Peter Lorimer, an Introduction to Projective Planes

Total Page:16

File Type:pdf, Size:1020Kb

Peter Lorimer, an Introduction to Projective Planes AN INTRODUCTION TO PROJECTIVE PLANES : SOME OF THE PROPERTIES OF A PARTICULAR PLANE OF ORDER 16 Peter Lorimer Dedicated to H.G. Forder on his 90th birthday (received 25 July, 1979) As my first introduction to projective geometry was in Professor Forder's third year class at the University of Auckland it is a great pleasure to be able to contribute a paper on projective planes to this volume on his 90th birthday. My intention here is to discuss a certain projective plane of order 16 in a way that should be accessible to the uninitiated. It is not one of the classical Desarguesian planes that we learnt about from Professor Forder : its interest is less geometrical, more algebraic and combinatorial. Within the space of a few years the existence of a particular projective plane of order 16 was discovered independently by three people. At the University of Iowa, N.L. Johnson observed [3] that a certain semifield plane is derivable; in his thesis at the University of Sydney, A. Rahilly described a generalized Hall plane; and in 1972, while I was on sabbatical leave from the University of Auckland, I discovered an explicit construction for a plane. That the three planes are identical is not obvious : it is clear in Rahilly's paper [7] that his plane is derivable from a semifield plane but I have the embarrass­ ment of having stated in my paper [6] that mine is not. The identity problem was cleared up by Johnson and T.G. Ostrom [4] who proved that Math. Chronicle 9(1980) 53-66. 53 both these planes are tangentially transitive with respect to a sub­ plane of order 2, and that there is only one translation plane of order 16 with this property. Translation planes which are tangentially transitive were being studied at Westfield College of the University of London, mainly by V. Jha. He characterized all tangentially transitive translation planes of order not 16 [2] and M. Walker completed Jha's work on planes of order 16 by proving that there is only one which is tangentially transitive with respect to a subplane of order 2, thus obtaining independently the result of Johnson and Ostrom mentioned in the last paragraph. Jha's work, supplemented by these other two papers, shows that there is only one finite translation plane which is tangentially transitive with respect to a subplane of order different from the square root of its own order. Walker [8] also exhibited another translation plane of order 16 with properties similar to the one which is the subject of this paper: for example the simple group of order 168 acts on both as a collineation group. Johnson and Ostrom [5] proved that these are the only two translation planes of order 16 on which this group acts. Another feature of the present translation plane is that it is of type (6,2) in the terminology of D. Hughes [l]. This is pointed out by Johnson and Ostrom [4] who remark that it appears to be the only known projective plane of class (6,m) , for any m . The construction of a plane of order 16 The projective plane of order 2 has 7 points and 7 lines: if the points are 1,2,3,4,5,6,7 the lines can be taken as the subsets {1,2,3), {3,4,5}, {5,6,1}, {1,4,7}, {3,6,7}, {2,4,6}. For our purposes the main properties of this structure are 54 PI. Each two points are joined by a unique line. P2. Each two lines meet in a unique point. P3. Among the points there are four, no three of which lie together on a line. A structure of points and lines satisfying these three axioms is called a projective plane; to emphasize the fact that there do exist structures other than the classical projective planes, the adjective non-Desarguesian is used for planes in which Desargues' Theorem is not true. Associated with each line {a,b,o} of the above plane of order 2 are two 3-cycles, {aba) and {aob): these are to be regarded as permuta­ tions of the three points involved and they do not act at all on the other 4 points of the plane. The symbols 0,1 are added to the 14 3-cycles which come from the 7 lines of the plane to form a set M = {0,1, (123), (132) , (345) , (354) , (561) , (516) , (147) , (174) , (257) , (275) , (367),(376),(246),(264)) The object now is define addition and multiplication on M in a way that is close enough to the way that these operations are defined on the real numbers that the usual techniques of analytic geometry can be used to construct the geometric structure we are after. First, addition and multiplication are defined on each set {0, 1, {aba), {aob)} in such a way to make it a field of order 4. Second, suppose that {pqr) and (pat) are 3-cycles coming from different lines of the plane of order 2. (because the two lines are from a projective plane they have exactly one point, p , in common). The definitions are {pqr) + {pet) = (puv) where u is the third point on the line joining q and 8 ; 55 (pqr)(pst) = (tru) where u is the third point on the line joining t and r . For example (123) + (147) = (165) (123)(147) = (736) In all this notice that a 3-cycle (xyz) can equally be written as (yzx) or (zxy): hence also (246) + (354) = (471) after orienting the left hand side to (462) + (435). The basic algebraic properties of M with these two binary operations are given by Theorem 1. (1) (M,+)is a 4-dimensional vector space over the field of order 2 (or alternatively it is an elementary abelian group of order 16) (2) if xsysz € M then x(y + z) = xy + xz (3) if x,y £ M and xz = yz for some z t 0 then x = y. The proof of this theorem is a straightforward verification of the three statements. Although the properties mentioned in the theorem closely mimic those of a field, M is not itself a field: for example the laws (a: + y)z = xz + yz xy = yx are not always true. Now let us set about constructing a plane from M . The real plane of co-ordinate or analytic geometry is constructed from the real 56 numbers JR by taking the members of J? x J? as points and the lines as solutions of linear equations. This is the method that is used here, too. Among the points of the projective plane of order 16 are to be 256 points which are identified with the members of the set M x M written as ordered pairs in the form (x,y) , in the usual manner. If m,a are both members of M there is to be a line consisting of all Cx,y) ( II x (I for which y = mx + a . This line will be denoted by [w,e], the square brackets distinguishing lines from points: thus the point (x,y) lies on the line [/n,c] if and only if y = mx + o . In addition, for each member d of M there is to be a line, denoted by [<2] consisting of the 16 points (d,y) with y in M . At this stage we have carried out the construction suggested by the way that the usual real plane is constructed from J? . But it is not a projective plane; rather it is an affine plane, characterized by the axioms: A1 : Each two points are joined by a unique line. A2 : Given a line and a point not on the line, there is exactly one line which passes through the given point, but does not meet the given line. A3 : Among the points there are four, no three of which lie together on a line. There is a standard way of constructing a projective plane from an affine one. Here is how it works in the present case. To the lines 57 already constructed, add one more; call it the line at infinity and denote it by ["]. To the points already constructed add seventeen more; denote one of them by («) and the other 16 by the sixteen symbols (a) where z is a member of M . Each of these 17 points is to lie on the line at 00 ; in addition the point (m) is to lie on each of the 16 lines [m,c], c ( M; and («*>) lies on each of the lines [<3], d * M . If we were to use the language of ordinary analytic geometry we would say that the point (ro) lies on each line of slope m , m being the slope of the line [ot,c?]; hence it makes sense to think of (m) being at infinity, or on the line at infinity. This completes the construction of the projective plane: it has order 16 because there are 17 points on every line (in the affine plane first constructed there were 16 points on every line). From now on this plane will be denoted by n . The collineatlon group of the plane A collineation of a projective plane is a 1-1 mapping of the points onto the points which maps the set of points on any line onto the set of points of another (or possibly the same) line; alternatively it is a 1-1 mapping of the lines onto the lines which maps the set of lines through any point onto the set of lines through another (or poss­ ibly the same) point.
Recommended publications
  • A Characterisation of Tangent Subplanes of PG(2,Q
    A Characterisation of Tangent Subplanes of PG(2,q3) S.G. Barwick and Wen-Ai Jackson School of Mathematics, University of Adelaide Adelaide 5005, Australia June 23, 2018 Corresponding Author: Dr Susan Barwick, University of Adelaide, Adelaide 5005, Aus- tralia. Phone: +61 8 8303 3983, Fax: +61 8 8303 3696, email: [email protected] Keywords: Bruck-Bose representation, PG(2, q3), order q subplanes AMS code: 51E20 Abstract In [2], the authors determine the representation of order-q-subplanes and order- q-sublines of PG(2,q3) in the Bruck-Bose representation in PG(6,q). In particular, they showed that an order-q-subplane of PG(2,q3) corresponds to a certain ruled arXiv:1204.4953v1 [math.CO] 23 Apr 2012 surface in PG(6,q). In this article we show that the converse holds, namely that any ruled surface satisfying the required properties corresponds to a tangent order- q-subplane of PG(2,q3). 1 Introduction We begin with a brief introduction to 2-spreads in PG(5, q), and the Bruck-Bose repre- sentation of PG(2, q3) in PG(6, q), and introduce the notation we will use. A 2-spread of PG(5, q) is a set of q3 + 1 planes that partition PG(5, q). The following construction of a regular 2-spread of PG(5, q) will be needed. Embed PG(5, q) in PG(5, q3) and let g be a line of PG(5, q3) disjoint from PG(5, q). The Frobenius automorphism of 2 GF(q3) where x 7→ xq induces a collineation of PG(5, q3).
