High Serum Levels of Matrix Metalloproteinase-9 and Matrix

Total Page:16

File Type:pdf, Size:1020Kb

High Serum Levels of Matrix Metalloproteinase-9 and Matrix Imaging, Diagnosis, Prognosis High Serum Levels of Matrix Metalloproteinase-9 and Matrix Metalloproteinase-1Are Associated with Rapid Progression in Patients with Metastatic Melanoma Johanna Nikkola,1, 3 PiaVihinen,1, 3 Meri-SiskoVuoristo,4 Pirkko Kellokumpu-Lehtinen,4 Veli-Matti Ka« ha« ri,2 and Seppo Pyrho« nen1, 3 Abstract Purpose: Matrixmetalloproteinases (MMP) are proteolytic enzymes that play an important role in various aspects of cancer progression. In the present work, we have studied the prognostic significance of serum levels of gelatinase B (MMP-9), collagenase-1 (MMP-1), and collagenase- 3 (MMP-13) in patients with advanced melanoma. Experimental Design:Total pretreatment serum levels of MMP-9 in 71patients and MMP-1and MMP-13 in 48 patients were determined by an assay system based on ELISA. Total MMP levels were also assessed in eight healthy controls. The active and latent forms of MMPs were defined by usingWestern blot analysis and gelatin zymography. Results: Patients with high serum levels of MMP-9 (z376.6 ng/mL; n = 19) had significantly poorer overall survival (OS) than patients with lower serum MMP-9 levels (n =52;medianOS, 29.1versus 45.2 months; P = 0.033). High MMP-9 levels were also associated with visceral or bone metastasis (P = 0.027), elevated serum alkaline phosphatase level (P = 0.0009), and presence of liver metastases (P =0.032).SerumlevelsofMMP-1andMMP-13didnotcorrelate with OS. MMP-1and MMP-9 were found mainly in latent forms in serum, whereas the majority of MMP-13 in serum was active (48 kDa) form. MMP-13 was found more often in active form in patients (mean, 99% of the total MMP-13 level) than in controls (mean, 84% of the total MMP-13 level; P < 0.0001). After initiating the therapy, patients with elevated levels of MMP-1 (z29.8 ng/mL, n = 10) progressed more rapidly than patients with lower levels (median, 1.9 versus 3.5 months; P = 0.023). Serum levels of MMP-9 and MMP-13 did not correlate with the time to progression (TTP). In multivariate analysis with age and gender, MMP-9 or MMP-1turned out to be independent prognostic factors for OS [P = 0.039; hazard ratio (HR), 1.8; 95% confi- dence interval (95% CI), 1.03-3.3] or TTP (P = 0.023; HR, 2.7; 95% CI,1.15-6.4), respectively. Conclusions: Our findings provide evidence that MMP-1, MMP-9, and MMP-13 play important roles at different phases of metastatic melanoma spread and that serum MMP-9, in particular, could have clinical value in identifying patients at high risk for melanoma progression. Matrix metalloproteinases (MMP) are a family of zinc- MMPs are known to degrade many other cell membrane dependent neutral endopeptidases characterized by their ability and pericellular proteins, including cell membrane precursor to degrade extracellular matrix components. In addition to the forms of growth factors, growth factor binding proteins, various structural components of the extracellular matrix, growth factor receptors, cell adhesion molecules, clotting factors, and proteinase inhibitors as well as their own inactive zymogen forms (1–3). The human MMP family currently Authors’ Affiliations: 1Department of Oncology and Radiotherapy, Turku consists of 23 members, which can be divided into eight University Hospital; 2Departments of Dermatology and Medical Biochemistry and structural classes or, based on their substrate specificity and 3 Molecular Biology and MediCity Research Laboratory, University of Turku,Turku, primary structure, into the more familiar subgroups of Finland and 4Department of Oncology, Tampere University Hospital, Tampere, Finland collagenases, gelatinases, stromelysins, MT-MMPs, and novel Received 12/15/04; accepted 12/15/04. MMPs. MMPs are synthesized as inactive zymogens, which are Grant support: Academy of Finland, the Finnish Cancer Foundation, Finnish activated predominantly pericellularly by other MMPs or Cultural Foundation, Finnish Life and Pension Insurance Companies, the Paulo serine proteinases. The activity of MMPs is specifically Foundation, Sigrid Juselius Foundation, Turku Finnish University