 49310_NG_Bundi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 43100_NG_Yuro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC 44068_NG_Yuro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC 46200_NG_Namosado GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC 43552_NG_Noru GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC 44768_NG_Waro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC 46098_NG_Namosado GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC 29964_NT GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 49016_NG_Gali GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 43193_NG_Yuro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 43650_NG_Ofekaman GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 49311_NG_Bundi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 81225_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC REN5_P.brevicepsVic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC EuroaM5_P.brevicepsVic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC CandlP_P.brevicepsVic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCTCAGAA CTTCAGAGTG AGTACCCCTC 27102_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 27086_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 81258_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 27085_P.norfolcensisSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 27042_P.norfolcensisSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC P.gracilisQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 16137_P.brevicepsQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M42672_Kai.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC M20224_Normanby.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 49349_NG_Karkar.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 47134_NG_Solriver GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 47131_NG_Solriver GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 47133_NG_Solriver GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 85533_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 42674_Kai.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 85530_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 80833_P.brevicepsQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC 80835_P.brevicepsQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC R9_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC R10_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC

159 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 90 100 110 120 130 140 150 160

M19216_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M21350_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M21664_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M27670_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 85534_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 85531_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 85525_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 16138_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M30682_IrianJaya ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? M19968_NG_Tifalmin TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M19975_NG_Tifalmin TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 44206_NG_Mt.sulen TGCCATTTCC CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M16002_NG_Wigote TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M20223_Normanby.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 49347_NG_Karkar.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 49310_NG_Bundi TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 43100_NG_Yuro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 44068_NG_Yuro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 46200_NG_Namosado TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 43552_NG_Noru TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 44768_NG_Waro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 46098_NG_Namosado TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 29964_NT TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 49016_NG_Gali TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 43193_NG_Yuro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 43650_NG_Ofekaman TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 49311_NG_Bundi TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 81225_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA REN5_P.brevicepsVic TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA EuroaM5_P.brevicepsVic TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA CandlP_P.brevicepsVic TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 27102_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 27086_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 81258_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 27085_P.norfolcensisSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 27042_P.norfolcensisSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA P.gracilisQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 16137_P.brevicepsQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M42672_Kai.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA M20224_Normanby.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 49349_NG_Karkar.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 47134_NG_Solriver TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 47131_NG_Solriver TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 47133_NG_Solriver TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 85533_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 42674_Kai.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 85530_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 80833_P.brevicepsQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA 80835_P.brevicepsQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA R9_P.australis TGCCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA R10_P.australis TGCCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

160 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 170 180 190 200 210 220 230 240

M19216_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M21350_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M21664_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M27670_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 85534_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 85531_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 85525_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 16138_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M30682_IrianJaya -CCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M19968_NG_Tifalmin ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M19975_NG_Tifalmin ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 44206_NG_Mt.sulen ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M16002_NG_Wigote ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M20223_Normanby.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 49347_NG_Karkar.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 49310_NG_Bundi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 43100_NG_Yuro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 44068_NG_Yuro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 46200_NG_Namosado ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 43552_NG_Noru ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 44768_NG_Waro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 46098_NG_Namosado ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 29964_NT ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 49016_NG_Gali ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 43193_NG_Yuro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 43650_NG_Ofekaman ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 49311_NG_Bundi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 81225_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT REN5_P.brevicepsVic ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT EuroaM5_P.brevicepsVic ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CandlP_P.brevicepsVic ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 27102_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 27086_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 81258_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 27085_P.norfolcensisSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 27042_P.norfolcensisSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT P.gracilisQLD ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 16137_P.brevicepsQLD ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M42672_Kai.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT M20224_Normanby.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 49349_NG_Karkar.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 47134_NG_Solriver ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 47131_NG_Solriver ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 47133_NG_Solriver ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 85533_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 42674_Kai.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 85530_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACTT 80833_P.brevicepsQLD ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT 80835_P.brevicepsQLD ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT R9_P.australis ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT R10_P.australis ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT

161 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 250 260 270 280 290 300 310 320

M19216_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M21350_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M21664_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M27670_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 85534_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 85531_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 85525_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 16138_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M30682_IrianJaya CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M19968_NG_Tifalmin CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M19975_NG_Tifalmin CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 44206_NG_Mt.sulen CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M16002_NG_Wigote CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M20223_Normanby.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 49347_NG_Karkar.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 49310_NG_Bundi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 43100_NG_Yuro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 44068_NG_Yuro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 46200_NG_Namosado CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 43552_NG_Noru CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 44768_NG_Waro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 46098_NG_Namosado CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 29964_NT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 49016_NG_Gali CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 43193_NG_Yuro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 43650_NG_Ofekaman CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 49311_NG_Bundi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 81225_P.brevicepsSA CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT REN5_P.brevicepsVic CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT EuroaM5_P.brevicepsVic CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT CandlP_P.brevicepsVic CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 27102_P.brevicepsSA CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 27086_P.brevicepsSA CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 81258_P.brevicepsSA CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 27085_P.norfolcensisSA CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 27042_P.norfolcensisSA CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT P.gracilisQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 16137_P.brevicepsQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M42672_Kai.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT M20224_Normanby.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 49349_NG_Karkar.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 47134_NG_Solriver CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTATTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 47131_NG_Solriver CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTATTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 47133_NG_Solriver CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTATTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 85533_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 42674_Kai.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 85530_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 80833_P.brevicepsQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT 80835_P.brevicepsQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT R9_P.australis CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC TTTTGCTCCC TGGGAATGTT R10_P.australis CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC TTTTGCTCCC TGGGAATGTT

162 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 330 340 350 360 370 380 390 400

M19216_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M21350_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M21664_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M27670_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85534_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85531_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85525_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 16138_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M30682_IrianJaya GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M19968_NG_Tifalmin GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M19975_NG_Tifalmin GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 44206_NG_Mt.sulen GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M16002_NG_Wigote GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M20223_Normanby.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 49347_NG_Karkar.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 49310_NG_Bundi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 43100_NG_Yuro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 44068_NG_Yuro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 46200_NG_Namosado GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 43552_NG_Noru GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 44768_NG_Waro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 46098_NG_Namosado GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 29964_NT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 49016_NG_Gali GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 43193_NG_Yuro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 43650_NG_Ofekaman GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 49311_NG_Bundi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 81225_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT REN5_P.brevicepsVic GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT EuroaM5_P.brevicepsVic GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT CandlP_P.brevicepsVic GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27102_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27086_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 81258_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27085_P.norfolcensisSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27042_P.norfolcensisSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT P.gracilisQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 16137_P.brevicepsQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M42672_Kai.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M20224_Normanby.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 49349_NG_Karkar.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 47134_NG_Solriver GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 47131_NG_Solriver GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 47133_NG_Solriver GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85533_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 42674_Kai.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85530_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80833_P.brevicepsQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80835_P.brevicepsQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT R9_P.australis GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT R10_P.australis GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

163 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 410 420 430 440 450 460 470 480

M19216_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M21350_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M21664_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M27670_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 85534_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 85531_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 85525_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 16138_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M30682_IrianJaya AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M19968_NG_Tifalmin AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M19975_NG_Tifalmin AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 44206_NG_Mt.sulen AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M16002_NG_Wigote AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M20223_Normanby.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 49347_NG_Karkar.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 49310_NG_Bundi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 43100_NG_Yuro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 44068_NG_Yuro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 46200_NG_Namosado AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 43552_NG_Noru AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 44768_NG_Waro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 46098_NG_Namosado AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 29964_NT AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 49016_NG_Gali AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 43193_NG_Yuro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 43650_NG_Ofekaman AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 49311_NG_Bundi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 81225_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA REN5_P.brevicepsVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA EuroaM5_P.brevicepsVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA CandlP_P.brevicepsVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 27102_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 27086_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 81258_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 27085_P.norfolcensisSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 27042_P.norfolcensisSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA P.gracilisQLD AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 16137_P.brevicepsQLD AAAAC-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M42672_Kai.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA M20224_Normanby.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 49349_NG_Karkar.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 47134_NG_Solriver AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 47131_NG_Solriver AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 47133_NG_Solriver AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 85533_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 42674_Kai.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 85530_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 80833_P.brevicepsQLD AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA 80835_P.brevicepsQLD AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA R9_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA R10_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA

164 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 490 500 510 520 530 540 550 560

M19216_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M21350_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M21664_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M27670_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 85534_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 85531_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 85525_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 16138_P.brevicepsNSW GTCCAGCCCT CAGCCTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA M30682_IrianJaya GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M19968_NG_Tifalmin GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M19975_NG_Tifalmin GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 44206_NG_Mt.sulen GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M16002_NG_Wigote GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M20223_Normanby.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 49347_NG_Karkar.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 49310_NG_Bundi GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 43100_NG_Yuro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 44068_NG_Yuro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 46200_NG_Namosado GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 43552_NG_Noru GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 44768_NG_Waro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 46098_NG_Namosado GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 29964_NT GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 49016_NG_Gali GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 43193_NG_Yuro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 43650_NG_Ofekaman GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 49311_NG_Bundi GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 81225_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA REN5_P.brevicepsVic GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA EuroaM5_P.brevicepsVic GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA CandlP_P.brevicepsVic GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 27102_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 27086_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 81258_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 27085_P.norfolcensisSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 27042_P.norfolcensisSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA P.gracilisQLD GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 16137_P.brevicepsQLD GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M42672_Kai.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA M20224_Normanby.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 49349_NG_Karkar.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 47134_NG_Solriver GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 47131_NG_Solriver GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 47133_NG_Solriver GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA 85533_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA 42674_Kai.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG C????????? ?????????? ?????????? ?????????? 85530_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA 80833_P.brevicepsQLD GTCCAACCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA 80835_P.brevicepsQLD GTCCAACCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA R9_P.australis GTCCAGCCCT CAGGTTCCCC CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA R10_P.australis GTCCAGCCCT CAGGTTCCCC CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

165 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 570 580 590 600 610 620 630 640

M19216_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M21350_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M21664_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M27670_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 85534_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 85531_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 85525_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 16138_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M30682_IrianJaya GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M19968_NG_Tifalmin GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M19975_NG_Tifalmin GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 44206_NG_Mt.sulen GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M16002_NG_Wigote GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M20223_Normanby.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 49347_NG_Karkar.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 49310_NG_Bundi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 43100_NG_Yuro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 44068_NG_Yuro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 46200_NG_Namosado GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 43552_NG_Noru GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 44768_NG_Waro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 46098_NG_Namosado GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 29964_NT GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 49016_NG_Gali GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 43193_NG_Yuro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 43650_NG_Ofekaman GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 49311_NG_Bundi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 81225_P.brevicepsSA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG REN5_P.brevicepsVic GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG EuroaM5_P.brevicepsVic GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CandlP_P.brevicepsVic GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 27102_P.brevicepsSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 27086_P.brevicepsSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 81258_P.brevicepsSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 27085_P.norfolcensisSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 27042_P.norfolcensisSA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG P.gracilisQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 16137_P.brevicepsQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M42672_Kai.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG M20224_Normanby.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 49349_NG_Karkar.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 47134_NG_Solriver GTTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 47131_NG_Solriver GTTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 47133_NG_Solriver GTTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 85533_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 42674_Kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 85530_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 80833_P.brevicepsQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG 80835_P.brevicepsQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG R9_P.australis GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG R10_P.australis GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG

166 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| .. 650 660 670 680 690 700

M19216_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M21350_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M21664_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M27670_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85534_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85531_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85525_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 16138_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M30682_IrianJaya CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M19968_NG_Tifalmin CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M19975_NG_Tifalmin CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 44206_NG_Mt.sulen CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M16002_NG_Wigote CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M20223_Normanby.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 49347_NG_Karkar.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 49310_NG_Bundi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 43100_NG_Yuro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 44068_NG_Yuro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 46200_NG_Namosado CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 43552_NG_Noru CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 44768_NG_Waro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 46098_NG_Namosado CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 29964_NT CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 49016_NG_Gali CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 43193_NG_Yuro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 43650_NG_Ofekaman CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 49311_NG_Bundi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 81225_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC REN5_P.brevicepsVic CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC EuroaM5_P.brevicepsVic CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC CandlP_P.brevicepsVic CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27102_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27086_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 81258_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27085_P.norfolcensisSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27042_P.norfolcensisSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGG?????????? ?????????? ???????????? P.gracilisQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 16137_P.brevicepsQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M42672_Kai.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M20224_Normanby.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 49349_NG_Karkar.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 47134_NG_Solriver CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 47131_NG_Solriver CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 47133_NG_Solriver CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85533_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 42674_Kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ????? 85530_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80833_P.brevicepsQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80835_P.brevicepsQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC R9_P.australis CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC R10_P.australis CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

167 Appendices

Appendix 4

Sample and locality data for P. breviceps and outgroup specimens sequenced and phylogenetically analysed in Chapter three. DNA Ids are provided from Biological Tissue Collection (ABTC), the South Australian Museum; Australian Museum registration numbers (M), Queensland Museum registration numbers (QM), and field numbers (^).

Species Location DNA Id Latitude Longitude P. North of Armidale- NSW ABTC 85523 -30.544 151.62 breviceps Port Macquarie-NSW ABTC 85524 -33.01 150.03 North of Sydney- NSW ABTC 85525 -33.63 151.28 Bulahdelah State Forest- ABTC 85526 -32.41 152.23 NSW North of Sydney- NSW ABTC 85527 -33.45 151.44 Burrel Creek west of ABTC 85529 -29.467 150.167 Taree- NSW Lismore- NSW ABTC 85530 -28.82 153.28 Thornleigh, Sydney- NSW ABTC 85531 -33.72 151.07 Yarramalong- NSW ABTC 85532 -33.22 151.28 Martinsville- NSW ABTC 85533 -33.05 151.40 Byron Bay- NSW ABTC 85534 -28.63 153.61 JF8^ Jingellic Nature Reserve- JF9^ -35.91 147.77 NSW JF72^

Bombala, southern NSW W -36.91 149.23

Viola St Redland -QLD QM JM 16138 -27.63 153.25

Carnarvon National Park- QM JM 16137 -24.973 147.99 QLD

ABTC 80833 ABTC 80834 Tumoulin State Forest-QLD ABTC 80835 -17.61 145.50 ABTC 80836 ABTC 80837 Mulgrave State Forest-QLD ABTC 7688 (M16) -19.85 147.167 159/160^ Mullers Creek-QLD -18.43 146.15 419/420^ Porters Creek-QLD 343/344^ -18.44 146.12 Penola- SA ABTC 27028 -37.3521 140.69 ABTC 27205 Western Flat- SA ABTC 27102 -36.522 140.74 ABTC 27086 Grundys- SA ABTC 81225 -37.70 140.73 ABTC 81258 Snowgum- SA -37.93 140.93

Yangery-SA ABTC 81260 -37.58 140.89 ABTC 81261 Paltridges- SA -37.61 140.92 ABTC 83887 Bourne- SA ABTC 81265 -37.41 140.68

Topperwiens- SA ABTC 83889 -37.53 140.96

168 Appendices

P. Location DNA Id Latitude Longitude breviceps ABTC 83890 The Heath- SA -37.58 140.91

Mt Meredith- SA ABTC 83896 -37.67 140.87 Nangwarry- SA N1^ -37.47 140.88 Alaman –SA ABTC 73656 -36.72 140.32 Bordertown-SA Dead-BT^ Casterton Rd –SA C9^ -37.76 140.93 Deadmans Swamp-SA DS24^ -37.15 140.84 WF2^ Warrenbayne-VIC -36.64 145.83 WF3^ Ren5^ Ren3^ Rennick State Forest-VIC -37.90 140.99 Ren2^ Ren6^ M65^ Erskines Bushland F25^ -36.86 143.59 Reserve1- VIC M57^ alive^ Erskines Bushland Dead3^ -36.87 143.61 Reserve2- VIC F76^ Bet Bet Creek Bushland M50^ -36.917 143.76 Reserve- VIC M52^ Gladstones Bushland GoldstoneDead3^ -37.005 143.62 Reserve- VIC Paddy Ranges Sate Forest- FY2^ -37.08 143.7 VIC MZ2^ M5^ Euroa- VIC M1^ -36.775 145.5 F1^ F12^ Wareek- VIC F13^ -37.07 143.61 F72^ Glenelg River- VIC ABTC7606 -38.052 141.00 P. ABTC76608 (R9) australis Rennick State Forest-VIC -37.90 140.99 ABTC76609 (R10)

P. abidi Papua New Guinea M 19216 -3.42 142.1

169 Appendices

Appendix 5

Sequence alignment of combined mitochondrial genes ND2 (1- 695) and ND4 (696- 1393) for 63 individuals of Petaurus breviceps used in Chapter three

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 60 70 80 85525_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 85526 NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 85533_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 26718_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 85531_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 85529_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 85534_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 16138_Qld CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT 85530_NSW CATCCCACTC TCATCTGGCA TAGTTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT M116_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 85527_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 16137_Qld CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 80833_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 80837_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 80835_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 343.344_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 80834_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 80836_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 85523_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Jf8_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Jf72_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT W_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Jf9_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 73656_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATTTCACCAT 83890_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 27086_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 81258_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 83896_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT N1_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 83889_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 83887_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Ren3_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 7606_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 27028_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 81265_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 81261_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 81260_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 27102_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT DS24_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Ren2_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT C9_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Reserve1.F25_Vic CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT PaddyR.MZ2_Vic CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Reserve2.dead3_Vic CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Ren5_SA CATCCCACTA TCATCTGGCA TTATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Ren6_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Wf2_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Wf3_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 27205_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Wareek.F13_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Reserve1.M65_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Wareek.F72_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT CandlP_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT 81225_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Euroa.M5_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Euroa.M1_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT PaddyR.FY2_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT BetBet.M50_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Goldstone.dead3_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Euroa.F1_Vic CATCCCACTA TCATCTGGCA TAATCTTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Betbet.F76_Vic CATCCCACTA TCATCAGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Betbet.M52_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Wareek.F12_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT Reserve1.M57_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT M19216_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA ATCTCACCAT R9_P.australis AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA ATCTCTCCAT R10_P.australis AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA ATCTCTCCAT

170 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 90 100 110 120 130 140 150 160 85525_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 85526 NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GTGGACTTAA TCAAACCCAA 85533_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 26718_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 85531_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 85529_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 85534_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 16138_Qld CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA 85530_NSW CCCTAAACAT AGAAATCCTA ATCATACTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAGACCCAA M116_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA 85527_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA 16137_Qld CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA 80833_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA 80837_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA 80835_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA 343.344_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA 80834_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA 80836_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA 85523_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA Jf8_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA Jf72_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA W_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA Jf9_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA 73656_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 83890_SA CTCTAAACAT AAAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 27086_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 81258_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 83896_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA N1_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 83889_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 83887_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Ren3_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 7606_VIC CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 27028_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 81265_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 81261_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 81260_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 27102_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA DS24_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Ren2_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA C9_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Reserve1.F25_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA PaddyR.MZ2_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Reserve2.dead3_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Ren5_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Ren6_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Wf2_VIC CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Wf3_VIC CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA 27205_SA CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Wareek.F13_Vic CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Reserve1.M65_Vic CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Wareek.F72_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA CandlP_VIC CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA 81225_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA Euroa.M5_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA Euroa.M1_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA PaddyR.FY2_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA BetBet.M50_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA Goldstone.dead3_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA Euroa.F1_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA Betbet.F76_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA Betbet.M52_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA Wareek.F12_Vic CTCTAAACAT AGAAATTCTA ATTATATTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA Reserve1.M57_Vic CTCTAAACAT AGAAATTCTA ATTATATTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA M19216_P.abidi CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG GCGGACTTAA TCAGACCCAC R9_P.australis CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG GGGGCCTAAA CCAAACCCAA R10_P.australis CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG GGGGCCTAAA CCAAACCCAA

171 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 170 180 190 200 210 220 230 240 85525_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 85526 NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC CTAATTAACC CAAACTTAAT 85533_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 26718_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 85531_NSW ATACGAAAAA TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 85529_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 85534_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 16138_Qld ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT 85530_NSW ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATTATCGCC ATAATTAACC CAAACTTAAT M116_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT 85527_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT 16137_Qld ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT 80833_QLD ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACCTAAT 80837_QLD ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACCTAAT 80835_QLD ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACCTAAT 343.344_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT 80834_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT 80836_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT 85523_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Jf8_NSW ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Jf72_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT W_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Jf9_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 73656_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 83890_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 27086_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 81258_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 83896_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT N1_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 83889_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 83887_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Ren3_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 7606_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 27028_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 81265_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 81261_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 81260_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 27102_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT DS24_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Ren2_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT C9_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Reserve1.F25_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT PaddyR.MZ2_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAATC CAAACTTAAT Reserve2.dead3_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAATC CAAACTTAAT Ren5_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Ren6_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Wf2_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTTTTGCC CTAATCAACC CAAACTTAAT Wf3_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTTTTGCC CTAATCAACC CAAACTTAAT 27205_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Wareek.F13_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Reserve1.M65_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Wareek.F72_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT CandlP_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT 81225_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Euroa.M5_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Euroa.M1_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT PaddyR.FY2_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT BetBet.M50_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Goldstone.dead3_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Euroa.F1_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Betbet.F76_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Betbet.M52_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACCTAAT Wareek.F12_Vic ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT Reserve1.M57_Vic ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT M19216_P.abidi TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT AATTATTGCC CTTATTAACC CAAACTTAAC R9_P.australis TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT AATTATCGTC CTCATCAACC CTGACTTAAC R10_P.australis TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT AATTATCGTC CTCATCAACC CTGACTTAAC