    [Show full text]
  • A Characterisation of Translation Ovals in Finite Even Order Planes
    A characterisation of translation ovals in finite even order planes S.G. Barwick and Wen-Ai Jackson School of Mathematics, University of Adelaide Adelaide 5005, Australia Abstract In this article we consider a set C of points in PG(4,q), q even, satisfying cer- tain combinatorial properties with respect to the planes of PG(4,q). We show that there is a regular spread in the hyperplane at infinity, such that in the correspond- ing Bruck-Bose plane PG(2,q2), the points corresponding to C form a translation hyperoval, and conversely. 1 Introduction In this article we first consider a non-degenerate conic in PG(2, q2), q even. We look at the corresponding point set in the Bruck-Bose representation in PG(4, q), and study its combinatorial properties (details of the Bruck-Bose representation are given in Section 2). Some properties of this set were investigated in [4]. In this article we are interested in combinatorial properties relating to planes of PG(4, q). We consider a set of points in PG(4, q) satisfying certain of these combinatorial properties and find that the points 2 arXiv:1305.6673v1 [math.CO] 29 May 2013 correspond to a translation oval in the Bruck-Bose plane PG(2, q ). In [3], the case when q is odd is considered, and we show that given a set of points in PG(4, q) satisfying the following combinatorial properties, we can reconstruct the conic in PG(2, q2). We use the following terminology in PG(4, q): if the hyperplane at infinity is denoted Σ∞, then we call the points of PG(4, q) \ Σ∞ affine points.
    [Show full text]
  • 148. Symplectic Translation Planes by Antoni
    Lecture Notes of Seminario Interdisciplinare di Matematica Vol. 2 (2003), pp. 101 - 148. Symplectic translation planes by Antonio Maschietti Abstract1. A great deal of important work on symplectic translation planes has occurred in the last two decades, especially on those of even order, because of their link with non-linear codes. This link, which is the central theme of this paper, is based upon classical groups, particularly symplectic and orthogonal groups. Therefore I have included an Appendix, where standard notation and basic results are recalled. 1. Translation planes In this section we give an introductory account of translation planes. Compre- hensive textbooks are for example [17] and [3]. 1.1. Notation. We will use linear algebra to construct interesting geometrical structures from vector spaces, with special regard to vector spaces over finite fields. Any finite field has prime power order and for any prime power q there is, up to isomorphisms, a unique finite field of order q. This unique field is commonly de- noted by GF (q)(Galois Field); but also other symbols are usual, such as Fq.If q = pn with p a prime, the additive structure of F is that of an n dimensional q − vector space over Fp, which is the field of integers modulo p. The multiplicative group of Fq, denoted by Fq⇤, is cyclic. Finally, the automorphism group of the field Fq is cyclic of order n. Let A and B be sets. If f : A B is a map (or function or else mapping), then the image of x A will be denoted! by f(x)(functional notation).
    [Show full text]
  • LINEAR GROUPS AS RIGHT MULTIPLICATION GROUPS of QUASIFIELDS 3 Group T (Π) of Translations
    LINEAR GROUPS AS RIGHT MULTIPLICATION GROUPS OF QUASIFIELDS GABOR´ P. NAGY Abstract. For quasifields, the concept of parastrophy is slightly weaker than isotopy. Parastrophic quasifields yield isomorphic translation planes but not conversely. We investigate the right multiplication groups of fi- nite quasifields. We classify all quasifields having an exceptional finite transitive linear group as right multiplication group. The classification is up to parastrophy, which turns out to be the same as up to the iso- morphism of the corresponding translation planes. 1. Introduction A translation plane is often represented by an algebraic structure called a quasifield. Many properties of the translation plane can be most easily understood by looking at the appropriate quasifield. However, isomorphic translation planes can be represented by nonisomorphic quasifields. Further- more, the collineations do not always have a nice representation in terms of operations in the quasifields. Let p be a prime number and (Q, +, ·) be a quasifield of finite order pn. Fn We identify (Q, +) with the vector group ( p , +). With respect to the multiplication, the set Q∗ of nonzero elements of Q form a loop. The right multiplication maps of Q are the maps Ra : Q → Q, xRa = x · a, where Fn a, x ∈ Q. By the right distributive law, Ra is a linear map of Q = p . Clearly, R0 is the zero map. If a 6= 0 then Ra ∈ GL(n,p). In geometric context, the set of right translations are also called the slope set or the spread set of the quasifield Q, cf. [6, Chapter 5]. The right multiplication group RMlt(Q) of the quasifield Q is the linear group generated by the nonzero right multiplication maps.