Society, Turku inhibited by tissue inhibitors of metalloproteinase and by Graduate School of Clinical Science, Turku University Central Hospital, and Turku University Foundation. nonspecific proteinase inhibitors (e.g., a2-macroglobulin). The The costs of publication of this article were defrayed in part by the payment of page balance between MMPs and their inhibitors is essential in charges. This article must therefore be hereby marked advertisement in accordance many physiologic conditions where rapid remodeling of with 18 U.S.C. Section 1734 solely to indicate this fact. extracellular matrix is required and it is disturbed in Requests for reprints: Pia Vihinen, Department of Oncology and Radiotherapy, pathologic conditions such as cancer. Turku University Hospital, Kiinamyllynkatu 4-8, FIN-20520 Turku, Finland. Phone: 358-2-313-0000; Fax: 358-2-313-2809; E-mail: [email protected]. Collagenases (MMP-1, MMP-8, and MMP-13) are the F 2005 American Association for Cancer Research. principal extracellular proteinases capable of degrading native Clin Cancer Res 2005;11(14) July 15, 2005 5158 www.aacrjournals.org Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2005 American Association for Cancer Research. Serum MMP-1, MMP-9, and MMP-13 in Metastatic Melanoma fibrillar type I, II, III, and V collagens. In addition, MMP-13 can Table 1. Characteristics of patients degrade a wide variety of other matrix substrates. After initial cleavage by collagenases, fibrillar collagens are denatured into Variable nN* gelatin and further degraded by gelatinases [i.e., gelatinase A Patients 48 23 (MMP-2) and gelatinase B (MMP-9)]. MMP-1 is expressed by Gender various types of cells in culture and in vivo (4). The expression Male 29 16 of MMP-9 is more restricted. It is produced by epithelial cells Female 19 7 such as migrating keratinocytes and is stored in the secretory Age (y) granules of neutrophils and eosinophils (5). MMP-9 also plays Median (range) 62 (25-75) 57 (36-75) an important role in angiogenesis (6). The physiologic Disease-free survival (mo) expression of MMP-13 is limited to situations where rapid Median (range) 11 (0-224) 17 (0-58) and effective remodeling of collagenous matrix is required (i.e., Overall survival (mo) fetal bone development and postnatal bone remodeling; ref. 7). Median (range) 44 (5-265) 40 (16-114) Malignant melanoma, the most aggressive of all skin tumors, Survival after the arises from melanocytes, which are normally located at the initiation of therapy (mo) basal cell layer of the epidermis. Patients with localized primary Median (range) 9 (0.3-73) 10 (2.4-64) melanoma have a favorable prognosis with cure rates up to TTP (mo) 90%. However, the prognosis in locoregional and metastatic Median (range) 2 (0.2-70) 4 (0.9-51) systemic disease is poor with a median survival of 24 and 6 c Previous treatment months, respectively (8). Because current treatment results in No treatment 16 7 advanced melanoma are not satisfactory, novel approaches are Radiotherapy 11 3 needed for therapy as well as for classification of patients into Surgery 32 15 subgroups in which certain types of therapeutic regimens IFN-a 27 would be optimal. Treatment arms The expression and significance of MMPs and their inhibitors Dacarbazine + 12 6 in melanoma has been studied extensively using melanoma cell natural IFN-a lines, mouse models, and tissue samples of patients with Dacarbazine + 11 8 primary or metastatic melanoma. The expression of MMP-1 and recombinant IFN-a MMP-13 (9), and the expression of gelatinases, in particular DOBCb +naturalIFN-a 11 5 (10–16), has been associated with melanoma progression. In DOBC + recombinant IFN-a 14 4 our previous study, we found that high expression levels of Tumor burden MMP-1 and MMP-3 in melanoma metastases correlated with Soft tissue metastases 83 shorter disease-free survival (17). We also observed that a high (skin, s.c., and lymph expression of MMP-1 was associated with favorable treatment node metastases) response (18). Lung metastases 15 2 F soft tissue metastases Serum levels of MMPs are known to be altered in many Other metastases 25 18 human pathologic conditions. Elevated serum levels of MMPs Number of metastatic sites have been reported