172 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 250 260 270 280 290 300 310 320 85525_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 85526 NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACGAAAATTA 85533_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 26718_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 85531_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 85529_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 85534_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 16138_Qld AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA 85530_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA M116_QLD AATTCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 85527_NSW AATTCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 16137_Qld AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 80833_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 80837_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 80835_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 343.344_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 80834_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 80836_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 85523_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACATTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACAAAAATCA Jf8_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA Jf72_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA W_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Jf9_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA 73656_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 83890_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 27086_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 81258_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 83896_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA N1_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 83889_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 83887_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Ren3_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 7606_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 27028_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 81265_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 81261_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 81260_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA 27102_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA DS24_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Ren2_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA C9_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Reserve1.F25_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA PaddyR.MZ2_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATATTCAACA ACGAAAATCA Reserve2.dead3_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATATTCAACA ACGAAAATCA Ren5_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Ren6_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Wf2_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA Wf3_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA 27205_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Wareek.F13_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Reserve1.M65_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Wareek.F72_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA CandlP_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA 81225_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA Euroa.M5_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Euroa.M1_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA PaddyR.FY2_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA BetBet.M50_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Goldstone.dead3_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Euroa.F1_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Betbet.F76_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACGCTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Betbet.M52_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Wareek.F12_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA Reserve1.M57_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA M19216_P.abidi CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA R9_P.australis CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA R10_P.australis CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA

173 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 330 340 350 360 370 380 390 400 85525_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 85526 NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 85533_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 26718_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 85531_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 85529_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 85534_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA 16138_Qld AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGATTA 85530_NSW AATCAATTAG CAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA M116_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCTCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 85527_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCTCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 16137_Qld AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 80833_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 80837_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 80835_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 343.344_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 80834_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 80836_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC AATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA 85523_NSW AATCAATCAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATTATT TTCCTTACCC TCCTCTCATT AGGAGGACTA Jf8_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGACTA Jf72_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGGCTA W_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGACTA Jf9_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGGCTA 73656_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 83890_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 27086_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 81258_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 83896_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG N1_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 83889_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 83887_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Ren3_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 7606_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 27028_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 81265_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 81261_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 81260_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 27102_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG DS24_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Ren2_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG C9_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Reserve1.F25_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG PaddyR.MZ2_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Reserve2.dead3_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Ren5_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Ren6_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Wf2_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Wf3_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 27205_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Wareek.F13_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Reserve1.M65_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Wareek.F72_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CandlP_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG 81225_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Euroa.M5_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Euroa.M1_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG PaddyR.FY2_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG BetBet.M50_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Goldstone.dead3_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Euroa.F1_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Betbet.F76_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG Betbet.M52_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA Wareek.F12_Vic AATCAATCAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA Reserve1.M57_Vic AATCAATCAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA M19216_P.abidi AATCAATCAG CAACCTATGA AACAAATCAA CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA R9_P.australis AATCAATTAG CAACCTATGA AGCAAATCAA CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA R10_P.australis AATCAATTAG CAACCTATGA AGCAAATCAA CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA

174 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 410 420 430 440 450 460 470 480 85525_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT 85526 NSW CCACCACTAA CTGGATTCAT GCCAAAATGA CTAATTCTAC AAGAACTAAT CATTAACAAC AATCCCACAA TAGCCATTGT 85533_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT 26718_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT 85531_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCAACAA TAGCTATTGT 85529_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT 85534_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT 16138_Qld CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT 85530_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT M116_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 85527_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 16137_Qld CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 80833_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 80837_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 80835_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 343.344_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTAT 80834_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCGCCA TAGCCATTGT 80836_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 85523_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Jf8_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Jf72_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT W_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Jf9_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 73656_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 83890_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 27086_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 81258_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 83896_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT N1_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 83889_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 83887_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Ren3_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 7606_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 27028_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 81265_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 81261_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 81260_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 27102_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT DS24_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Ren2_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT C9_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Reserve1.F25_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT PaddyR.MZ2_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Reserve2.dead3_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Ren5_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Ren6_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Wf2_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Wf3_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 27205_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Wareek.F13_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Reserve1.M65_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Wareek.F72_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT CandlP_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT 81225_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Euroa.M5_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Euroa.M1_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT PaddyR.FY2_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT BetBet.M50_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACTA TAGCCATTGT Goldstone.dead3_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Euroa.F1_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Betbet.F76_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Betbet.M52_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT Wareek.F12_Vic CCACCACTAA CTGGATTTAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCTACCA TAGCCATTGT Reserve1.M57_Vic CCACCACTAA CTGGATTTAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCTACCA TAGCCATTGT M19216_P.abidi CCTCCACTAA CCGGATTTAT ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT R9_P.australis CCCCCGCTAA CCGGATTTAT ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT R10_P.australis CCCCCGCTAA CCGGATTTAT ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT

175 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 490 500 510 520 530 540 550 560 85525_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85526 NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85533_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 26718_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85531_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85529_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85534_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 16138_Qld AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA 85530_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGCATCATC CCTAACAATG TTTCCAACCA M116_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 85527_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 16137_Qld AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80833_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80837_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80835_QLD AATGGCCCTC TCAGCCCTAC TAAACCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 343.344_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80834_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 80836_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 85523_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Jf8_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Jf72_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA W_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Jf9_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 73656_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 83890_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 27086_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81258_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 83896_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA N1_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 83889_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 83887_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Ren3_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 7606_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 27028_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81265_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81261_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81260_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 27102_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA DS24_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Ren2_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA C9_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Reserve1.F25_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA PaddyR.MZ2_Vic AATAGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Reserve2.dead3_Vic AATAGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Ren5_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Ren6_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Wf2_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Wf3_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 27205_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Wareek.F13_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Reserve1.M65_Vic AATAGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Wareek.F72_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA CandlP_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA 81225_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Euroa.M5_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Euroa.M1_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA PaddyR.FY2_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA BetBet.M50_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Goldstone.dead3_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Euroa.F1_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Betbet.F76_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Betbet.M52_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA Wareek.F12_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATTT ACGTATCATC ACTAACAATG TTTCCAACCA Reserve1.M57_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATTT ACGTATCATC ACTAACAATG TTTCCAACCA M19216_P.abidi AATAGCTCTC TCAGCTCTAC TAAACCTATT TTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA R9_P.australis AATAGCCCTA TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA R10_P.australis AATAGCCCTA TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA

176 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 570 580 590 600 610 620 630 640 85525_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC TATTTCATCC 85526 NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC 85533_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC TATTTCATCC 26718_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC 85531_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC 85529_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA ATCCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC 85534_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC 16138_Qld ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACCAAT TTAATTCCTA TTCTGACTAC TATTTCATCC 85530_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAGTAAA AACCACTAAT TTAATTCCTA CCCTGACTAC TATTTCATCC M116_QLD ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 85527_NSW ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 16137_Qld ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 80833_QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 80837_QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 80835_QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AGCCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 343.344_QLD ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 80834_QLD ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 80836_QLD ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT 85523_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT Jf8_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT Jf72_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT W_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT Jf9_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT 73656_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 83890_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 27086_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 81258_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 83896_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA N1_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 83889_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 83887_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Ren3_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 7606_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 27028_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 81265_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 81261_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 81260_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 27102_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA DS24_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Ren2_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA C9_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Reserve1.F25_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA PaddyR.MZ2_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Reserve2.dead3_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Ren5_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Ren6_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Wf2_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Wf3_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 27205_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Wareek.F13_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Reserve1.M65_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Wareek.F72_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA CandlP_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA 81225_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Euroa.M5_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Euroa.M1_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA PaddyR.FY2_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA BetBet.M50_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Goldstone.dead3_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Euroa.F1_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Betbet.F76_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Betbet.M52_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA Wareek.F12_Vic ACAATAACTT AAAACACCAC TGATTCTTCA CCCAAACAAA AACCACTAAT ATAATCCCCA CCCTAACTAC TATTTCATCT Reserve1.M57_Vic ACAATAACTT AAAACACCAC TGATTCTTCA CCCAAACAAA AACCACTAAT ATAATCCCCA CCCTAACTAC TATTTCATCT M19216_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT CATCTCATCT R9_P.australis ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT CATTTCATCA R10_P.australis ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT CATTTCATCA

177 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 650 660 670 680 690 700 710 720 85525_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT 85526 NSW ATATTACTCC CATTATCTCC AATCCTCATT ACTATAACCT AATTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 85533_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT 26718_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AACTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT 85531_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT 85529_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT 85534_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT 16138_Qld ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TAC?CACTAC CCATTTATTA TCCTATCTAT 85530_NSW ATATTACTCC CATTATCTCC AATCCTCATT ACTATAACCT AATTAAGAAT TACACACTAC CCGTTTATTA TCTTATCTAT M116_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 85527_NSW ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 16137_Qld ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 80833_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 80837_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 80835_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 343.344_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 80834_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 80836_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT 85523_NSW ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT Jf8_NSW ATACTACTCC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Jf72_NSW ATACTACTCC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACA??CTAC CCATTTATTA TCCTTTCTAT W_NSW ATACTACTTC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Jf9_NSW ATACTACTCC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 73656_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 83890_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 27086_SA ATACTACTCC CATTAACCCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 81258_SA ATACTACTCC CATTAACTCC AATCCTCATT ACCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 83896_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT N1_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 83889_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 83887_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Ren3_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 7606_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 27028_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 81265_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 81261_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 81260_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 27102_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT DS24_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Ren2_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT C9_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Reserve1.F25_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT PaddyR.MZ2_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Reserve2.dead3_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACA?ACTAC CCATTTATTA TCCTTTCTAT Ren5_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Ren6_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Wf2_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Wf3_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 27205_SA ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Wareek.F13_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Reserve1.M65_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Wareek.F72_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT CandlP_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT 81225_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Euroa.M5_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Euroa.M1_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT PaddyR.FY2_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT BetBet.M50_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Goldstone.dead3_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Euroa.F1_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Betbet.F76_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Betbet.M52_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT Wareek.F12_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATTATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCAAT Reserve1.M57_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATTATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCAAT M19216_P.abidi ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACATACTAC CCATTCATCA TCCTTTCCAT R9_P.australis ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACATATTAC CCATTCATCA TCCTATCCAT R10_P.australis ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACATATTAT CCATTTATCA TCCTATCCAT