    [Show full text]
  • Dissertation Hyperovals, Laguerre Planes And
    DISSERTATION HYPEROVALS, LAGUERRE PLANES AND HEMISYSTEMS { AN APPROACH VIA SYMMETRY Submitted by Luke Bayens Department of Mathematics In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2013 Doctoral Committee: Advisor: Tim Penttila Jeff Achter Willem Bohm Chris Peterson ABSTRACT HYPEROVALS, LAGUERRE PLANES AND HEMISYSTEMS { AN APPROACH VIA SYMMETRY In 1872, Felix Klein proposed the idea that geometry was best thought of as the study of invariants of a group of transformations. This had a profound effect on the study of geometry, eventually elevating symmetry to a central role. This thesis embodies the spirit of Klein's Erlangen program in the modern context of finite geometries { we employ knowledge about finite classical groups to solve long-standing problems in the area. We first look at hyperovals in finite Desarguesian projective planes. In the last 25 years a number of infinite families have been constructed. The area has seen a lot of activity, motivated by links with flocks, generalized quadrangles, and Laguerre planes, amongst others. An important element in the study of hyperovals and their related objects has been the determination of their groups { indeed often the only way of distinguishing them has been via such a calculation. We compute the automorphism group of the family of ovals constructed by Cherowitzo in 1998, and also obtain general results about groups acting on hyperovals, including a classification of hyperovals with large automorphism groups. We then turn our attention to finite Laguerre planes. We characterize the Miquelian Laguerre planes as those admitting a group containing a non-trivial elation and acting tran- sitively on flags, with an additional hypothesis { a quasiprimitive action on circles for planes of odd order, and insolubility of the group for planes of even order.
    [Show full text]
  • Weakly Isotopic Planar Ternary Rings
    Can. J. Math., Vol. XXVII, No. 1, 1975, pp. 32-36 WEAKLY ISOTOPIC PLANAR TERNARY RINGS FREDERICK W. STEVENSON 1. Introduction. This paper introduces two relations both weaker than isotopism which may hold between planar ternary rings. We will concentrate on the geometric consequences rather than the algebraic properties of these rela­ tions. It is well-known that every projective plane can be coordinatized by a planar ternary ring and every planar ternary ring coordinatizes a projective plane. If two planar ternary rings are isomorphic then their associated pro­ jective planes are isomorphic; however, the converse is not true. In fact, an algebraic bond which necessarily holds between the coordinatizing planar ternary rings of isomorphic projective planes has not been found. Such a bond must, of course, be weaker than isomorphism; furthermore, it must be weaker than isotopism. Here we show that it is even weaker than the two new relations introduced. This is significant because the weaker of our relations is, in a sense, the weakest possible algebraic relation which can hold between planar ternary rings which coordinatize isomorphic projective planes. 2. Definitions and theorems. Let T = (R, t) and V = (R\ t') be planar ternary rings. Definition 2.1. (R, i) is isomorphic to (Rf, tf) if and only if there exists a one-to-one function/ from R onto Rf such that if d = t(a, b, c) then/(d) = t'(f(a)J(b)J(c)). Definition 2.2. (R, t) is isotopic to (i?'f t') if and only if there exist one-to-one functions/, g, h from R onto Rr such that h(0) = 0 (we use the symbol "0" for both T and V) and if d = t(a} b, c) then h(d) = t'(f(a), g(b), h(c)).