in, for example, polycystic kidney disease One site 12 3 (19), systemic sclerosis (20), rheumatoid arthritis (21), and Two or more sites 36 20 cancer. In some diseases, such as acute viral hepatitis, however, Metastatic sites serum levels of MMPs are reduced (22). In comparison with Bone 13 6 healthy controls, the serum levels of MMP-9 are elevated in Liver 20 13 head and neck squamous cell carcinoma (23, 24) and in colon Lung 23 13 (25), gastric (26), bladder, breast, and prostate cancer (27). Skin/subcutis 16 7 Furthermore, elevated MMP-9 serum levels have been shown to Other sites 34 18 correlate with poor survival in stage I to II non–small cell lung Treatment response cancer patients (28). Complete response 60 There are few studies analyzing the serum levels of MMPs in Partial response 32 patients with metastatic melanoma and their results have been Stable disease 14 11 partly controversial. Vuoristo et al. (29) studied the serum Progressive disease 21 9 levels of MMP-2 in 50 patients with advanced melanoma and Not evaluated 41found that serum MMP-2 had not a role as a prognostic marker. On the other hand, in a study on a larger patient material, Wollina et al. (30) found that the serum levels of MMP-2 were *An additional group of 23 patients was analyzed for total MMP-9 serum levels. significantly higher in patients with metastatic melanoma than cTen patients had both radiotherapy and surgery; one patient had surgery in patients with localized melanoma. In addition, somewhat combined with IFN-a and one patient had both radiotherapy and surgery com- higher MMP-2 levels were noted in patients with more bined with IFN-a.
Recommended publications
  • Metalloproteinase-9 and Chemotaxis Inflammatory Cell Production of Matrix AQARSAASKVKVSMKF, Induces 5, Α a Site on Laminin
    A Site on Laminin α5, AQARSAASKVKVSMKF, Induces Inflammatory Cell Production of Matrix Metalloproteinase-9 and Chemotaxis This information is current as of September 25, 2021. Tracy L. Adair-Kirk, Jeffrey J. Atkinson, Thomas J. Broekelmann, Masayuki Doi, Karl Tryggvason, Jeffrey H. Miner, Robert P. Mecham and Robert M. Senior J Immunol 2003; 171:398-406; ; doi: 10.4049/jimmunol.171.1.398 Downloaded from http://www.jimmunol.org/content/171/1/398 References This article cites 64 articles, 24 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/171/1/398.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A Site on Laminin ␣5, AQARSAASKVKVSMKF, Induces Inflammatory Cell Production of Matrix Metalloproteinase-9 and Chemotaxis1 Tracy L. Adair-Kirk,* Jeffrey J. Atkinson,* Thomas J.
    [Show full text]
  • 9/Gelatinase B Reduce NK Cell-Mediated Cytotoxicity
    in vivo 22 : 593-598 (2008) A High Concentration of MMP-2/ Gelatinase A and MMP- 9/ Gelatinase B Reduce NK Cell-mediated Cytotoxicity against an Oral Squamous Cell Carcinoma Cell Line BU-KYU LEE 1, MI-JUNG KIM 2, HA-SOON JANG 1, HEE-RAN LEE 2, KANG-MIN AHN 1, JONG-HO LEE 3, PILL-HOON CHOUNG 3 and MYUNG-JIN KIM 3 Departments of 1Oral and Maxillofacial Surgery and 2Cell Biology, Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, Ulsan University, Songpa-ku, 138-040, Seoul; 3Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University, Jongno-ku, 110-768, Seoul, Korea Abstract. Background: Recent studies have shown that advanced state of the disease had generally reduced host matrix metalloproteinases (MMPs) from tumors influence the immune function (3, 4). Nevertheless, the exact role of host immune system to reduce antitumor activity. The aim of immune cells, and of the immune system in general, in the this study was to examine the influence of MMP-2 and development of OSCC and in tumor progression remains MMP-9 on the natural killer (NK) cell. Materials and ambiguous. While the initiation of the process of Methods: NK cells were pretreated with either MMP-2 or tumorigenesis is clearly linked to carcinogens ( i.e. tobacco MMP-9 in the experimental group but not in the control or alcohol), its progression through a series of discrete group. NK cell cytotoxicity against oral squamous cell genetic changes results in the emergence of a tumor that is carcinoma cells (OSCC) were examined using the [Cr 51 ] resistant to immune effector cells (5, 6).
    [Show full text]
  • An Adverse Role for Matrix Metalloproteinase 12 After Spinal Cord Injury in Mice
    The Journal of Neuroscience, November 5, 2003 • 23(31):10107–10115 • 10107 Development/Plasticity/Repair An Adverse Role for Matrix Metalloproteinase 12 after Spinal Cord Injury in Mice Jennifer E. A. Wells,1 Tiffany K. Rice,1 Robert K. Nuttall,3 Dylan R. Edwards,3 Hakima Zekki,4 Serge Rivest,4 V. Wee Yong1,2 Departments of 1Clinical Neurosciences and 2Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, 3School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom, and 4Laboratory of Molecular Endocrinology and Department of Anatomy and Physiology, Laval University, Quebec, Quebec G1V 4G2, Canada We investigated the role of matrix metalloproteinases (MMPs) in acute spinal cord injury (SCI). Transcripts encoding 22 of the 23 known mammalian MMPs were measured in the mouse spinal cord at various time points after injury. Although there were significant changes in the expression levels of multiple MMPs, MMP-12 was increased 189-fold over normal levels, the highest of all MMPs examined. To evaluate the role of MMP-12 in SCI, spinal cord compression was performed in wild-type (WT) and MMP-12 null mice. Behavioral analyses were conducted for 4 weeks using the Basso–Beattie–Bresnahan (BBB) locomotor rating scale as well as the inclined plane test. The results show that MMP-12 null mice exhibited significantly improved functional recovery compared with WT controls. Twenty-eight days after injury, the BBB score in the MMP-12 group was 7, representing extensive movement of all three hindlimb joints, compared with 4 in the WT group, representing only slight movement of these joints.
    [Show full text]
  • (Matrix Metalloprotease-9) Activity Reduces Cellular Inflammation and Restores Function of Transplanted Pancreatic Islets
    ORIGINAL ARTICLE Inhibition of Gelatinase B (Matrix Metalloprotease-9) Activity Reduces Cellular Inflammation and Restores Function of Transplanted Pancreatic Islets Neelam Lingwal,1 Manju Padmasekar,1 Balaji Samikannu,1 Reinhard G. Bretzel,1 Klaus T. Preissner,2 and Thomas Linn1 Islet transplantation provides an approach to compensate for loss proteolytic activation occurs in the pericellular and extra- of insulin-producing cells in patients with type 1 diabetes. How- cellular space. In two of the secreted MMPs also designated ever, the intraportal route of transplantation is associated with gelatinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), instant inflammatory reactions to the graft and subsequent islet the catalytic zinc-carrying domain contains a structural mod- destruction as well. Although matrix metalloprotease (MMP)-2 ule of three fibronectin-like repeats interacting with elastin and -9 are involved in both remodeling of extracellular matrix and and types I, III, and IV gelatins when activated and facilitating leukocyte migration, their influence on the outcome of islet trans- their degradation within connective tissue matrices. plantation has not been characterized. We observed comparable Both neutrophils and macrophages express and secrete MMP-2 mRNA expressions in control and transplanted groups of gelatinases (10,11,13). Previous studies have shown that mice, whereas MMP-9 mRNA and protein expression levels in- fi creased after islet transplantation. Immunostaining for CD11b such cells contribute to the rst line of defense following (Mac-1)-expressing leukocytes (macrophage, neutrophils) and islet transplantation (3,4). Moreover, elevation of MMP-9 Ly6G (neutrophils) revealed substantially reduced inflammatory plasma levels was observed in diabetic patients (14), cell migration into islet-transplanted liver in MMP-9 knockout whereas in mice with acute pancreatitis, trypsin induced recipients.
    [Show full text]
  • Virulence Characteristics of Meca-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci
    microorganisms Article Virulence Characteristics of mecA-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci Jung-Whan Chon 1, Un Jung Lee 2, Ryan Bensen 3, Stephanie West 4, Angel Paredes 5, Jinhee Lim 5, Saeed Khan 1, Mark E. Hart 1,6, K. Scott Phillips 7 and Kidon Sung 1,* 1 Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; [email protected] (J.-W.C.); [email protected] (S.K.); [email protected] (M.E.H.) 2 Division of Cardiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; [email protected] 3 Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; [email protected] 4 Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 5 NCTR-ORA Nanotechnology Core Facility, US Food and Drug Administration, Jefferson, AR 72079, USA; [email protected] (A.P.); [email protected] (J.L.) 6 Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA 7 Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(870)-543-7527 Received: 20 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: Coagulase-negative staphylococci (CoNS) are an important group of opportunistic pathogenic microorganisms that cause infections in hospital settings and are generally resistant to many antimicrobial agents.
    [Show full text]
  • Unique Regulation of the Matrix Metalloproteinase, Gelatinase B
    Unique Regulation of the Matrix Metalloproteinase, Gelatinase B M. Elizabeth Fini, Marie T. Girard, Masao Matsubara, and John D. Bartlett Purpose. The matrix metalloproteinase (MMP), gelatinase B, is expressed by both corneal cell types found at the epithelial-stromal tissue interface, the site of basement membrane repair in the healing cornea. This study investigates the relative regulation of gelatinase B compared to other MMPs in response to agents related to those found in the corneal repair environment or in corneal ulcers. Methods. A culture model of corneal cells isolated from rabbit was used. Results. Gelatinase B is the major MMP expressed by corneal epithelial cells, whereas stromal fibroblasts produce gelatinase B along with three other MMPs: collagenase, stromelysin, and gelatinase A. Phorbol-12-myristate 13-acetate (PMA) stimulates gelatinase B mRNA and pro- tein synthesis by corneal cells, which is similar to its effect on the other MMPs. Stimulation occurs, at least partially, at the transcriptional level. PMA-stimulated MMP expression follows biphasic kinetics, with the major effect on collagenase, stromelysin, and gelatinase A occurring during the late component. In contrast, the major gelatinase B response occurs during the early component. Transforming growth factor-beta (TGF-/?) has no effect on constitutive expression of gelatinase B by fibroblasts; however, expression stimulated by PMA is enhanced. In contrast, constitutive expression of collagenase and stromelysin is inhibited by TGF-/3. However, in the presence of PMA, the initial inhibitory effect of TGF-/3 is reversed after treatment. Conclusion. Gelatinase B expression is regulated differently from other corneal MMPs. This provides a mechanism for control of basement membrane repair independent of repair processes in the stroma.
    [Show full text]
  • Reduced Angiogenesis and Tumor Progression in Gelatinase A-Deficient Mice1
    (CANCER RESEARCH.«. 11)48-1(151. March 1. 1998] Reduced Angiogenesis and Tumor Progression in Gelatinase A-deficient Mice1 Takeshi höh,2Masatoshi Tanioka, Hiroshi Yoshida, Takayuki Yoshioka, Hirofumi Nishimoto, and Shigeyoshi Itohara Shionogi Institute for Medical Science. Shionogi & Co., Lid. IT. /.. M. T., H. N.¡and Discovery Research Laboratories II, Shionogi & Co., Ltd. [H. Y., T. Y.J, Fukushima-ku, Osaka 553. and Institute for Virus Research. Kyoto University. Syogo-in. Sakyo-ku, Kyoto 606-01 ¡S././. Japan ABSTRACT normalities and are fertile, thus offering a useful system for assessing the specific role of gelatinase A in tumor progression. We show here Matrix proteolysis is thought to play a crucial role in several stages of that the rates of angiogenesis and experimental tumor growth and tumor progression, including angiogenesis, and the invasion and metas metastasis are markedly reduced in these gelatinase A-deficient mice. tasis of tumor cells. We investigated the specific role of gelatinase A This is the first direct evidence that host-derived gelatinase A plays a (matrix metalloproteinase 2) on these events using gelatinase A-deficient mice. In these mice, tumor-induced angiogenesis was suppressed accord specific role in angiogenesis and tumor progression in vivo. ing to dorsal air sac assay. When B16-BL6 melanoma cells or Lewis lung carcinoma cells were implanted intradermally, the tumor volumes at 3 MATERIALS AND METHODS weeks after implantation in the gelatinase A-deficient mice decreased by 39% for B16-BL6 melanoma and by 24% for Lewis lung carcinoma Animals. The generation of gelatinase A-deficient mice was described (P < 0.03 for each tumor).
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • During Acute Lung Injury Extracellular Matrix Protein Degradation Of
    ADAM9 Is a Novel Product of Polymorphonuclear Neutrophils: Regulation of Expression and Contributions to Extracellular Matrix Protein Degradation This information is current as during Acute Lung Injury of September 30, 2021. Robin Roychaudhuri, Anja H. Hergrueter, Francesca Polverino, Maria E. Laucho-Contreras, Kushagra Gupta, Niels Borregaard and Caroline A. Owen J Immunol 2014; 193:2469-2482; Prepublished online 25 Downloaded from July 2014; doi: 10.4049/jimmunol.1303370 http://www.jimmunol.org/content/193/5/2469 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2014/07/25/jimmunol.130337 Material 0.DCSupplemental References This article cites 66 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/193/5/2469.full#ref-list-1 by guest on September 30, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ADAM9 Is a Novel Product of Polymorphonuclear Neutrophils: Regulation of Expression and Contributions to Extracellular Matrix Protein Degradation during Acute Lung Injury Robin Roychaudhuri,*,1 Anja H.
    [Show full text]
  • Increased TIMP-3 Expression Alters the Cellular Secretome Through Dual
    www.nature.com/scientificreports OPEN Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease Received: 21 September 2017 Accepted: 6 August 2018 ADAM10 and ligand-binding of the Published: xx xx xxxx LRP-1 receptor Simone D. Scilabra1,2, Martina Pigoni1, Veronica Pravatá 1, Tobias Schätzl1, Stephan A. Müller1, Linda Troeberg 3 & Stefan F. Lichtenthaler1,2,4,5 The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting diferent classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, diferent approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall efects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual efect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identifed shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifcations in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1.
    [Show full text]
  • Towards Third Generation Matrix Metalloproteinase Inhibitors for Cancer Therapy
    British Journal of Cancer (2006) 94, 941 – 946 & 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00 www.bjcancer.com Minireview Towards third generation matrix metalloproteinase inhibitors for cancer therapy ,1 1 CM Overall* and O Kleifeld 1CBCRA Program in Breast Cancer Metastasis, Departments of Oral Biological & Medical Sciences, Biochemistry & Molecular Biology, The UBC Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 The failure of matrix metalloproteinase (MMP) inhibitor drug clinical trials in cancer was partly due to the inadvertent inhibition of MMP antitargets that counterbalanced the benefits of MMP target inhibition. We explore how MMP inhibitor drugs might be developed to achieve potent selectivity for validated MMP targets yet therapeutically spare MMP antitargets that are critical in host protection. British Journal of Cancer (2006) 94, 941–946. doi:10.1038/sj.bjc.6603043 www.bjcancer.com Published online 14 March 2006 & 2006 Cancer Research UK Keywords: target validation; antiproteolytic drug; cancer therapy; drug design; zinc chelation Twenty five years ago, the therapeutic strategy of controlling avenues for the therapeutic control of cancer. Conversely, stromal cancer by broadly targeting collagenase (matrix metalloproteinase cells harness the beneficial actions of MMPs in tissue homeostasis (MMP)1), stromelysin-1 (MMP3), and gelatinase A (MMP2), the and innate immunity for host resistance against cancer (Overall three then known MMPs, was founded on reducing degradation of and Kleifeld, 2006). All MMPs exhibit some of these functions, basement membrane and extracellular matrix proteins by cancer but MMPs -3, -8 and -9 have activities so important that when cells in metastasis and angiogenesis (Liotta et al, 1980; Hodgson, genetically knocked out, this leads to enhanced tumorigenesis and 1995).
    [Show full text]
  • Expression and Regulation of Matrix Metalloproteinase-12 in Experimental Autoimmune Encephalomyelitis and by Bone Marrow Derived
    Journal of Neuroimmunology 199 (2008) 24–34 www.elsevier.com/locate/jneuroim Expression and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalomyelitis and by bone marrow derived macrophages in vitro ⁎ Angelika Goncalves DaSilva, V. Wee Yong Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Department of Oncology, University of Calgary, Calgary, Alberta, Canada Received 3 November 2007; received in revised form 2 April 2008; accepted 21 April 2008 Abstract Several matrix metalloproteinase (MMP) members contribute to pathology in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). As the role of MMP-12 in EAE has been understudied, we examined its expression in EAE and in vitro. MMP-12 transcripts increased with EAE, and protein was localized to a subset of macrophages/microglia. The temporal expression of MMP-12 largely corresponded to that of cytokines, and we demonstrate that IL-1β and TNF-α promoted MMP-12 expression in cultured macrophages. We postulate that cytokine — MMP-12 interactions are important in the disease process of EAE. © 2008 Elsevier B.V. All rights reserved. Keywords: Cytokines; Metalloproteinases; Experimental autoimmune encephalomyelitis; Neuroinflammation; