Cooper Colostate 0053A 13076.Pdf (443.5Kb)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Characterisation of Tangent Subplanes of PG(2,Q
A Characterisation of Tangent Subplanes of PG(2,q3) S.G. Barwick and Wen-Ai Jackson School of Mathematics, University of Adelaide Adelaide 5005, Australia June 23, 2018 Corresponding Author: Dr Susan Barwick, University of Adelaide, Adelaide 5005, Aus- tralia. Phone: +61 8 8303 3983, Fax: +61 8 8303 3696, email: [email protected] Keywords: Bruck-Bose representation, PG(2, q3), order q subplanes AMS code: 51E20 Abstract In [2], the authors determine the representation of order-q-subplanes and order- q-sublines of PG(2,q3) in the Bruck-Bose representation in PG(6,q). In particular, they showed that an order-q-subplane of PG(2,q3) corresponds to a certain ruled arXiv:1204.4953v1 [math.CO] 23 Apr 2012 surface in PG(6,q). In this article we show that the converse holds, namely that any ruled surface satisfying the required properties corresponds to a tangent order- q-subplane of PG(2,q3). 1 Introduction We begin with a brief introduction to 2-spreads in PG(5, q), and the Bruck-Bose repre- sentation of PG(2, q3) in PG(6, q), and introduce the notation we will use. A 2-spread of PG(5, q) is a set of q3 + 1 planes that partition PG(5, q). The following construction of a regular 2-spread of PG(5, q) will be needed. Embed PG(5, q) in PG(5, q3) and let g be a line of PG(5, q3) disjoint from PG(5, q). The Frobenius automorphism of 2 GF(q3) where x 7→ xq induces a collineation of PG(5, q3). -
Mutually Orthogonal Latin Squares and Their Generalizations
Ghent University Faculty of Sciences Department of Mathematics Mutually orthogonal latin squares and their generalizations Jordy Vanpoucke Academic year 2011-2012 Advisor: Prof. Dr. L. Storme Master thesis submitted to the Faculty of Sciences to obtain the degree of Master in Sciences, Math- ematics Contents 1 Preface 4 2 Latin squares 7 2.1 Definitions . .7 2.2 Groups and permutations . .8 2.2.1 Definitions . .8 2.2.2 Construction of different reduced latin squares . .9 2.3 General theorems and properties . 10 2.3.1 On the number of latin squares and reduced latin squares . 10 2.3.2 On the number of main classes and isotopy classes . 11 2.3.3 Completion of latin squares and critical sets . 13 3 Sudoku latin squares 16 3.1 Definitions . 16 3.2 General theorems and properties . 17 3.2.1 On the number of sudoku latin squares and inequivalent sudoku latin squares . 17 3.3 Minimal sudoku latin squares . 18 3.3.1 Unavoidable sets . 20 3.3.2 First case: a = b =2 .......................... 25 3.3.3 Second case: a = 2 and b =3 ..................... 26 3.3.4 Third case: a = 2 and b =4...................... 28 3.3.5 Fourth case: a = 3 and b =3 ..................... 29 2 4 Latin squares and projective planes 30 4.1 Projective planes . 30 4.1.1 Coordinatization of projective planes . 31 4.1.2 Planar ternary rings . 32 4.2 Orthogonal latin squares and projective planes . 33 5 MOLS and MOSLS 34 5.1 Definitions . 34 5.2 Bounds . 35 5.3 Examples of small order . -
A Characterisation of Translation Ovals in Finite Even Order Planes
A characterisation of translation ovals in finite even order planes S.G. Barwick and Wen-Ai Jackson School of Mathematics, University of Adelaide Adelaide 5005, Australia Abstract In this article we consider a set C of points in PG(4,q), q even, satisfying cer- tain combinatorial properties with respect to the planes of PG(4,q). We show that there is a regular spread in the hyperplane at infinity, such that in the correspond- ing Bruck-Bose plane PG(2,q2), the points corresponding to C form a translation hyperoval, and conversely. 1 Introduction In this article we first consider a non-degenerate conic in PG(2, q2), q even. We look at the corresponding point set in the Bruck-Bose representation in PG(4, q), and study its combinatorial properties (details of the Bruck-Bose representation are given in Section 2). Some properties of this set were investigated in [4]. In this article we are interested in combinatorial properties relating to planes of PG(4, q). We consider a set of points in PG(4, q) satisfying certain of these combinatorial properties and find that the points 2 arXiv:1305.6673v1 [math.CO] 29 May 2013 correspond to a translation oval in the Bruck-Bose plane PG(2, q ). In [3], the case when q is odd is considered, and we show that given a set of points in PG(4, q) satisfying the following combinatorial properties, we can reconstruct the conic in PG(2, q2). We use the following terminology in PG(4, q): if the hyperplane at infinity is denoted Σ∞, then we call the points of PG(4, q) \ Σ∞ affine points. -
148. Symplectic Translation Planes by Antoni