178 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 730 740 750 760 770 780 790 800 85525_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 85526 NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 85533_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 26718_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 85531_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 85529_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 85534_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 16138_Qld ATGGGGGATA ATTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC 85530_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC M116_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 85527_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 16137_Qld ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 80833_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 80837_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 80835_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 343.344_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 80834_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 80836_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 85523_NSW ATGAGGAATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Jf8_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCTTACTCT TCAGTAAGTC Jf72_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC W_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Jf9_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 73656_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 83890_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 27086_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 81258_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 83896_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC N1_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 83889_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 83887_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Ren3_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 7606_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 27028_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 81265_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 81261_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 81260_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 27102_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC DS24_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Ren2_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC C9_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Reserve1.F25_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC PaddyR.MZ2_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Reserve2.dead3_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Ren5_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Ren6_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Wf2_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Wf3_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC 27205_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Wareek.F13_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Reserve1.M65_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Wareek.F72_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC CandlP_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGCC 81225_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Euroa.M5_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Euroa.M1_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC PaddyR.FY2_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC BetBet.M50_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Goldstone.dead3_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Euroa.F1_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Betbet.F76_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Betbet.M52_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Wareek.F12_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC Reserve1.M57_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC M19216_P.abidi ATGAGGCATA ATTATAACAA GTTCTATTTG CCTCCGCCAA ACAGACTTAA AATCTTTAAT CGCCTACTCT TCAGTAAGCC R9_P.australis ATGGGGCATG ATCATAACAA GCTCTATCTG CCTACGCCAA ACAGACCTAA AATCACTAAT CGCTTATTCC TCCGTTAGTC R10_P.australis ATGGGGCATG ATCATAACAA GCTCTATCTG CCTACGCCAA ACAGACCTAA AATCACTAAT CGCTTATTCC TCCGTTAGCC

179 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 810 820 830 840 850 860 870 880 85525_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 85526 NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 85533_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 26718_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 85531_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 85529_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 85534_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 16138_Qld ACATAGGTTT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC 85530_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC M116_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 85527_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 16137_Qld ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 80833_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 80837_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATCGCCCAC 80835_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 343.344_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 80834_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 80836_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 85523_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Jf8_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC Jf72_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC W_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC Jf9_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC 73656_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 83890_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 27086_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 81258_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 83896_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC N1_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 83889_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 83887_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Ren3_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 7606_VIC ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 27028_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 81265_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 81261_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 81260_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 27102_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC DS24_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Ren2_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC C9_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Reserve1.F25_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC PaddyR.MZ2_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Reserve2.dead3_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Ren5_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Ren6_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Wf2_VIC ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Wf3_VIC ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 27205_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Wareek.F13_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Reserve1.M65_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Wareek.F72_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC CandlP_VIC ATATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC 81225_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Euroa.M5_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Euroa.M1_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC PaddyR.FY2_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC BetBet.M50_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Goldstone.dead3_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Euroa.F1_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Betbet.F76_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTT ATAGGAGCTA CTACCCTAAT AATTGCCCAC Betbet.M52_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Wareek.F12_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC Reserve1.M57_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC M19216_P.abidi ATATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCAAC CCTCAGTTTT ATAGGCGCTA CAACCCTAAT AATCGCCCAC R9_P.australis ACATGGCTCT AGTAATCATT GCCGCACTCA TACAAACAAC CCTAAGTTTC ATAGGCGCTA CAGCTCTGAT AATCGCCCAC R10_P.australis ACATAGCTCT AGTAATCATT GCCGCACTCA TACAAACAAC CCTAAGTTTC ATAGGCGCTA CAGCCCTGAT AATCGCCCAC

180 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 890 900 910 920 930 940 950 960 85525_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85526 NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85533_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 26718_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85531_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85529_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85534_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 16138_Qld GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85530_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACTA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG M116_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85527_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 16137_Qld GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 80833_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 80837_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 80835_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 343.344_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 80834_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 80836_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 85523_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Jf8_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Jf72_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG W_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Jf9_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 73656_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 83890_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 27086_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 81258_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 83896_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG N1_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 83889_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 83887_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Ren3_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 7606_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 27028_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 81265_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 81261_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 81260_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 27102_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG DS24_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Ren2_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG C9_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Reserve1.F25_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG PaddyR.MZ2_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Reserve2.dead3_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Ren5_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Ren6_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Wf2_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Wf3_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 27205_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Wareek.F13_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Reserve1.M65_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Wareek.F72_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG CandlP_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG 81225_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Euroa.M5_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Euroa.M1_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG PaddyR.FY2_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG BetBet.M50_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Goldstone.dead3_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Euroa.F1_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Betbet.F76_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Betbet.M52_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Wareek.F12_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG Reserve1.M57_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG M19216_P.abidi GGACTTACCT CCTCCATATT ATTTTGCCTA GCTAATACCA ATTACGAACG CATCCACAGC CGAACCATAA TATTAGCTCG R9_P.australis GGACTCACCT CATCTATGTT ATTCTGCCTA GCCAATACTA ACTACGAACG AATTCACAGT CGAACTATAA TTCTAGCCCG R10_P.australis GGACTCACCT CATCTATGTT ATTCTGCCTA GCCAATACTA ACTACGAACG AATCCACAGT CGAACTATAA TTCTAGCCCG

181 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 970 980 990 1000 1010 1020 1030 1040

85525_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 85526 NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 85533_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 26718_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 85531_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 85529_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 85534_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 16138_Qld AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA 85530_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA M116_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 85527_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 16137_Qld AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 80833_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 80837_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 80835_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 343.344_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CATATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 80834_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 80836_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 85523_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTT CCACCAACAA Jf8_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTGACTAA TCTAGCCCTC CCACCAACAA Jf72_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA W_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Jf9_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 73656_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 83890_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 27086_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 81258_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 83896_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA N1_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 83889_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 83887_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Ren3_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 7606_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 27028_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 81265_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 81261_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 81260_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 27102_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA DS24_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Ren2_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA C9_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Reserve1.F25_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA PaddyR.MZ2_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Reserve2.dead3_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Ren5_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Ren6_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Wf2_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Wf3_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 27205_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Wareek.F13_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Reserve1.M65_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Wareek.F72_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA CandlP_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA 81225_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Euroa.M5_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Euroa.M1_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA PaddyR.FY2_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA BetBet.M50_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Goldstone.dead3_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Euroa.F1_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Betbet.F76_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Betbet.M52_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA Wareek.F12_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAGCTAA TCTAGCCCTC CCACCAACAA Reserve1.M57_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAGCTAA TCTAGCCCTC CCACCAACAA M19216_P.abidi AGGCCTACAA ACAATTCTAC CACTTATATG TGCATGATGA CTCATAGCAA GCCTAACCAA CTTAGCTCTC CCTCCAACAA R9_P.australis AGGCCTACAA ACAGCCTTAC CCCTCATATG AGCATGATGA CTAATAGCAA GCCTCGCCAA CCTAGCCATT CCCCCAACAA R10_P.australis AGGCCTACAA ACAGCCTTAC CCCTCATATG AGCATGATGA CTAATAGCAA GCCTTGCCAA CCTAGCCATT CCCCCAACAA

182 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1050 1060 1070 1080 1090 1100 1110 1120

85525_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT 8556 NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GAGCCTAAAT 85533_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT 26718_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT 85531_NSW TTAATACACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCTTAAAT 85529_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT 85534_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT 16138_Qld TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT 85530_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGGCTAAAT M116_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GAGCCTAAAT 85527_NSW TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GAGCCTAAAT 16137_Qld TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT 80833_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT 80837_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT 80835_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGACTAAAT 343.344_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT 80834_QLD TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT 80836_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GGGCCTAAAT 85523_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT TGGCCTAAAT Jf8_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT Jf72_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT W_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT Jf9_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCTA TCATTCTCCT AGGCCTAAAT 73656_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 83890_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 27086_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 81258_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 83896_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT N1_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 83889_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 83887_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Ren3_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 7606_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 27028_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 81265_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 81261_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 81260_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 27102_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT DS24_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Ren2_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT C9_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Reserve1.F25_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT PaddyR.MZ2_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Reserve2.dead3_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Ren5_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCCTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Ren6_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCCTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Wf2_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Wf3_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 27205_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Wareek.F13_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Reserve1.M65_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Wareek.F72_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT CandlP_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT 81225_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Euroa.M5_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Euroa.M1_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT PaddyR.FY2_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT BetBet.M50_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Goldstone.dead3_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Euroa.F1_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Betbet.F76_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT Betbet.M52_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGTCTAAAT Wareek.F12_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT Reserve1.M57_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT M19216_P.abidi TTAACTTACT CGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCCA TTATCCTCTT AGGTTTAAAT R9_P.australis TCAACCTATT AGGTGAATTA ATAATCATTG TATCATCATT CTCATGATCC AACCTTTCCA TCATTCTACT AGGCCTGAAT R10_P.australis TCAACCTACT AGGCGAATTA ATAATCATTG TATCATCATT CTCATGATCC AACCTTTCCA TCATTCTACT AGGCCTAAAT

183 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1130 1140 1150 1160 1170 1180 1190 1200

85525_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 85526 NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 85533_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 26718_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 85531_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 85529_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 85534_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 16138_Qld ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT 85530_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT M116_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 85527_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 16137_Qld ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 80833_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 80837_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCGAT 80835_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 343.344_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TGTACCCAAT 80834_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAT ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 80836_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT 85523_NSW ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Jf8_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Jf72_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT W_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Jf9_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 73656_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 83890_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 27086_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 81258_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 83896_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT N1_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 83889_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 83887_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Ren3_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 7606_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 27028_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 81265_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 81261_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 81260_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 27102_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TGTACCCAAT DS24_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Ren2_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT C9_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Reserve1.F25_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT PaddyR.MZ2_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Reserve2.dead3_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Ren5_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Ren6_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Wf2_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Wf3_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 27205_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Wareek.F13_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Reserve1.M65_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Wareek.F72_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT CandlP_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT 81225_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Euroa.M5_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Euroa.M1_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT PaddyR.FY2_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT BetBet.M50_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Goldstone.dead3_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Euroa.F1_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Betbet.F76_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Betbet.M52_Vic ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Wareek.F12_Vic ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT Reserve1.M57_Vic ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT M19216_P.abidi ACCGTAATCA CAGGCCTCTA CTCACTACAC ATATTCATTA CATCTCAACG AGGCAAATTC ACACACCACT TATATCCAAT R9_P.australis ACCGTTATTA CAAGTATCTA TACACTCTAC ATACTAACCA CATCCCAACG AGGAAAATTC GTACACCACC TATACCCAAT R10_P.australis ACCGTTATTA CAAGTATCTA TACACTCTAC ATACTAACCA CATCCCAACG AGGAAAATTC GTATACCACC TGTACCCAAT

184 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1210 1220 1230 1240 1250 1260 1270 1260