    [Show full text]
  • O ''• ';•.. Vo- ' O Ί'o/ Be an N X N Permutation Matrix
    Oyama, T. Osaka J. Math. 22 (1985), 35-54 ON QUASIFIELDS Dedicated to Professor Kentaro Murata on his 60th birthday TUYOSI OYAMA (Received August 22, 1983) 1. Introduction A finite translation plane Π is represented in a vector space V(2n, q) of dimension 2n over a finite field GF(q), and determined by a spread τr={F(0), F(oo)} u {V(σ)\σ^Σ} of V(2n, g), where Σ is a subset of the general linear transformation group ίGL(F(w, q)). Furthermore Π is coordinatized by a quasifield of order q". In this paper we take a GF^-vector space in V(2n, q*) and a subset Σ* of GL(n, qn), and construct a quasifield. This quasifield consists of all ele- ments of GF(q"), and has two binary operations such that the addition is the usual field addition but the multiplication is defined by the elements of Σ*. 2. Preliminaries Let q be a prime power. For x^GF(qn) put x=x< °\ % = χW = χ9 and χW=xg\ i=2, 3, •• ,w—1. Then the mapping x-*x(i) is the automorphism of GF(qn) fixing the subfield GF(q) elementwise. n For a matrix a=(ai^)^GL(n9 q ) put ci=(aij). Let /o o ι\ 1 0 0 o ''• ';•.. Vo- ' o Ί'o/ be an n X n permutation matrix. Set St = {a e GL(n, qn) \ a=aω}. ! Lemma 2.1. St=GL(w, q^a^for any α0e3ί. Furthermore let a be an n X n matrix over GF(q").
    [Show full text]
  • A Translation Plane of Order 81 and Its Full Collineation Group
    BULL. AUSTRAL. MATH. SOC. 50D30 VOL. 29 (1984), 19-34. A TRANSLATION PLANE OF ORDER 81 AND ITS FULL COLLINEATION GROUP VITO ABATANGELO In this paper a new translation plane of order 8l is constructed. Its collineation group is solvable and acts on the line at infinity as a permutation group K which is the product of a group of order 5 belonging to the center of K with a group of order U8 . A 2-Sylow subgroup of K is the direct product of a dihedral group of order 8 with a group of order 2 . K admits six orbits. They have lengths k, 6, 12, 12, 2k, 1. Introduction Let GF(q) be a Galois field of odd order q (> 5) and let F be the regular spread of PG(3, q) • Suppose that F contains a set R of reguli satisfying the properties R (i) R consists of (<?+3)/2 reguli, R±, i?2> ..., (q+^y2 > (ii) any two reguli of R have exactly two lines in common, (iii) no three reguli of R have a line in common. Received 2 September 1983- Research partially supported by MPI (Research project "Structture Geometriche Combinatorie e Loro Applicazioni")• The author wishes to thank G. Korchmaros for the discussion with him about the argument of the present paper. Copyright Clearance Centre, Inc. Serial-fee code: 0OOU-9727/8U $A2.00 + 0.00. 19 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 01 Oct 2021 at 16:07:53, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • Computational Enumeration of Andr\'E Planes
    COMPUTATIONAL ENUMERATION OF ANDRE´ PLANES JEREMY M. DOVER Abstract. In this paper, we address computational questions surrounding the enumeration of non-isomorphic Andr´eplanes for any prime power order q. We are particularly focused on providing a complete enumeration of all such planes for relatively small orders (up to 125), as well as developing computationally efficient ways to count the number of isomorphism classes for other orders where enumeration is infeasible. Andr´eplanes of all dimensions over their kernel are considered. 1. Introduction In their seminal paper, Bruck and Bose [6] proved that every finite translation plane can be obtained from a construction that starts with a spread of an odd-dimensional projective space. Letting that space be PG(2n +1, q), a spread is a partition of the space into qn+1 +1 pairwise disjoint n-dimensional subspaces. Much of this work was anticipated in 1954, by Andr´e[2] who provided a similar construction of finite translation planes using a vector space model that was later shown to be equivalent to the projective space model developed by Bruck and Bose. Without getting too rigorous at this point, the basic concept behind Andr´e’s construction starts with a regular spread S of PG(2n +1, q). Bruck [5] has shown that for any pair of spaces in S, it is possible to coordinatize PG(2n+1, q) in a manner such that the elements of S are in one-to-one correspondence with the field GF (qn+1), together with a special element ∞. In this model, the two starting spaces are 0 and ∞, and the remaining spaces can be partitioned into q − 1 norm surfaces, where each norm surface consists of a set of spaces that correspond to elements of GF (qn+1) with constant norm over GF (q).
    [Show full text]
  • An Upper Bound for the Minimum Weight of the Dual Codes of Desarguesian Planes
    An upper bound for the minimum weight of the dual codes of desarguesian planes J. D. Key T. P. McDonough and V. C. Mavron School of Mathematical Sciences Institute of Mathematics and Physics University of KwaZulu-Natal Aberystwyth University, Aberystwyth Pietermaritzburg 3209 Ceredigion SY23 3BZ, U.K. South Africa January 17, 2008 Abstract We show that a construction described in Clark, Key and de Resmini [9] of small-weight words in the dual codes of finite translation planes can be extended so that it applies to projective and affine desarguesian planes of any order pm where m pm−1 p is a prime, and m ≥ 1. This gives words of weight 2p + 1 − p−1 in the dual of the p-ary code of the desarguesian plane of order pm, and provides an improved upper bound for the minimum weight of the dual code. The same will apply to a class of translation planes that this construction leads to; these belong to the class of Andr´eplanes. We also found by computer search a word of weight 36 in the dual binary code of the desarguesian plane of order 32, thus extending a result of Korchm´arosand Mazzocca [19]. 1 Introduction The determination of the minimum weight and the nature of possible minimum words of the dual p-ary code of a projective plane, where p is a prime that divides the order n of the plane, is an open problem. This is in contrast to the question for the code itself where the minimum weight vectors have long been known to be the scalar multiples of the incidence vectors of the lines: see, for example, [2, Chapter 6].
    [Show full text]
  • Arxiv:1512.05251V2 [Math.CO] 27 Jan 2016 T a Applications
    SCATTERED SPACES IN GALOIS GEOMETRY MICHEL LAVRAUW Abstract. This is a survey paper on the theory of scattered spaces in Galois geometry and its applications. 1. Introduction and motivation Given a set Ω and a set S of subsets of Ω, a subset U ⊂ Ω is called scattered with respect to S if U intersects each element of S in at most one element of Ω. In the context of Galois Geometry this concept was first studied in 2000 [4], where the set Ω was the set of points of the projective space PG(11, q) and S was a 3-spread of PG(11, q). The terminology of a scattered space1 was introduced later in [8]. The paper [4] was motivated by the theory of blocking sets, and it was shown that there exists a 5-dimensional subspace, whose set of points U ⊂ Ω is scattered with respect to S, which then led to an interesting construction of a (q + 1)-fold blocking set in PG(2, q4). The notion of “being scattered” has turned out to be a useful concept in Galois Geometry. This paper is motivated by the recent developments in Galois Geometry involving scattered spaces. The first part aims to give an overview of the known results on scattered spaces (mainly from [4], [8], and [31]) and the second part gives a survey of the applications. 2. Notation and terminology A t-spread of a vector space V is a partition of V \{0} by subspaces of constant dimension t. Equivalently, a (t − 1)-spread of PG(V ) (the projective space associated to V ) is a set of (t − 1)-dimensional subspaces partitioning the set of points of PG(V ).
    [Show full text]
  • Translation Dual of a Semifield
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Combinatorial Theory, Series A 115 (2008) 1321–1332 www.elsevier.com/locate/jcta Translation dual of a semifield ✩ Guglielmo Lunardon a, Giuseppe Marino a, Olga Polverino b, Rocco Trombetti a a Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, I-80126 Napoli, Italy b Dipartimento di Matematica, Seconda Università degli Studi di Napoli, I-81100 Caserta, Italy Received 16 July 2007 Available online 21 March 2008 Communicated by William M. Kantor Abstract In this paper we obtain a new description of the translation dual of a semifield introduced in [G. Lunar- don, Translation ovoids, J. Geom. 76 (2003) 200–215]. Using such a description we are able to prove that a semifield and its translation dual have nuclei of the same order. Combining the Knuth cubical array and the translation dual, we give an alternate description of the chain of twelve semifields in the table of [S. Ball, G.L. Ebert, M. Lavrauw, A geometric construction of finite semifields, J. Algebra 311 (2007) 117–129]. © 2008 Elsevier Inc. All rights reserved. Keywords: Semifield; Nuclei; Spread set 1. Introduction A semifield is an algebra satisfying the axioms of a skew field except (possibly) associativity of multiplication. Semifields coordinatize the projective planes of Lenz–Barlotti class V (semifield planes); two semifields are isotopic if and only if they coordinatize isomorphic planes as proved by A.A. Albert in [2] (for more details on the isotopy relation see [6, Section 3]).
    [Show full text]