Lecture Notes of Seminario Interdisciplinare di Matematica Vol. 2 (2003), pp. 101 - 148. Symplectic translation planes by Antonio Maschietti Abstract1. A great deal of important work on symplectic translation planes has occurred in the last two decades, especially on those of even order, because of their link with non-linear codes. This link, which is the central theme of this paper, is based upon classical groups, particularly symplectic and orthogonal groups. Therefore I have included an Appendix, where standard notation and basic results are recalled. 1. Translation planes In this section we give an introductory account of translation planes. Compre- hensive textbooks are for example [17] and [3]. 1.1. Notation. We will use linear algebra to construct interesting geometrical structures from vector spaces, with special regard to vector spaces over finite fields. Any finite field has prime power order and for any prime power q there is, up to isomorphisms, a unique finite field of order q. This unique field is commonly de- noted by GF (q)(Galois Field); but also other symbols are usual, such as Fq.If q = pn with p a prime, the additive structure of F is that of an n dimensional q − vector space over Fp, which is the field of integers modulo p. The multiplicative group of Fq, denoted by Fq⇤, is cyclic. Finally, the automorphism group of the field Fq is cyclic of order n. Let A and B be sets. If f : A B is a map (or function or else mapping), then the image of x A will be denoted! by f(x)(functional notation). -
Graphs with Flexible Labelings
Graphs with Flexible Labelings Georg Grasegger∗ Jan Legersk´yy Josef Schichoy For a flexible labeling of a graph, it is possible to construct infinitely many non-equivalent realizations keeping the distances of connected points con- stant. We give a combinatorial characterization of graphs that have flexible labelings, possibly non-generic. The characterization is based on colorings of the edges with restrictions on the cycles. Furthermore, we give necessary criteria and sufficient ones for the existence of such colorings. 1 Introduction Given a graph together with a labeling of its edges by positive real numbers, we are interested in the set of all functions from the set of vertices to the real plane such that the distance between any two connected vertices is equal to the label of the edge connecting them. Apparently, any such \realization" gives rise to infinitely many equivalent ones, by the action of the group of Euclidean congruence transformations. If the set of equivalence classes is finite and non-empty, then we say that the labeled graph is rigid; if this set is infinite, then we say that the labeling is flexible. The main result in this paper is a combinatorial characterization of graphs that have a flexible labeling. The characterization of graphs such that a generically chosen assign- ment of the vertices to the real plane gives a flexible labeling is classical: by a theorem of Geiringer-Pollaczek [8] which was rediscovered by Laman [6], this is true if the graph contains no Laman subgraph with the same set of vertices. Here, a graph G = (VG;EG) is called a Laman graph if and only if jEGj = 2jVGj − 3 and jEH j ≤ 2jVH j − 3 for any ∗Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences arXiv:1708.05298v2 [math.CO] 19 Nov 2018 yResearch Institute for Symbolic Computation (RISC), Johannes Kepler University Linz This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 675789. -
LINEAR GROUPS AS RIGHT MULTIPLICATION GROUPS of QUASIFIELDS 3 Group T (Π) of Translations
LINEAR GROUPS AS RIGHT MULTIPLICATION GROUPS OF QUASIFIELDS GABOR´ P. NAGY Abstract. For quasifields, the concept of parastrophy is slightly weaker than isotopy. Parastrophic quasifields yield isomorphic translation planes but not conversely. We investigate the right multiplication groups of fi- nite quasifields. We classify all quasifields having an exceptional finite transitive linear group as right multiplication group. The classification is up to parastrophy, which turns out to be the same as up to the iso- morphism of the corresponding translation planes. 1. Introduction A translation plane is often represented by an algebraic structure called a quasifield. Many properties of the translation plane can be most easily understood by looking at the appropriate quasifield. However, isomorphic translation planes can be represented by nonisomorphic quasifields. Further- more, the collineations do not always have a nice representation in terms of operations in the quasifields. Let p be a prime number and (Q, +, ·) be a quasifield of finite order pn. Fn We identify (Q, +) with the vector group ( p , +). With respect to the multiplication, the set Q∗ of nonzero elements of Q form a loop. The right multiplication maps of Q are the maps Ra : Q → Q, xRa = x · a, where Fn a, x ∈ Q. By the right distributive law, Ra is a linear map of Q = p . Clearly, R0 is the zero map. If a 6= 0 then Ra ∈ GL(n,p). In geometric context, the set of right translations are also called the slope set or the spread set of the quasifield Q, cf. [6, Chapter 5]. The right multiplication group RMlt(Q) of the quasifield Q is the linear group generated by the nonzero right multiplication maps. -