85525_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC 85526 NSW TAACCCATCA TTCACACGAG AGCATATACT CATATCCCTT CACCCAATTC CCCTTATAAT ATTATCCAT...... 85533_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC 26718_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC 85531_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC 85529_NSW CAACCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC 85534_NSW CAACCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGATCC CCCTTACAAT ATTATCTATC AACCCTAAAC 16138_Qld CAACCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC 85530_NSW TAACCCGTCA TTCACACGAG AGCATATACT TATATCCTTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC M116_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 85527_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 16137_Qld TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 80833_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 80837_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 80835_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 343.344_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 80834_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAATTC CCCTTATAAT ATTATCTATC AACCCAAAAC 80836_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 85523_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC Jf8_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC Jf72_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC W_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC Jf9_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC 73656_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 83890_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 27086_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 81258_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 83896_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC N1_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 83889_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 83887_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Ren3_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 7606_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 27028_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 81265_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 81261_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 81260_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 27102_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC DS24_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Ren2_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC C9_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Reserve1.F25_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC PaddyR.MZ2_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Reserve2.dead3_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Ren5_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Ren6_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Wf2_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Wf3_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 27205_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Wareek.F13_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Reserve1.M65_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Wareek.F72_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAATTC CCCTTATAAT ACTATCTATC AACCCAAAAC CandlP_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC 81225_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Euroa.M5_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Euroa.M1_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC PaddyR.FY2_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC BetBet.M50_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Goldstone.dead3_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Euroa.F1_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Betbet.F76_Vic TAACCCATCA TCCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Betbet.M52_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC Wareek.F12_Vic TAACCCATCG TTCACACGAG AACATACACT CATATCCCTT CACCTAATTC CTCTTATAAT ATTATCTATC AACCCAAAAC Reserve1.M57_Vic TAACCCATCG TTCACACGAG AACATACACT CATATCCCTT CACCTAATTC CTCTTATAAT ATTATCTATC AACCCAAAAC M19216_P.abidi TAACCCATCA TTCACACGAG AACATATACT TATATCTCTG CACCTAATTC CCCTCATAAT ACTATCTATT AACCCAAAAC R9_P.australis CAAACCATCC TTTACACGAG AGCACACACT CATAGTCCTA CACCTCATAC CCCTTACCAT TATTTCCATC AACCCAAAAT R10_P.australis TAAACCATCC TTTACACGAG AGCACACACT CATAGTCCTA CACCTCATAC CCCTTACCAT TATTTCCATC AACCCAAAAT

185 Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 1290 1300 1310 1320 1330 1340 1350 1360 85525_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 85526 NSW ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 85533_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 26718_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 85531_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 85529_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 85534_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 16138_Qld TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 85530_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC M116_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 85527_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 16137_Qld TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 80833_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 80837_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 80835_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 343.344_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 80834_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 80836_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 85523_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAACCTC Jf8_NSW TTATTCTAGG TATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC Jf72_NSW TTATTCTAGG TATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC W_NSW TTATTCTAGG TATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC Jf9_NSW TTATTCTAGG TATAACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC 73656_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 83890_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 27086_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 81258_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 83896_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC N1_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 83889_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 83887_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Ren3_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 7606_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 27028_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 81265_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 81261_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 81260_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 27102_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC DS24_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Ren2_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC C9_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Reserve1.F25_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC PaddyR.MZ2_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Reserve2.dead3_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Ren5_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Ren6_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGA? ?????????? Wf2_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Wf3_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 27205_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Wareek.F13_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Reserve1.M65_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Wareek.F72_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC CandlP_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC 81225_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Euroa.M5_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Euroa.M1_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC PaddyR.FY2_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC BetBet.M50_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Goldstone.dead3_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC Euroa.F1_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC Betbet.F76_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Betbet.M52_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Wareek.F12_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC Reserve1.M57_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC M19216_P.abidi TCATTATAGG GATAACATAC TGTAAATATA GTTTAATAAA AACATTAGAT TGTGAATCTA AAAACAGAAG TTTAACCCTT R9_P.australis TCATCCTAGG AACCACATAC TGCAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAACCCTC R10_P.australis TCATCCTAGG AACCACATAC TGCAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAACCCTC

186 Appendices

....|....| ....|....| ....|....| .. 1370 1380 1390 85525_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA 85526 NSW ?????????? ?????????? ?????????? ?? 85533_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA 26718_NSW CTTATGTACC AAGAAAGA?? ?????????? ?? 85531_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA 85529_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA 85534_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA 16138_Qld CTTATGTAC? ?????????? ?????????? ?? 85530_NSW CTTATATACC AAGAAAGATC CAAGAACTGC TA M116_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA 85527_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA 16137_Qld TTTATATACC AAGAAAGATC CAAGAACTGC TA 80833_QLD TTTATATACC ?????????? ?????????? ?? 80837_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA 80835_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA 343.344_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA 80834_QLD TTTATATACC ?????????? ?????????? ?? 80836_QLD TTTATATACC ?????????? ?????????? ?? 85523_NSW TTTATATACC AGGAAGGATC CAAGAACTGC TA Jf8_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA Jf72_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA W_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA Jf9_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA 73656_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 83890_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 27086_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 81258_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 83896_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA N1_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 83889_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 83887_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA Ren3_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 7606_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA 27028_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 81265_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 81261_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 81260_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA 27102_SA TTTATATACC A????????? ?????????? ?? DS24_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA Ren2_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA C9_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA Reserve1.F25_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA PaddyR.MZ2_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Reserve2.dead3_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Ren5_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA Ren6_SA ?????????? ?????????? ?????????? ?? Wf2_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA Wf3_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA 27205_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA Wareek.F13_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Reserve1.M65_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Wareek.F72_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA CandlP_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA 81225_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA Euroa.M5_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Euroa.M1_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA PaddyR.FY2_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA BetBet.M50_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Goldstone.dead3_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Euroa.F1_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Betbet.F76_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Betbet.M52_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Wareek.F12_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA Reserve1.M57_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA M19216_P.abidi CTTATATACC AAGAAAGATC CAAGAACTGC TA R9_P.australis CTTATATGCC AAGAAAGAAC CAAGAACTGC TA R10_P.australis CTTATATGCC AAGAAAGAAC CAAGAACTGC TA

187

Appendices

Appendix 6

The ω-globin sequence alignment of P. breviceps samples used in Chapter three, consisting of Exon2 (1-67), Intron2 (68-596) and Exon3 (597- 705) ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 60 70 80 90 100 W_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA EuroaF1_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 81260_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA Ren2_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA Ren5_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA WF2_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA JF9_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA JF8_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 16137_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 159.160_Qld ?????????? ?????????? ?????????? ?????????? ?????????? ?????CAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA CandleP_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCTCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 27028_SA ?????????? ?????????? ?????????? ????GACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA Reservedead3_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 83887_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 81261_SA ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 81262_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA BetbetM50_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA DaedBT_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 27102_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 27086_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA Reserve.aliveViC GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85527_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA M116_Qld ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 80836_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 80833_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 80835_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 80837_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 80834_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 419.420_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85530_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85533_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA R9_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC TGCCATTTCT CTGGGGCCTA R10_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC TGCCATTTCT CTGGGGCCTA M19216_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGTCATTTCT CTGGGGCCTA 85525_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85531_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85529_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85534_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85524_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 85532_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 26718_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA Reservem57_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA 16138_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

188

Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 110 120 130 140 150 160 170 180 190 200 W_NSW GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC EuroaF1_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTC-A ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 81260_SA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC Ren2_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC Ren5_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC WF2_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC JF9_NSW GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC JF8_NSW GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 16137_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 159.160_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC CandleP_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 27028_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC Reservedead3_Vic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 83887_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 81261_SA ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 81262_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC BetbetM50_Vic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC DaedBT_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 27102_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 27086_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC Reserve.aliveVic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85527_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC M116_Qld ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????ATTC 80836_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC 80833_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC 80835_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC 80837_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC 80834_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC 419.420_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC 85530_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85533_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC R9_P.australis GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC R10_P.australis GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC M19216_P.abidi GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85525_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85531_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85529_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85534_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85524_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 85532_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 26718_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC Reservem57_Vic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC 16138_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

189

Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 210 220 230 240 250 260 270 280 290 300 W_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- EuroaF1_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 81260_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- Ren2_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- Ren5_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- WF2_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- JF9_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- JF8_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 16137_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 159.160_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- CandleP_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 27028_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- Reservedead3_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 83887_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 81261_SA ?????????? ?????????? ?????????? ?????AACCT CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 81262_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- BetbetM50_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- DaedBT_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 27102_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 27086_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- Reserve.aliveVic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85527_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- M116_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 80836_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 80833_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 80835_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 80837_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 80834_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 419.420_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85530_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACTT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85533_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- R9_P.australis TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC R10_P.australis TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC M19216_P.abidi TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85525_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85531_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85529_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85534_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85524_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 85532_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 26718_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- Reservem57_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- 16138_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

190

Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 310 320 330 340 350 360 370 380 390 400 W_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT EuroaF1_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 81260_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT Ren2_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT Ren5_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT WF2_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT JF9_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT JF8_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 16137_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 159.160_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT CandleP_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27028_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT Reservedead3_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 83887_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 81261_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 81262_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT BetbetM50_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT DaedBT_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27102_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 27086_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT Reserve.aliveVic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85527_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M116_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80836_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80833_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80835_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80837_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 80834_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 419.420_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85530_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85533_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT R9_P.australis TTTTGCTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT R10_P.australis TTTTGCTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT M19216_P.abidi TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85525_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85531_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85529_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85534_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85524_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 85532_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 26718_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT Reservem57_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT 16138_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

191

Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 410 420 430 440 450 460 470 480 490 500 W_NSW AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC EuroaF1_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 81260_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC Ren2_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC Ren5_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC WF2_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC JF9_NSW AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC JF8_NSW AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 16137_Qld AAAAC-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 159.160_Qld AAAAC-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC CandleP_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 27028_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC Reservedead3_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 83887_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 81261_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 81262_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC BetbetM50_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC DaedBT_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 27102_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 27086_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC Reserve.aliveVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85527_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC M116_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 80836_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 80833_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 80835_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 80837_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 80834_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 419.420_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC 85530_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85533_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC R9_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA GTCCAGCCCT CAGGTTCCCC R10_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA GTCCAGCCCT CAGGTTCCCC M19216_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCTCC 85525_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85531_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85529_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85534_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85524_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 85532_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCCTCCCC 26718_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA ?????????? ?????????? Reservem57_Vic AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC 16138_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCCTCCCC

192

Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 510 520 530 540 550 560 570 580 590 600 W_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC EuroaF1_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 81260_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC Ren2_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC Ren5_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC WF2_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC JF9_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC JF8_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 16137_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 159.160_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC CandleP_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 27028_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC Reservedead3_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 83887_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 81261_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 81262_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC BetbetM50_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC DaedBT_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 27102_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 27086_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC Reserve.aliveVic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85527_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC M116_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 80836_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 80833_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 80835_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 80837_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 80834_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 419.420_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85530_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85533_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC R9_P.australis CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC R10_P.australis CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC M19216_P.abidi CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85525_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85531_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85529_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85534_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85524_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 85532_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC 26718_NSW ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? Reservem57_Vic CAGGGGTGCA CTGCACCCTG C?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ????????? 16138_Qld CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

193

Appendices

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|... 610 620 630 640 650 660 670 680 690 700 W_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC EuroaF1_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 81260_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC Ren2_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC Ren5_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC WF2_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC JF9_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC JF8_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 16137_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 159.160_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC CandleP_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27028_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC Reservedead3_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 83887_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 81261_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 81262_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC BetbetM50_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC DaedBT_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27102_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 27086_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC Reserve.aliveVic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85527_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M116_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80836_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80833_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80835_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80837_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 80834_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 419.420_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85530_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85533_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC R9_P.australis TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC R10_P.australis TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC M19216_P.abidi TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85525_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85531_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85529_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85534_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85524_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 85532_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC 26718_NSW ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ????? Reservem57_Vic ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ????? 16138_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

194

Appendices

Appendix 7

Identification numbers (Id), population, sex, and locality, and microsatellite genotypes for nine loci of all sugar gliders analysed in these studies. Codes in sex column are as follows: F = Female, M = Male,? = unknown. A = Adult, sub = sub-adult and J = Juvenile.

