2019 Vimha Tree Diversity and Endemism Pattern in Makutta Wildlife Range, Western Ghats, India

Total Page:16

File Type:pdf, Size:1020Kb

2019 Vimha Tree Diversity and Endemism Pattern in Makutta Wildlife Range, Western Ghats, India See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336210193 2019 Vimha Tree diversity and Endemism pattern in Makutta Wildlife Range, Western Ghats, India Article · October 2019 CITATIONS READS ePrints@Bangalore University 0 provided by 39 View metadata, citation and similar papers at core.ac.uk CORE brought to you by 1 author: Nagaraja Bc Bangalore University 72 PUBLICATIONS 284 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Shola Forest-Grassland complexes of Karnataka View project All India Coordination Project on Reproductive Biology of Selected RET species, Sponcered by MoEF, GOI View project All content following this page was uploaded by Nagaraja Bc on 02 October 2019. The user has requested enhancement of the downloaded file. Indian Forester, 145 (7) : 631-636, 2019 ISSN No. 0019-4816 (Print) http://www.indianforester.co.in ISSN No. 2321-094X (Online) Tree Diversity and Endemism Pattern in Makutta Wildlife Range, Western Ghats, India Species diversity and endemism pattern of the trees along the elevational gradients were studied in the Makutta Wildlife Range of the Western Ghats in Kodagu district. A total of 604 individuals belonging to 68 species, 55 genera and 30 families were identified between 100 to 800 m. Among these, 26 tree species were endemic to the Western Ghats region belonging to 14 families. The species composition varied from 17 species at 800 m to 27 at 400 m. The Shannon-Wiener diversity index scored a maximum value of 3.02 at 400m indicating higher species diversity in this elevation. The overall species richness and endemism showed a hum shaped pattern along the elevational gradients with peaks at two different elevations each. The study indicates the presence of a diverse flora in the Makutta Wildlife Range, hence continued efforts must be made for conservation of these Vegetation areas. composition of Key words: Elevational gradient, Endemic, Species richness, Trees, Western Ghats. Makutta Wildlife Introduction Range, Kodagu. Mountain ecosystems cover about 24% of the global land area and are important biological diversity centres (Price et al., 2011). These ecosystems play a crucial role with around 10% of the world's population depending on them for water, food, minerals and agricultural products (UNCED, 1992). Studies on species richness have been assessed for decades, where diversity and endemism play important roles in the conservation and understanding of the overall biodiversity (Gentry, 1992; Vetaas and Grytness, 2002; Fu et al., 2006). Species diversity is scale dependent and can have higher diversity at lower elevation and lower diversity at higher elevation due to climatic extremes at higher elevations (Oomen and Shanker, 2005; Bhattarai and Vetaas, 2006) whereas species endemism is maximum at higher elevation due to isolation mechanism governed by terrain (Shrestha and Joshi, 1996). The trends in the species richness and endemism VIMHASENO NEIKHA AND also depends on a number of other factors such as topography, B.C. NAGARAJA inclination of slope, aspect and soil types (Shanks and Nooris, 1950; Department of Environmental Science, Mandal and Joshi, 2014), niche width and niche differentiation with Bangalore University, Bangalore respect to light availability and soil resources (Bisht and Bhat, 2013). (Karnataka) Besides climatic and geographic location, species diversity of a given E-mail: [email protected]; forest area also depends on site representativeness, plot dimensions [email protected] and the extent of human interaction in the past and the present (Parthasarathy, 2001). Because of the geographic isolation during the tertiary and subsequent evolutions, the Western Ghats is one of the richest centres of endemism in India (Ramesh et al., 1997). Endemic Received May, 2018 Accepted March, 2019 species if lost from their native habitats will be lost forever and hence they have been in the centre for conservation (Chitale et al., 2014). Studies on distribution pattern of plant species along an elevational gradient is relatively few in the Western Ghats as compared to the studies done in the Eastern and Western Himalayas (Behera and Kushwaha, 2006; Acharya et al., 2011; Khan et al., 2013) and other [July 2019] Tree diversity and endemism pattern in Makutta Wildlife Range, Western Ghats, India parts of the world (Tang et al., 2014; Schmiedel et al., experts and published floras and monographs (Pascal The number of genera was highest at 300m and For endemic species, Dipterocarpaceae with 5 tree 2015; Rezende et al., 2015). Hence, the present study and Ramesh, 1997; Murthy and Yoganarasimhan, 400m each with 24 each. Genera with a high number species (19.23%) dominated the forest canopy aims to understand the tree diversity and endemism 1990; Neginhal, 2011). Tree endemism was of species include Calophyllum, Diospyros and followed by Lauraceae with 3 tree species (11.53%). along the elevational gradient of the Makutta Wildlife determined by comparing our field information with Hopea with three species each. The number of Dipterocarpaceae represented 21.62% of the total Range of Kodagu district of Karnataka. published literature for Western Ghats (Ramesh et al., individuals was highest for Vepris bilocularis (50) families with 64 trees and dominated the forest stand 1997). Material and Methods followed by Olea dioica (46), Hopea parviflora (30) density wise followed by Rutaceae with 50 trees The vegetation data were analyzed quantitatively and and Myristica malabarica (28). Cinnamomum (16.89%) and Meliaceae with 36 trees (12.16%). The study was carried out in Kodagu (11o55'N-12o50' N tabulated for Density, Frequency and Abundance and riparium, Myristica malabarica and Vepris bilocularis Dipterocarpaceae family was represented by five and 75o20'-76o15' E), which is situated on the eastern Importance Value Index according to Curtis and was found to be common in seven of the eight species, Hopea parviflora with 30 individuals followed slopes of the Western Ghats on the South-West tip of McIntosh (1950). elevations whereas two species were recorded in by Dipterocarpus indicus (21), Hopea ponga (8), Karnataka state of India. It occupies about 4100 Km2 six elevations, nine species recorded in five Vateria indica (4) and Hopea utilis (1). of land in the Western Ghats and has an average The Shannon-Wiener diversity Index (H`) was elevations, five species recorded in four elevations, rainfall of 2725 mm per year (KFD, 2009). Brahmagiri calculated as per Shannon (1948). A total of 604 stems were recorded for the forest stand eleven species recorded in three elevations, eleven Wildlife Sanctuary (BWS) is divided into two wildlife density in the 0.96ha with a mean density of 629 H`=- Σ (Pi)[log (Pi)] species in two elevations and twenty seven species ranges viz., Srimangala Wildlife range and Makutta stems/ha (Table 1). Stand density was highest at in one elevation. Wildlife range and this study was done in Makutta where, Pi = ni / N (ni = number of individuals of a 600m elevation with 850 stems/ha with a basal area of 2 Wildlife Range (MWR) of Kodagu district which species, N = total number of individuals of all species) The number of families was highest at 400m with 21 61.18 m /ha. The basal area was highest at 100m with 2 2 connects to Talacauvery and Pushpagiri Wildlife Simpson's index (D), which measures the probability followed by 700m with 20 families and the least was 112.96 m /ha followed by 500m (107.58 m /ha). The Sanctuary along the Southern and Western that two individuals randomly selected 12 at 200m. The family Anacardiaceae and species diversity (H´) ranged from 2.20 to 3.02. The boundaries of the district. The protected areas in Dipterocarpaceae with 5 tree species each (7.57%) highest species diversity was observed at 400m with from a sample will belong to the same species Kodagu occupy approximately 30% of the area dominated the forest canopy cover followed by 3.02, followed by 500m (2.87) and 2.80 each at 300 (Simpson,1949). (Bhagwat et al., 2005). The study area is located in the Calophyllaceae, Fabaceae, Lauraceae, and 700m. The lowest species diversity was recorded Central Western Ghats region which is one among the at 800m (2.20). The Simpson's diversity index was D = 1- Σ [ni(ni-1) / N (N-1)] Phyllanthaceae and Meliaceae with 4 tree species 34 biodiversity hotspots of the world (Myers et al., each ( 6.06%). Density wise, Rutaceae with 68 trees highest at 400m with 0.95 followed by 100m (0.94) 2000). Natural vegetation in these areas spread Where, ni is the number of individuals of a species, (11.62%) dominated the forest stand followed by and 500m (0.94) indicating high species diversity in across several floristic types ranging from wet and N is the total number of individuals. Dipterocarpaceae with 64 trees (10.94%) and these elevations and 800 m with 0.81 had the lowest evergreen forests to dry woodlands and thickets Results and Discussion Fabaceae with 47 (8.03%). Rutaceae was represented Simpson's diversity index. (Pascal, 1988). However, there has been a massive by Atalantia monophylla and Vepris bilocularis with 18 landscape degradation and biodiversity depletion in A total of 68 tree species belonging to 55 genera and Stand density consistently decreased with increasing the past 30 years in Kodagu district (Garcia et al., 30 families were recorded between 100 to 800m and 50 individuals respectively (Fig. 2a). stem size classes from 30-60 to 180-210cm GBH 2 2007). elevation in the 9600m study area. A total of 26 endemic tree species was recorded with 296 The vegetation plots were laid at every 100m interval individuals belonging to 14 families and 22 genera. as we go along the imaginary transect from the The overall species richness varied along the altitude of 100 to 800m.
Recommended publications
  • Hopea Odorata Roxb. APFORGEN Priority Species Information Sheet
    APFORGEN Priority Species Information Sheet Hopea odorata Roxb. Family: Dipterocarpaceae Vernacular names: Malaysia: merawan siput jantan (general), chengal pasir, chengal mas, chengal kampong, chengal pulau (Peninsular Malaysia); Vietnam: sao den; Cambodia: kok, mosau, thmar; Laos: kh’en; Thailand: takhian-thong, takhian-yai Distribution and habitat: Distributed from Andaman Islands, Myanmar, Thailand and Indo-China to the northern part of Peninsular Malaysia. It is found mostly in lowland tropical forests on deep, rich soils up to 300 m altitude and rarely far away from streams. The Indian Andaman population, however, occurs in moist evergreen forest at higher altitudes away from streams. Best growth is obtained in areas with annual rainfall more than 1200 mm and mean annual temperature of 25°–27°C. It can grow in 1: Flowering branch; 2: flower; 3: fruit with calyx lobes (wings); 4: fruit with calyx removed. [From: Plant Resources of South-East a wide range of habitats and is easy to handle as a plantation Asia No. 5(1)] species. Reproductive biology: As with any other dipterocarp species, mass flowering and fruiting of H. odorata is irregular and may occur once in 2 to 3 years. Trees reach reproductive maturity at the age of 8–10 years. Fruits are formed 1.5 months after flowering. The fruits mature in 2 to 3 months. Some H. odorata fruits are polyembryonic; one fruit may produce up to seven plantlets. Apomixis in H. odorata has been inferred from embryological studies. Isozyme and DNA profiles of H. odorata seedlings revealed genetic variation between multiple seedlings from single seeds indicating sexual and asexual reproduction in this species.
    [Show full text]
  • Diversity and Composition of Plant Species in the Forest Over Limestone of Rajah Sikatuna Protected Landscape, Bohol, Philippines
    Biodiversity Data Journal 8: e55790 doi: 10.3897/BDJ.8.e55790 Research Article Diversity and composition of plant species in the forest over limestone of Rajah Sikatuna Protected Landscape, Bohol, Philippines Wilbert A. Aureo‡,§, Tomas D. Reyes|, Francis Carlo U. Mutia§, Reizl P. Jose ‡,§, Mary Beth Sarnowski¶ ‡ Department of Forestry and Environmental Sciences, College of Agriculture and Natural Resources, Bohol Island State University, Bohol, Philippines § Central Visayas Biodiversity Assessment and Conservation Program, Research and Development Office, Bohol Island State University, Bohol, Philippines | Institute of Renewable Natural Resources, College of Forestry and Natural Resources, University of the Philippines Los Baños, Laguna, Philippines ¶ United States Peace Corps Philippines, Diosdado Macapagal Blvd, Pasay, 1300, Metro Manila, Philippines Corresponding author: Wilbert A. Aureo ([email protected]) Academic editor: Anatoliy Khapugin Received: 24 Jun 2020 | Accepted: 25 Sep 2020 | Published: 29 Dec 2020 Citation: Aureo WA, Reyes TD, Mutia FCU, Jose RP, Sarnowski MB (2020) Diversity and composition of plant species in the forest over limestone of Rajah Sikatuna Protected Landscape, Bohol, Philippines. Biodiversity Data Journal 8: e55790. https://doi.org/10.3897/BDJ.8.e55790 Abstract Rajah Sikatuna Protected Landscape (RSPL), considered the last frontier within the Central Visayas region, is an ideal location for flora and fauna research due to its rich biodiversity. This recent study was conducted to determine the plant species composition and diversity and to select priority areas for conservation to update management strategy. A field survey was carried out in fifteen (15) 20 m x 100 m nested plots established randomly in the forest over limestone of RSPL from July to October 2019.
    [Show full text]
  • Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales)
    © 2020 The Japan Mendel Society Cytologia 85(2): 141–149 Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales) Kazuo Oginuma1*, Shawn Y. K. Lum2 and Hiroshi Tobe3 1 The Community Center for the Advancement of Education and Research at the University of Kochi, 5–15 Eikokuji-cho, Kochi 780–8515, Japan 2 Asian School of the Environment, Nanyang Technological University, Singapore 639798 3 Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan Received January 16, 2020; accepted February 9, 2020 Summary Previous chromosome information is restricted to Dipterocarpoideae, one of the two subfamilies of Dipterocarpaceae, and no chromosome information is available for another subfamily Monotoideae. Here we present the first karyomorphology of Marquesia macroura (2n=22) (Monotoideae), as well as of four species (2n=22) of four genera in tribe Dipterocarpeae and five species (2n=14) of tribe Shoreae in Dipterocarpoideae. Comparisons within Dipterocarpaceae and with Sarcolaenaceae (2n=22) sister to Dipetrocarpaceae in the light of phylogenetic relationships show that the basic chromosome number x=11 is plesiomorphic and x=7 apomor- phic in Dipterocapaceae. Based on available information, tribe Shoreae (x=7) has a uniform karyotype where all chromosomes have a centromere at median position, while the rest of the family (x=11) have a diverse karyotype in terms of the frequency of chromosomes with a centromere at median, submedian and subterminal position. We discussed the meaning of lability of karyotype in chromosome evolution. Keywords Basic chromosome number, Chromosome evolution, Dipterocarpaceae, Karyomorphology. Dipterocarpaceae (Malvales) are a family of 16 gen- x=10, and five genera Dryobalanops, Hopea, Neobala- era and 680 species distributed in tropical regions of nocarpus, Parashorea and Shorea of tribe Shoreae all the Old World, especially in the rain forests of Malesia have x=7.
    [Show full text]
  • Download Download
    OPEN ACCESS The Journal of Threatened Taxa fs dedfcated to bufldfng evfdence for conservafon globally by publfshfng peer-revfewed arfcles onlfne every month at a reasonably rapfd rate at www.threatenedtaxa.org . All arfcles publfshed fn JoTT are regfstered under Creafve Commons Atrfbufon 4.0 Internafonal Lfcense unless otherwfse menfoned. JoTT allows unrestrfcted use of arfcles fn any medfum, reproducfon, and dfstrfbufon by provfdfng adequate credft to the authors and the source of publfcafon. Journal of Threatened Taxa Bufldfng evfdence for conservafon globally www.threatenedtaxa.org ISSN 0974-7907 (Onlfne) | ISSN 0974-7893 (Prfnt) Short Communfcatfon Notes on the taxonomy and dfstrfbutfon of two endemfc and threatened dfpterocarp trees from the Western Ghats of Kerala, Indfa M.S. Sanfl, V.B. Sreekumar, K.A. Sreejfth, A.J. Robf & T.K. Nfrmesh 26 December 2017 | Vol. 9| No. 12 | Pp. 11033–11039 10.11609/jot. 3628 .9. 12.11033-11039 For Focus, Scope, Afms, Polfcfes and Gufdelfnes vfsft htp://threatenedtaxa.org/About_JoTT For Arfcle Submfssfon Gufdelfnes vfsft htp://threatenedtaxa.org/Submfssfon_Gufdelfnes For Polfcfes agafnst Scfenffc Mfsconduct vfsft htp://threatenedtaxa.org/JoTT_Polfcy_agafnst_Scfenffc_Mfsconduct For reprfnts contact <[email protected]> Publfsher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 December 2017 | 9(12): 11033–11039 Notes on the taxonomy and distribution of two endemic and threatened dipterocarp trees from the Western Ghats of Kerala, India ISSN 0974-7907 (Online)
    [Show full text]
  • KFRI-RR542.Pdf
    Abstract The Sacred Grove (SG) concept is one of the strategies developed by many human societies to conserve biological resources using a traditional approach. In a village landscape, compared to other forest patches, the sacred forest benefits rural societies in a better way through its ecosystem service outputs. However, the supply of ecosystem services depends on the structure and processes of ecosystems and is reduced with ecosystem degradation. In view of the fact that several SGs are being degraded, there is a necessity to identify direct and indirect drivers of forest degradation and then to develop decision support systems considering the present socio-cultural and economic dimensions to make information readily available to SG managers. With this background, the present study was conducted in five SGs (Kammadam Kavu, Karimanal Chamundi Kavu, Mani Kavu, Poyil Kavu and Valliyotu Kavu) of Kerala. Here, two approaches were taken to contribute for developing decision support systems for sacred forest conservation and management. The first approach was to assess ecosystem services of well-managed SGs as an opportunity for the conservation and management of SGs of the Western Ghats. The second approach was to identify direct and indirect drivers of degradation of SGs to compile and share useful information for planning interventions to combat forest degradation, reduce vulnerability and promote sustainable management of SGs. The level and intensity of disturbances are qualitative in nature and thus analytical method/s to assess and compare level, intensity and diversity of disturbances in SGs had to be developed. In the present study, eight disturbance variables namely, a) loss of forest land, b) pre-mature fall of trees, c) trespass, d) Illegal collection of biomass, e) dumping of solid waste, f) anti-social activities and g) use of SG area as playground were identified.
    [Show full text]
  • Arborescent Angiosperms of Mundanthurai Range in The
    Check List 8(5): 951–962, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Arborescent Angiosperms of Mundanthurai Range in PECIES S the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the OF southern Western Ghats, India ISTS L Paulraj Selva Singh Richard 1* and Selvaraj Abraham Muthukumar 2 1 Madras Christian College, Department of Botany, Chennai – 600 059, Tamil Nadu, India. 2 St. John’s College, Department of Botany, Tirunelveli, 627 002, Tamil Nadu, India. [email protected] * Corresponding author. E-mail: Abstract: The present study was carried out to document the diversity of arborescent angiosperm taxa of Mundanthurai representingRange in the 175Kalakad-Mundanthurai genera in 65 families Tiger were Reserve recorded. (KMTR) The most of the speciose southern families Western are Euphorbiaceae Ghats in India. (27 During spp.), the Rubiaceae floristic survey carried out from January 2008 to December 2010, a total of 247 species and intraspecific taxa of trees and shrubs to this region which includes Agasthiyamalaia pauciflora, Elaeocarpus venustus, Garcinia travancorica, Gluta travancorica, (17Goniothalamus spp.), Myrtaceae rhynchantherus, (14 spp.), Lauraceae Homalium (13 travancoricum, spp.) and Annonaceae Homaium (11 jainii, spp.). OropheaOf the 247 uniflora, taxa, 27 Phlogacanthus species are endemic albiflorus, only Polyalthia shendurunii, Symplocos macrocarpa and Symplocos sessilis . This clearly signifies that this range is relevant to the conservation of the local flora. Introduction India for conserving global biological diversity and also The Western Ghats is one of the biodiversity hotspots declared as Regional Centre of Endemism in the Indian of the world (Myers et al.
    [Show full text]
  • Studies on the Flora of Periyar Tiger Reserv
    KFRI Research Report 150 STUDIES ON THE FLORA OF PERIYAR TIGER RESERV N. Sas idharan KERALA FOREST RESEARCH INSTITUTE PEECHI, THRISSUR July 1998 Pages: 558 CONTENTS Page File Index to Families r.150.2 Abstract r.150.3 1 Introduction i r.150.4 2 Study Area ii r.150.5 3 Method viii r.150.6 4 Results viii r.150.7 5 Discussion xix r.150.8 6 Families 1 r.150.9 7 References 555 r.150.10 Index to families ACANTHACEAE 290 COCHLOSPERMACEAE 16 AGAVACEAE 452 COMBRETACEAE 133 AIZOACEAE 160 COMMELINACEAE 459 ALANGIACEAE 166 CONNARACEAE 85 AMARANTHACEAE 327 CONVOLVULACEAE 262 AMARYLLIDACEAE 452 CORNACEAE 166 ANACARDIACEAE 81 CRASSULACEAE 130 ANCISTROCLADACEAE 28 CUCURBITACEAE 153 ANNONACEAE 3 CYPERACEAE 481 APIACEAE 161 DATISCACEAE 158 APOCYNACEAE 240 DICHAPETALACEAE 62 AQUIFOLIACEAE 65 DILLENIACEAE 2 ARACEAE 471 DIOSCOREACEAE 453 ARALIACEAE 164 DIPTEROCARPACEAE 27 ARECACEAE 466 DROSERACEAE 131 ARISTOLOCHIACEAE 335 EBENACEAE 229 ASCLEPIADACEAE 246 ELAEGNACEAE 354 ASTERACEAE 190 ELAEOCARPACEAE 41 BALANOPHORACEAE 361 ERICACEAE 219 BALSAMINACEAE 44 ERIOCAULACEAE 477 BEGONIACEAE 159 ERYTHROXYLACEAE 42 BIGNONIACEAE 289 EUPHORBIACEAE 361 BOMBACACEAE 34 FABACEAE (LEGUMINOSAE) 86 BORAGINACEAE 260 FLACOURTIACEAE 17 BRASSICACEAE 13 GENTIANACEAE 256 BUDDLEJACEAE 256 GESNERIACEAE 287 BURMANNIACEAE 396 HAEMODORACEAE 451 BURSERACEAE 56 HALORAGACEAE 132 BUXACEAE 361 HIPPOCRATEACEAE 69 CAMPANULACEAE 215 HYDROCHARITACEAE 396 CANNABACEAE 389 HYPERICACEAE 23 CAPPARIDACEAE 14 HYPOXIDACEAE 453 CAPRIFOLIACEAE 166 ICACINACEAE 63 CARYOPHYLLACEAE 22 JUNCACEAE 466 CELASTRACEAE
    [Show full text]
  • Origins and Assembly of Malesian Rainforests
    ES50CH06_Kooyman ARjats.cls October 21, 2019 11:31 Annual Review of Ecology, Evolution, and Systematics Origins and Assembly of Malesian Rainforests Robert M. Kooyman,1,2 Robert J. Morley,3,4 Darren M. Crayn,5 Elizabeth M. Joyce,5 Maurizio Rossetto,2 J.W. Ferry Slik,6 Joeri S. Strijk,7,8,9 Ta o S u , 9,10 Jia-Yee S. Yap,2,11 and Peter Wilf12 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; email: [email protected] 2National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia 3Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom 4Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 5Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia 6Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam 7State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China 8Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR 9Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China 10Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar Access provided by 118.208.177.216 on 11/06/19. For personal use only. 11Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia 12Department of Geosciences, Pennsylvania State University, University Park, Annu.
    [Show full text]
  • Nazrin Full Phd Thesis (150246576
    Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.
    [Show full text]
  • Terminalia L
    KFRI Research Report No. 548 ISSN 0970-8103 Population analysis, seed biology and restoration of Hopea erosa and H. racophloea, two Critically Endangered trees of Western Ghats (Final Report of project KFRI RP 661/2013) PK Chandrasekhara Pillai PA Jose P Sujanapal R Jayaraj TK Hrideek KSCSTE - Kerala Forest Research Institute (An institution of Kerala State Council for Science Technology and Environment) Peechi 680 653, Thrissur, Kerala, India www.kfri.res.in July 2018 PROJECT PARTICULARS 1. Project No. : KFRI RP 661/2013 : Population analysis, seed biology and restoration 2. Title of Hopea erosa and H. racophloea, two Critically Endangered trees of Western Ghats 3. Special area of study : Population analysis, reproductive biology and storage physiology of seeds of the targetted species 4. Name of Principal : Dr. PK Chandrasekhara Pillai Investigator Senior Scientist, Kerala Forest Seed Centre Name of Project : Dr. PA Jose Associates Principal Scientist, Physiology Department Dr. P Sujanapal Scientist, Silviculture Department Dr. R Jayaraj Scientist, NTFP Department Dr. TK Hrideek Scientist, Forest Genetics Department 5. Name of Research : Mr. Mahendran, R. Personnels Research Fellow Mr. Sarath, M.S. Project Assistant 6. Funding Agency : KFRI Plan Grant 7. Duration of the Project : June 2013 – May 2016 8. Particulars of the Report : Final Technical Report Contents Acknowledgements ........................................................................................ i Abstract ........................................................................................................
    [Show full text]
  • Assessment and Conservation of Forest Biodiversity in the Western Ghats of Karnataka, India
    Assessment and Conservation of Forest Biodiversity in the Western Ghats of Karnataka, India. 2. Assessment of Tree Biodiversity, Logging Impact and General Discussion. B.R. Ramesh, M.H. Swaminath, Santhoshagouda Patil, S. Aravajy, Claire Elouard To cite this version: B.R. Ramesh, M.H. Swaminath, Santhoshagouda Patil, S. Aravajy, Claire Elouard. Assessment and Conservation of Forest Biodiversity in the Western Ghats of Karnataka, India. 2. Assessment of Tree Biodiversity, Logging Impact and General Discussion.. Institut Français de Pondichéry, pp. 65-121, 2009, Pondy Papers in Ecology no. 7, Head of Ecology Department, Institut Français de Pondichéry, e-mail: [email protected]. hal-00408305 HAL Id: hal-00408305 https://hal.archives-ouvertes.fr/hal-00408305 Submitted on 30 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUTS FRANÇAIS DE RECHERCHE EN INDE FRENCH RESEARCH INSTITUTES IN INDIA PONDY PAPERS IN ECOLOGY ASSESSMENT AND CONSERVATION OF FOREST BIODIVERSITY IN THE WESTERN GHATS OF KARNATAKA, INDIA. 2. ASSESSMENT OF TREE BIODIVERSITY, LOGGING IMPACT AND GENERAL DISCUSSION. B.R. Ramesh M.H. Swaminath Santhoshagouda Patil S. Aravajy Claire Elouard INST1TUT FRANÇAIS DE PONDICHÉRY FRENCH INSTITUTE PONDICHERRY 7 PONDY PAPERS IN ECOLOGY No.
    [Show full text]
  • First Steps Towards a Floral Structural Characterization of the Major Rosid Subclades
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 First steps towards a floral structural characterization of the major rosid subclades Endress, P K ; Matthews, M L Abstract: A survey of our own comparative studies on several larger clades of rosids and over 1400 original publications on rosid flowers shows that floral structural features support to various degrees the supraordinal relationships in rosids proposed by molecular phylogenetic studies. However, as many apparent relationships are not yet well resolved, the structural support also remains tentative. Some of the features that turned out to be of interest in the present study had not previously been considered in earlier supraordinal studies. The strongest floral structural support is for malvids (Brassicales, Malvales, Sapindales), which reflects the strong support of phylogenetic analyses. Somewhat less structurally supported are the COM (Celastrales, Oxalidales, Malpighiales) and the nitrogen-fixing (Cucurbitales, Fagales, Fabales, Rosales) clades of fabids, which are both also only weakly supported in phylogenetic analyses. The sister pairs, Cucurbitales plus Fagales, and Malvales plus Sapindales, are structurally only weakly supported, and for the entire fabids there is no clear support by the present floral structural data. However, an additional grouping, the COM clade plus malvids, shares some interesting features but does not appear as a clade in phylogenetic analyses. Thus it appears that the deepest split within eurosids- that between fabids and malvids - in molecular phylogenetic analyses (however weakly supported) is not matched by the present structural data. Features of ovules including thickness of integuments, thickness of nucellus, and degree of ovular curvature, appear to be especially interesting for higher level relationships and should be further explored.
    [Show full text]