Tight Bounds for Online Edge Coloring
Tight Bounds for Online Edge Coloring Ilan Reuven Cohen∗1, Binghui Peng†‡2, and David Wajc§¶k3 1Carnegie Mellon University and University of Pittsburgh 2Tsinghua University 3Carnegie Mellon University Abstract Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆ 1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it− only applies to low- degree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆= ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+ o(1))∆-edge-coloring algorithm for ∆= ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no e Ω(1) ∆-edge-coloring algorithm exists. e−1 − We then provide an optimal, e + o(1) ∆-edge-coloring algorithm for unknown ∆= ω(log n). e−1 Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms. ∗Email address: [email protected]. †Email address: [email protected]. ‡Work done in part while the author was visiting Carnegie Mellon University. -
Hamilton Cycle Heuristics in Hard Graphs (Under the Direction of Pro- Fessor Carla D
ABSTRACT SHIELDS, IAN BEAUMONT Hamilton Cycle Heuristics in Hard Graphs (Under the direction of Pro- fessor Carla D. Savage) In this thesis, we use computer methods to investigate Hamilton cycles and paths in several families of graphs where general results are incomplete, including Kneser graphs, cubic Cayley graphs and the middle two levels graph. We describe a novel heuristic which has proven useful in finding Hamilton cycles in these families and compare its performance to that of other algorithms and heuristics. We describe methods for handling very large graphs on personal computers. We also explore issues in reducing the possible number of generating sets for cubic Cayley graphs generated by three involutions. Hamilton Cycle Heuristics in Hard Graphs by Ian Beaumont Shields A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Computer Science Raleigh 2004 APPROVED BY: ii Dedication To my wife Pat, and my children, Catherine, Brendan and Michael, for their understanding during these years of study. To the memory of Hanna Neumann who introduced me to combinatorial group theory. iii Biography Ian Shields was born on March 10, 1949 in Melbourne, Australia. He grew up and attended school near the foot of the Dandenong ranges. After a short time in actuarial work he attended the Australian National University in Canberra, where he graduated in 1973 with first class honours in pure mathematics. Ian worked for IBM and other companies in Australia, Canada and the United States, before resuming part-time study for a Masters Degree in Computer Science at North Carolina State University which he received in May 1995. -
Are Highly Connected 1-Planar Graphs Hamiltonian? Arxiv:1911.02153V1 [Cs.DM] 6 Nov 2019
Are highly connected 1-planar graphs Hamiltonian? Therese Biedl Abstract It is well-known that every planar 4-connected graph has a Hamiltonian cycle. In this paper, we study the question whether every 1-planar 4-connected graph has a Hamiltonian cycle. We show that this is false in general, even for 5-connected graphs, but true if the graph has a 1-planar drawing where every region is a triangle. 1 Introduction Planar graphs are graphs that can be drawn without crossings. They have been one of the central areas of study in graph theory and graph algorithms, and there are numerous results both for how to solve problems more easily on planar graphs and how to draw planar graphs (see e.g. [1, 9, 10])). We are here interested in a theorem by Tutte [17] that states that every planar 4-connected graph has a Hamiltonian cycle (definitions are in the next section). This was an improvement over an earlier result by Whitney that proved the existence of a Hamiltonian cycle in a 4-connected triangulated planar graph. There have been many generalizations and improvements since; in particular we can additionally fix the endpoints and one edge that the Hamiltonian cycle must use [16, 12]. Also, 4-connected planar graphs remain Hamiltonian even after deleting 2 vertices [14]. Hamiltonian cycles in planar graphs can be computed in linear time; this is quite straightforward if the graph is triangulated [2] and a bit more involved for general 4-connected planar graphs [5]. There are many graphs that are near-planar, i.e., that are \close" to planar graphs. -
Dissertation Hyperovals, Laguerre Planes And