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

73756 Alaman ? -36.72 140.33 266 334 478 486 308 308 326 330 273 273 451 466 153 163 118 118 251 251 dead-Bt Bordertown ? -36.31 140.77 326 326 478 478 0 0 310 330 0 0 469 469 145 153 112 118 0 0

81265 Bourne AF -37.41 140.68 278 278 478 486 272 324 294 318 289 289 466 466 157 163 114 118 251 251

81266 Bourne JF -37.41 140.68 278 278 478 478 272 316 318 326 269 289 466 469 155 163 112 114 0 0

81267 Bourne JF -37.41 140.68 278 278 486 486 272 312 318 326 269 289 466 475 155 163 114 116 0 0

81268 Bourne AF -37.41 140.68 270 274 478 486 304 328 314 322 261 265 457 460 149 149 112 116 0 0

81269 Bourne AF -37.41 140.68 270 278 478 478 316 328 314 342 269 269 436 469 139 157 116 116 251 251

81270 Bourne AF -37.42 140.68 266 278 478 486 292 312 322 346 261 269 445 457 139 149 112 116 251 251

81271 Bourne AM -37.42 140.68 266 274 478 478 320 320 318 322 227 227 472 475 159 159 112 116 251 251

B1 Bourne AM -37.41 140.68 270 270 478 486 312 328 310 318 269 289 460 475 0 0 112 112 0 0

B3 Bourne AF -37.41 140.68 266 270 478 486 328 328 294 318 265 269 0 0 145 159 112 116 0 0

B4 Bourne subF -37.41 140.68 266 278 478 486 316 328 294 294 269 269 0 0 0 0 112 118 0 0

195

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

B5 Bourne JF -37.41 140.68 270 270 486 486 304 308 302 326 265 289 460 469 149 159 116 116 0 0

B6 Bourne JF -37.41 140.68 306 306 478 486 272 328 302 326 265 289 463 469 149 159 116 116 0 0

B7 Bourne JF -37.41 140.68 302 306 0 0 272 328 318 326 261 265 460 463 149 157 116 116 251 251

Casterton c1 JF -37.77 140.94 258 262 478 478 284 284 322 330 0 0 457 469 149 151 112 112 251 251 Rd Casterton c10 AM -37.77 140.94 254 428 478 478 308 308 322 330 277 277 457 469 151 155 112 118 251 257 Rd Casterton c11 JF -37.77 140.94 266 428 478 478 304 308 310 322 277 277 445 469 0 0 112 112 0 0 Rd Casterton c2 AM -37.77 140.94 258 262 478 478 284 284 318 330 0 0 448 457 149 157 112 112 251 257 Rd Casterton c3 JM -37.77 140.94 258 262 478 478 284 284 318 322 265 277 448 448 151 157 112 118 251 251 Rd Casterton c4 subM -37.77 140.94 310 310 478 478 280 280 318 322 265 277 445 448 149 151 112 112 0 0 Rd Casterton c5 AF -37.77 140.94 262 269 478 478 284 284 318 322 265 277 448 469 151 151 112 118 251 251 Rd Casterton c6 AF -37.77 140.94 310 428 478 478 280 284 318 322 265 277 445 469 149 151 112 118 0 0 Rd Casterton c7 AF -37.77 140.94 266 310 478 478 304 316 306 322 277 277 445 460 151 159 112 118 251 257 Rd

196

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

Casterton c8 JF -37.77 140.94 266 266 478 478 280 304 314 318 269 277 445 460 151 161 112 118 251 257 Rd Casterton c9 AM -37.77 140.94 266 310 478 478 280 304 318 322 257 277 445 460 145 161 112 112 251 257 Rd Deadmans DS1 JF -37.17 140.86 322 334 478 478 0 0 314 326 265 277 442 445 145 153 116 116 0 0 Swamp Deadmans DS10 AM -37.15 140.87 274 274 478 478 308 324 226 310 235 265 448 460 157 159 112 114 0 0 Swamp Deadmans DS11 AF -37.15 140.87 298 298 486 486 316 316 346 366 265 281 0 0 145 153 116 116 0 0 Swamp Deadmans DS12 AF -37.15 140.87 432 436 478 482 300 324 238 366 269 269 439 478 145 153 112 116 0 0 Swamp Deadmans DS13 JF -37.15 140.87 290 506 482 486 296 316 366 370 265 265 439 445 143 153 112 116 0 0 Swamp Deadmans DS14 AF -37.15 140.86 270 282 478 482 304 308 314 314 265 269 436 466 153 159 116 118 0 0 Swamp Deadmans DS15 JF -37.15 140.86 270 274 0 0 308 316 314 358 265 269 436 469 153 157 114 116 0 0 Swamp Deadmans DS16 AM -37.15 140.86 0 0 478 482 324 324 226 310 265 281 469 469 153 159 112 116 0 0 Swamp Deadmans DS17 JM -37.15 140.85 330 334 478 486 312 320 362 366 235 265 436 463 145 163 116 116 0 0 Swamp Deadmans DS18 AM -37.15 140.85 298 510 478 482 308 312 366 370 265 273 439 442 145 163 114 116 0 0 Swamp Deadmans DS19 AM -37.15 140.85 278 298 478 486 312 320 358 362 235 265 442 463 145 163 116 116 0 0 Swamp Deadmans DS2 AF -37.17 140.86 330 506 482 482 0 0 362 366 265 265 439 448 153 153 114 116 251 251 Swamp

197

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

Deadmans DS20 AM -37.15 140.85 266 270 482 486 296 312 338 362 265 269 436 442 145 153 116 116 251 251 Swamp Deadmans DS21 AF -37.15 140.85 278 330 478 478 320 320 310 362 235 265 463 469 163 163 112 116 251 251 Swamp Deadmans DS22 subM -37.16 140.85 330 330 478 478 300 316 306 310 265 265 0 0 149 153 116 116 251 251 Swamp Deadmans DS23 subF -37.16 140.85 266 270 478 478 304 304 314 314 269 273 436 442 145 153 112 116 251 251 Swamp Deadmans DS24 AM -37.16 140.85 0 0 478 482 300 324 306 318 265 269 439 466 149 159 116 116 251 251 Swamp Deadmans DS25 AM -37.16 140.85 298 506 486 486 280 312 226 314 265 265 433 436 145 153 116 116 251 257 Swamp Deadmans DS26 AM -37.16 140.85 266 266 482 486 280 312 314 362 265 269 436 442 143 145 116 116 251 251 Swamp Deadmans DS27 subF -37.16 140.85 290 330 478 486 316 316 314 362 265 265 448 460 153 153 112 112 251 251 Swamp Deadmans DS28 AM -37.16 140.85 266 266 482 486 280 280 314 362 265 273 436 478 145 153 116 116 251 251 Swamp Deadmans DS29 JM -37.15 140.84 294 480 478 478 316 316 362 366 269 273 460 478 159 163 112 112 251 251 Swamp Deadmans DS3 JF -37.17 140.86 322 330 478 482 320 324 342 366 265 265 445 448 153 153 114 116 251 251 Swamp Deadmans DS30 subF -37.15 140.84 330 506 478 482 316 316 338 366 265 269 445 478 143 149 114 116 251 251 Swamp Deadmans DS31 JM -37.15 140.84 0 0 0 0 316 316 0 0 0 0 445 457 0 0 116 116 251 251 Swamp Deadmans DS32 AF -37.15 140.84 314 314 478 482 308 324 226 226 269 277 457 466 163 163 112 116 251 251 Swamp

198

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

Deadmans DS33 subF -37.15 140.84 314 506 478 482 308 308 314 338 265 269 448 478 153 163 112 116 251 257 Swamp Deadmans DS34 JM -37.15 140.84 266 266 478 482 308 308 314 326 235 269 445 448 145 153 116 116 251 251 Swamp Deadmans DS35 AM -37.15 140.84 314 510 478 478 280 324 326 338 265 277 463 466 153 153 112 114 251 251 Swamp Deadmans DS4 AF -37.17 140.86 334 338 482 486 316 316 314 318 265 277 475 478 145 163 112 116 251 251 Swamp Deadmans DS5 AM -37.17 140.86 322 506 478 486 316 316 226 362 265 273 463 475 153 157 112 112 251 251 Swamp Deadmans DS6 JF -37.17 140.86 330 330 478 486 304 324 318 362 269 281 457 469 153 153 114 114 251 251 Swamp Deadmans DS7 subF -37.17 140.86 326 330 478 478 308 316 314 362 265 269 460 469 149 159 112 116 251 251 Swamp Deadmans DS8 JF -37.17 140.86 0 0 478 478 304 320 314 314 269 281 448 457 153 157 114 116 251 251 Swamp Deadmans DS9 JM -37.15 140.87 282 290 482 486 316 324 362 366 265 281 439 445 153 159 112 112 251 251 Swamp

81225 Grundys AF -37.70 140.73 286 290 478 486 284 340 298 330 269 269 460 496 153 153 112 116 251 262

83901 Grundys AM -37.70 140.73 250 286 478 486 284 284 314 318 265 269 457 496 149 157 116 116 251 257

83902 Grundys subM -37.70 140.73 282 290 486 486 284 288 314 318 269 273 442 466 153 153 112 112 251 257

83903 Grundys subF -37.70 140.73 286 286 478 478 312 312 310 330 269 277 457 496 153 155 0 0 0 0

83904 Grundys subF -37.70 140.73 286 290 478 478 328 332 314 318 265 277 457 496 153 157 0 0 251 251

199

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

83905 Grundys AF -37.71 140.73 286 290 478 478 312 312 314 334 265 269 457 457 153 157 112 116 251 251

83906 Grundys subM -37.71 140.73 286 310 478 478 308 328 314 326 265 273 442 463 153 157 0 0 257 257

83907 Grundys AM -37.71 140.73 262 286 478 478 328 328 298 306 265 265 463 463 157 157 0 0 0 0

83908 Grundys JF -37.71 140.73 246 290 478 486 280 284 298 298 269 269 445 460 153 153 0 0 0 0

G10 Grundys AF -37.70 140.75 0 0 486 486 280 308 326 330 273 277 457 487 151 157 112 114 251 251

G11 Grundys JM -37.70 140.75 246 246 486 486 280 308 298 326 227 273 487 496 149 151 112 112 251 251

G12 Grundys AM -37.70 140.75 246 246 478 486 284 308 298 318 227 265 457 496 149 149 112 116 254 254

G13 Grundys AM -37.70 140.75 246 246 478 486 280 308 318 326 265 273 460 472 149 157 112 116 254 254

G14 Grundys subM -37.70 140.73 246 246 478 486 284 324 298 310 265 269 445 496 149 153 116 116 251 257

G15 Grundys JF -37.70 140.73 290 294 478 486 308 312 302 322 273 277 487 487 149 149 112 118 251 257

G16 Grundys subF -37.70 140.73 250 250 478 486 284 284 314 318 265 269 457 463 149 153 112 116 254 254

G17 Grundys subM -37.70 140.73 246 246 486 486 312 324 326 330 227 273 463 466 149 157 112 118 251 257

G18 Grundys JM -37.71 140.73 290 334 486 486 312 312 318 330 273 289 0 0 149 151 112 114 251 251

G19 Grundys AF -37.71 140.73 286 290 478 486 312 312 310 314 265 269 0 0 153 157 112 116 251 251

200

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

G20 Grundys JM -37.71 140.73 286 290 478 486 312 312 298 334 269 277 451 496 0 0 112 112 251 251

G21 Grundys JM -37.71 140.73 286 290 478 486 312 312 330 338 269 277 442 496 153 153 112 112 251 251

G22 Grundys JM -37.71 140.73 286 290 478 486 312 312 298 334 269 277 451 457 153 157 112 112 251 251

G23 Grundys ? -37.70 140.73 0 0 0 0 0 0 0 0 265 265 466 475 0 0 114 114 0 0

G24 Grundys AF -37.70 140.75 286 334 486 486 308 328 326 326 273 277 457 487 153 159 112 114 0 0

G25 Grundys subM -37.70 140.73 246 286 478 486 312 312 298 310 269 269 451 457 153 153 112 112 0 0

G26 Grundys JF -37.70 140.75 290 334 486 486 308 308 298 326 0 0 457 457 149 151 112 114 290 290

G27 Grundys JM -37.70 140.75 286 290 478 486 308 308 318 326 227 273 487 496 149 151 112 116 0 0

G28 Grundys JF -37.70 140.75 286 290 478 478 308 308 318 326 227 273 457 496 149 159 112 114 0 0

G9 Grundys ? -37.70 140.73 262 290 0 0 284 284 298 298 269 269 0 0 0 0 112 116 0 0

83895 Mt Meredith JF -37.67 140.88 250 326 478 486 306 324 334 358 265 289 448 454 149 157 0 0 251 251

83896 Mt Meredith AF -37.67 140.88 250 326 486 486 324 324 326 338 265 289 448 466 149 149 114 114 251 251

83897 Mt Meredith JM -37.67 140.88 326 330 478 478 284 324 326 338 265 277 448 454 149 157 114 116 251 251

83898 Mt Meredith AF -37.67 140.88 250 326 478 478 280 324 326 358 265 289 448 466 149 157 114 116 251 251

201

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

83899 Mt Meredith subM -37.67 140.88 326 330 478 486 280 324 306 322 285 289 448 502 149 157 112 114 0 0

83900 Mt Meredith subF -37.67 140.88 326 330 478 486 308 328 306 322 265 289 442 466 149 149 116 116 0 0

MtTR2 Mt Meredith subM -37.67 140.88 326 330 478 478 304 324 326 338 265 289 454 502 145 149 116 116 0 0

N1 Nangwarry AF -37.47 140.89 286 310 478 478 304 308 302 338 269 281 0 0 153 157 114 120 251 257

N2 Nangwarry JF -37.47 140.89 0 0 0 0 304 316 302 338 265 269 460 469 153 157 116 120 251 254

N3 Nangwarry subM -37.47 140.89 278 278 478 486 312 316 346 350 261 265 469 472 157 159 114 116 0 0

N4 Nangwarry JF -37.47 140.89 278 278 478 486 308 308 338 338 261 269 460 469 153 155 112 114 0 0

N5 Nangwarry AF -37.47 140.89 278 286 478 478 304 308 338 342 265 269 448 460 153 157 112 112 290 290

81261 Paltridges AM -37.62 140.93 286 472 478 478 324 332 302 306 293 293 460 463 149 155 114 116 251 251

81262 Paltridges AF -37.62 140.93 254 468 478 478 308 332 318 334 265 269 454 457 145 159 114 116 251 251

83887 Paltridges subM -37.61 140.93 266 298 478 482 320 324 318 326 265 277 427 457 157 167 116 116 0 0

83888 Paltridges subM -37.62 140.93 306 306 478 482 312 320 302 322 261 277 436 442 149 167 114 116 0 0

PL3 Paltridges JF -37.61 140.93 274 274 478 486 276 276 302 358 265 265 439 460 0 0 114 114 0 0

PL4 Paltridges AM -37.62 140.93 242 318 478 478 328 328 318 322 265 265 475 475 0 0 114 116 0 0

202

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

PL5 Paltridges AM -37.62 140.93 334 468 478 478 324 332 302 318 269 277 439 457 145 151 112 114 251 257

PL6 Paltridges AM -37.61 140.93 302 502 486 486 308 316 322 350 265 269 448 478 145 163 116 116 251 257

PL7 Paltridges subM -37.62 140.93 270 468 478 478 332 332 310 318 227 277 457 478 145 149 114 116 251 257

PL8 Paltridges AF -37.61 140.93 0 0 0 0 312 324 322 350 265 269 0 0 149 167 112 116 0 0

PEN4 Penola CP ? -37.36 140.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116 116 0 0

PEN5 Penola CP ? -37.36 140.70 0 0 0 0 0 0 226 322 0 0 0 0 0 0 0 0 0 0

PEN6 Penola CP ? -37.36 140.71 0 0 0 0 0 0 294 294 0 0 0 0 149 159 112 114 0 0

27028 Penola CP ? -37.36 140.71 306 488 486 486 304 312 294 318 269 273 454 466 139 139 112 116 251 257

81263 Penola CP JF -37.36 140.70 270 314 478 486 288 308 302 322 265 289 466 469 143 155 112 116 0 0

81264 Penola CP AF -37.36 140.71 270 314 478 486 288 304 294 322 269 273 427 436 157 159 112 114 251 251

REN1 Rennick SF M -37.91 140.99 274 286 478 486 316 328 242 314 227 285 436 448 149 153 112 116 251 254

REN9 Rennick SF AF -37.90 141.00 274 286 478 486 300 308 286 306 227 269 427 472 149 153 116 118 251 251

REN10 Rennick SF AM -37.90 141.00 274 286 478 486 316 328 242 314 227 285 436 448 149 153 112 116 251 251

RA4 Rennick SF subF -37.89 141.00 322 468 486 486 308 312 318 326 285 289 445 460 119 119 112 114 0 0

203

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

REN11 Rennick SF AM -37.91 140.99 254 310 478 486 280 284 286 286 265 277 463 466 149 157 112 114 0 0

REN12 Rennick SF JF -37.91 140.99 306 306 478 486 296 316 314 318 269 285 436 442 149 153 116 116 0 0

REN2 Rennick SF AF -37.91 141.00 294 314 478 486 308 320 330 342 265 265 427 466 145 149 112 112 251 251

REN3 Rennick SF M -37.91 141.00 274 286 478 486 268 316 314 342 227 265 448 457 149 149 112 116 251 251

REN4 Rennick SF M -37.91 141.00 294 310 478 486 308 320 326 330 273 289 460 466 145 149 112 112 251 251

REN5 Rennick SF JM -37.91 140.99 286 294 478 478 316 316 242 242 261 285 436 445 149 153 116 116 251 251

REN6 Rennick SF AM -37.90 141.00 274 278 478 486 308 316 242 326 227 277 445 454 149 149 112 116 251 254

SGR.PA Rennick SF M -37.91 141.00 314 322 486 486 308 308 342 354 265 285 427 445 145 149 112 116 251 251

REN7 Rennick SF AF -37.91 140.99 306 306 478 478 296 316 318 322 261 269 442 445 149 151 116 116 251 251

REN8 Rennick SF AM -37.91 140.99 290 314 486 486 308 308 310 342 265 277 442 457 149 149 114 118 254 254

81258 Snowgum AM -37.94 140.93 428 436 478 482 308 312 318 350 285 285 445 460 149 159 116 118 0 0

81259 Snowgum AF -37.94 140.93 266 294 478 486 292 328 242 286 0 0 436 448 145 145 112 118 0 0 snow1 Snowgum AM -37.94 140.94 468 468 478 478 296 316 286 326 265 285 0 0 0 0 116 116 0 0 snow2 Snowgum AM -37.94 140.93 428 452 478 478 296 324 326 340 277 285 463 463 149 149 112 116 0 0

204

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12 snow3 Snowgum subM -37.94 140.94 314 428 478 478 308 316 310 318 273 277 457 463 149 149 116 116 0 0 snow4 Snowgum JF -37.94 140.94 298 428 478 478 308 324 346 346 277 285 445 475 149 149 112 116 0 0 snow5 Snowgum AF -37.94 140.94 298 452 478 478 0 0 318 346 265 289 460 464 149 149 112 112 0 0 snow6 Snowgum subM -37.94 140.94 428 452 478 478 316 316 318 346 265 273 457 460 149 149 112 116 0 0 snow7 Snowgum JF -37.94 140.94 250 314 478 478 0 0 310 346 265 277 457 475 149 149 116 116 0 0

83890 The Heath JM -37.58 140.91 286 464 478 482 320 324 302 306 265 269 460 463 145 159 114 116 251 251

83891 The Heath AF -37.58 140.91 460 464 478 482 320 324 302 310 265 265 460 463 145 149 0 0 251 251

83892 The Heath subM -37.58 140.91 282 464 478 478 308 308 318 326 227 269 436 466 145 149 114 116 0 0

83893 The Heath AF -37.58 140.91 464 464 478 482 320 320 302 326 265 269 463 466 145 145 114 116 0 0

83894 The Heath JF -37.58 140.91 464 464 478 482 320 320 310 318 265 269 436 463 145 149 116 116 0 0

H10 The Heath AM -37.58 140.91 0 0 478 486 316 316 302 314 265 269 457 460 159 161 112 114 251 251

H11 The Heath AM -37.58 140.91 322 464 478 486 312 324 302 358 265 265 445 460 159 159 112 114 251 257

H12 The Heath AF -37.58 140.91 460 464 478 486 332 336 314 358 265 265 454 466 149 159 114 116 251 251

H13 The Heath AF -37.58 140.91 464 464 478 486 264 308 318 326 227 265 448 478 147 163 112 116 251 251

205

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

H14 The Heath J M -37.58 140.91 464 464 0 0 264 316 314 318 269 269 0 0 145 161 114 116 0 0

H15 The Heath JM -37.58 140.91 0 0 478 482 320 332 310 358 265 265 457 463 145 151 116 116 257 257

H16 The Heath JF -37.58 140.91 274 274 478 478 324 336 310 358 265 265 0 0 151 151 116 116 0 0

H17 The Heath J M -37.58 140.91 464 464 478 482 316 320 314 326 265 269 0 0 145 161 114 116 0 0

H18 The Heath J M -37.58 140.91 464 464 482 486 316 320 302 326 265 269 457 460 145 161 114 114 0 0

H19 The Heath JM -37.58 140.91 242 270 478 486 312 316 318 318 265 265 0 0 143 149 116 116 0 0

H20 The Heath AM -37.58 140.91 274 464 478 486 300 356 302 358 227 265 448 466 149 159 114 114 0 0

H6 The Heath ? -37.58 140.91 464 468 478 478 308 324 314 326 227 265 436 463 0 0 112 116 251 251

H7 The Heath AM -37.58 140.91 286 286 486 486 324 324 322 322 227 269 448 466 149 149 114 114 0 0

H8 The Heath AM -37.58 140.91 0 0 486 486 264 264 318 318 227 265 448 448 145 149 114 116 251 251

H9 The Heath AM -37.58 140.91 242 274 478 486 264 336 318 358 265 265 457 466 149 163 112 114 251 257

81272 Topperweins JM -37.54 140.96 274 330 482 486 304 304 318 338 227 227 445 463 149 159 114 116 251 251

81273 Topperweins subM -37.54 140.95 330 472 482 486 308 324 302 338 265 285 445 463 143 149 116 116 0 0

81274 Topperweins subM -37.54 140.95 330 472 486 486 304 320 302 302 265 285 457 463 149 155 116 116 251 257

206

Appendices

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

81275 Topperweins AF -37.54 140.95 294 472 486 486 308 320 302 302 265 265 445 457 143 155 116 116 251 251

81276 Topperweins AF -37.54 140.96 254 306 478 478 324 332 318 334 235 235 442 454 143 149 0 0 0 0

81277 Topperweins subM -37.54 140.95 476 480 482 486 304 316 318 322 285 285 445 451 153 163 114 116 251 251

81278 Topperweins AF -37.54 140.95 266 472 478 482 304 324 302 306 265 285 436 460 143 149 114 116 251 251

83889 Topperweins AF -37.54 140.96 278 502 486 486 292 316 310 322 227 227 442 472 145 153 116 116 251 251 TP2 Topperweins AM -37.54 140.96 246 246 478 486 292 292 226 310 227 265 466 466 149 153 114 116 251 254

TP3 Topperweins JM -37.54 140.96 246 310 478 486 320 320 226 302 265 265 466 466 153 163 0 0 251 251

TP4 Topperweins JM -37.54 140.96 310 314 478 486 292 320 302 310 235 265 466 466 151 153 114 116 251 254

TP5 Topperweins ? -37.54 140.96 306 306 478 486 280 324 318 322 265 277 0 0 145 155 114 116 251 257

TP6 Topperweins JM -37.54 140.96 262 266 478 486 332 356 226 318 265 265 0 0 143 153 114 116 0 0

TP7 Topperweins AF -37.54 140.96 262 266 478 478 312 332 226 226 265 269 0 0 143 143 112 114 0 0

27205 Western Flat ? -36.52 140.74 258 506 478 482 316 328 346 350 265 281 442 469 153 153 112 114 0 0

27102 Western Flat ? -36.52 140.74 330 488 478 478 304 308 310 338 261 273 451 454 153 153 112 116 0 0

27086 Western Flat ? -36.52 140.74 290 488 478 486 264 264 326 338 269 281 457 463 143 153 116 116 0 0

81260 Yangery AF -37.59 140.89 242 464 478 486 312 328 302 322 227 238 460 463 145 147 114 116 251 251

207

Appendices

Appendix 8

Catalogue number, sex, location and measurements data of 42 P. breviceps and 12 P. norfolcensis skulls. Sex codes: F = female, M = male and ? = unknown. Region abbreviations: VIC = Victoria, SA = South Australia, Qld = Queensland, NSW = New South Wales, NT = Northern Territory, TAS = Tasmania, NG = New Guinea. Measurement abbreviations: CBL, Condylobasal length; MZB, maximum zygomatic breadth; RostH, rostrum height; UpMolarL. upper molar tooth raw length; UpToothL, upper tooth raw length; LowMolarL, lower molar raw length; RostW, rostral width between upper canines; WidthRamus, width of ascending ramus; UpIncisorPreMolar, upper incisor- premolar row; InterorbitW, interorbital width. Measurments are in millimetre.

UpTooth LowerMolar UpIncisor Species Catalogue no. Sex Region CBL MZB RostH UpMolarL RostW WidthRamus Interorbit Width L L PreMolar

P. breviceps C27471 ? VIC 37.6 26 8.5 7 8.2 17.5 10.1 6.7 7.2 8.6

P. breviceps C3129 ? VIC 36.8 25 9 8.3 7.4 18.5 10.1 7.7 7 7.5

P. breviceps C3128 F VIC 37 25 8.2 8 7.2 18 10.2 6 8.4 8.3

P. breviceps C4839 F VIC 37.4 26 7.9 8 7.3 17.2 10.2 6.8 7 8.3

P. breviceps C5765 F VIC 38 26 7 7.5 7.5 17.5 7.5 6 6 9

P. breviceps C9519 M VIC 36 23 7 7.5 7 17 8 5.5 6.5 7.8

P. breviceps DTC232 ? QLD 37 24 7.8 7.8 6.5 17.2 8 6.7 6.7 8.3

P. breviceps C22456 ? QLD 36.5 23 8.7 8 7 17 8.1 6.8 6.5 8.5

P. breviceps C2550 ? VIC 37 26 8.6 8 8 18 8.6 6.9 8 8.7

P. breviceps C6752 ? NG 27.7 17 5.7 6 5.3 17.8 8.7 5 7.5 5.5

P. breviceps C4039 F VIC 38 27 7.7 7.5 7.2 18 8.9 7.2 7.2 8.2

P. breviceps DTC238 M NT 37 26 8 7.8 7.7 17 8.9 6.7 7 9

208

Appendices

UpTooth LowerMolar UpIncisor Species Catalogue no. Sex Region CBL MZB RostH UpMolarL RostW WidthRamus Interorbit Width L L PreMolar

P. breviceps C25272 ? VIC 38 23 9 7 6.5 17 9 7.1 7.2 8.7

P. breviceps C22460 ? VIC 38 25 8.3 7.5 7.5 18.7 9 7.5 7.5 9

P. breviceps M7309 F NSW 37.1 25 7.6 5.9 5.7 15.9 9.2 5.4 5.1 7

P. breviceps C3064 ? NSW 36.5 26 8 7.4 7.7 17.5 9.2 6.2 7 8.5

P. breviceps C25277 ? SA 38 23 8.5 7.5 7.2 17 9.2 7.8 7.5 9.1

P. breviceps C3065 M NT 35.5 24 7.8 8 6.5 18.2 9.2 6.4 6.5 8.4

P. breviceps C7777 ? VIC 38.5 25 8 8.5 9 17.5 9.2 8.9 7.7 8.5

P. breviceps C3061 M NT 33 22 8 6 7 15.5 9.5 6.5 6 7.6

P. breviceps C31205 M VIC 37 24 8.2 7.5 6.8 18 9.5 7.5 7.5 8.5

P. breviceps C2556 ? NT 33 23 7 5.7 7.2 14 10 5.9 6 7.2

P. breviceps C1934 F NG 28 6.4 6.9 6.2 8

P. breviceps C19120 ? VIC 38.5 20 9.3 7 7 18 10 8 6.5 8.7

P. breviceps C7071 ? NSW 38.2 27 7.4 7.5 7.8 18 10 6.8 7.3 8.7

P. breviceps M13646 F SA 36.8 24 9.7 7.2 7.2 18.3 10.4 7.1 7.1 8.3

P. breviceps M256 M NT 34.4 23 8.6 7.6 6.9 18.7 10.4 6.2 5.7 8.2

P. breviceps C22457 F VIC 35.8 22 8 7.5 7.5 18 10.5 7 6.8 7.5

P. breviceps M9680 F SA 36.8 24 8 7.4 6.9 17.4 10.6 6.3 7 8.1

P. breviceps M8664 F SA 35.5 27 7.7 6.4 6.9 16.2 10.7 6 6 8.3

P. breviceps M11924 M SA 38.8 23 9.3 6.9 7 15.5 10.9 7.4 6.9 7.3

P. breviceps M7311 M SA 36.1 25 8.4 7.5 7.9 17.4 11 6.6 6.1 8.2

P. breviceps C19211 ? VIC 39.5 27 8.2 7.5 7.2 18.5 11 7.2 7.5 9.5

P. breviceps M12942 F SA 36.1 25 9.2 7.5 8.1 17.4 11.3 6.5 7.3 8

209

Appendices

UpTooth LowerMolar UpIncisor Species Catalogue no. Sex Region CBL MZB RostH UpMolarL RostW WidthRamus Interorbit Width L L PreMolar

P. breviceps C10116 ? VIC 39.5 25 8.5 7.8 7.3 17 11.5 7.4 7.5 9.3

P. breviceps M10119 ? VIC 37.6 25 9.7 6.9 6.9 17 11.6 6 6.6 8.6

P. breviceps M4761 M VIC 37.5 25 10.2 8.2 7.3 17 11.6 6.3 7.6 8.7

P. breviceps M853 ? NT 36.9 24 9.1 5.2 7.2 17.8 11.9 6.7 6.7 8.5

P. breviceps M7308 F TAS 36.5 26 8.9 7 7.2 18.2 12 7.7 7.3 9.1

P. breviceps M7307 M TAS 38.7 26 9.9 7 7.9 18.6 12.1 6.9 7.3 9.9

P. breviceps M12771 F SA 38.7 25 10 7.9 8.3 17.1 12.1 6.4 8 8.9

P. breviceps M3276 M SA 39.2 26 10.5 7.9 7.5 17.8 12.1 7.8 7.7 8.7

P. norfolcensis M7922 F QLD 45.1 29 10.8 . . . . . 7.7 11.4

P. norfolcensis M7310 M ? 44.4 30 10.8 . . . . 8.5 9.8 10.8

P. norfolcensis M7305 M NSW 42.6 29 10.9 8.7 8.5 20.3 11.5 7.3 7.7 9.8

P. norfolcensis M7303 F NSW 45.5 29 10 9.8 9.3 22.5 12.8 10.2 10 10.2

P. norfolcensis C16090 ? VIC 42.5 33 10 10.1 8.6 23.5 13 9.5 9.2 12

P. norfolcensis M2748 F QLD 43.3 28 9.3 9 9.1 21.6 13.3 8.9 7.1 10.2

P. norfolcensis M7304 F NSW 45.2 24 10.8 9.8 8.8 22.4 13.5 8.5 8.6 11.9

P. norfolcensis M9679 F ? 43.1 28 11 9.7 8.8 19.2 14 7.7 7.9 10.6

P. norfolcensis M2238 F NSW 43.3 28 9.3 9.6 9.3 23.1 14.61 8.4 8.4 10.5

P. norfolcensis C29790 F VIC 47 31 10.5 9.5 8 23 15 8 9 12

P. norfolcensis C29691 M VIC 46 32 10 9.4 8.5 22 15.2 10 9.4 11

P. norfolcensis C28718 ? VIC 47.5 31 10.5 10 9 22.5 16 10 8.2 10.5

210