DISSERTATION HYPEROVALS, LAGUERRE PLANES AND HEMISYSTEMS { AN APPROACH VIA SYMMETRY Submitted by Luke Bayens Department of Mathematics In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2013 Doctoral Committee: Advisor: Tim Penttila Jeff Achter Willem Bohm Chris Peterson ABSTRACT HYPEROVALS, LAGUERRE PLANES AND HEMISYSTEMS { AN APPROACH VIA SYMMETRY In 1872, Felix Klein proposed the idea that geometry was best thought of as the study of invariants of a group of transformations. This had a profound effect on the study of geometry, eventually elevating symmetry to a central role. This thesis embodies the spirit of Klein's Erlangen program in the modern context of finite geometries { we employ knowledge about finite classical groups to solve long-standing problems in the area. We first look at hyperovals in finite Desarguesian projective planes. In the last 25 years a number of infinite families have been constructed. The area has seen a lot of activity, motivated by links with flocks, generalized quadrangles, and Laguerre planes, amongst others. An important element in the study of hyperovals and their related objects has been the determination of their groups { indeed often the only way of distinguishing them has been via such a calculation. We compute the automorphism group of the family of ovals constructed by Cherowitzo in 1998, and also obtain general results about groups acting on hyperovals, including a classification of hyperovals with large automorphism groups. We then turn our attention to finite Laguerre planes. We characterize the Miquelian Laguerre planes as those admitting a group containing a non-trivial elation and acting tran- sitively on flags, with an additional hypothesis { a quasiprimitive action on circles for planes of odd order, and insolubility of the group for planes of even order. -
Peter Lorimer, an Introduction to Projective Planes
AN INTRODUCTION TO PROJECTIVE PLANES : SOME OF THE PROPERTIES OF A PARTICULAR PLANE OF ORDER 16 Peter Lorimer Dedicated to H.G. Forder on his 90th birthday (received 25 July, 1979) As my first introduction to projective geometry was in Professor Forder's third year class at the University of Auckland it is a great pleasure to be able to contribute a paper on projective planes to this volume on his 90th birthday. My intention here is to discuss a certain projective plane of order 16 in a way that should be accessible to the uninitiated. It is not one of the classical Desarguesian planes that we learnt about from Professor Forder : its interest is less geometrical, more algebraic and combinatorial. Within the space of a few years the existence of a particular projective plane of order 16 was discovered independently by three people. At the University of Iowa, N.L. Johnson observed [3] that a certain semifield plane is derivable; in his thesis at the University of Sydney, A. Rahilly described a generalized Hall plane; and in 1972, while I was on sabbatical leave from the University of Auckland, I discovered an explicit construction for a plane. That the three planes are identical is not obvious : it is clear in Rahilly's paper [7] that his plane is derivable from a semifield plane but I have the embarrass ment of having stated in my paper [6] that mine is not. The identity problem was cleared up by Johnson and T.G. Ostrom [4] who proved that Math. Chronicle 9(1980) 53-66. -
Finite Semifields
i “LavrauwPolverino” — 2010/2/12 — 11:49 — page 125 — #1 i i i In: Current research topics in Galois geometry ISBN 0000000000 Editors: J. De Beule, L. Storme, pp. 125-152 c 2010 Nova Science Publishers, Inc. 1 Chapter 6 2 FINITE SEMIFIELDS ∗† ‡ 3 Michel Lavrauw and Olga Polverino 4 1 Introduction and preliminaries 5 In this chapter, we concentrate on the links between Galois geometry and a particular kind 6 of non-associative algebras of finite dimension over a finite field F, called finite semifields. 7 Although in the earlier literature (predating 1965) the term semifields was not used, the 8 study of these algebras was initiated about a century ago by Dickson [32], shortly after 9 the classification of finite fields, taking a purely algebraic point of view. Nowadays it is 10 common to use the term semifields introduced by Knuth [59] in 1965 with the following 11 motivation: 12 “We are concerned with a certain type of algebraic system, called a semifield. Such a 13 system has several names in the literature, where it is called, for example, a "nonassocia- 14 tive division ring" or a "distributive quasifield". Since these terms are rather lengthy, and 15 since we make frequent reference to such systems in this paper, the more convenient name 16 semifield will be used." 17 By now, the theory of semifields has become of considerable interest in many different 18 areas of mathematics. Besides the numerous links with finite geometry, most of which con- 19 sidered here, semifields arise in the context of difference sets, coding theory, cryptography, 20 and group theory.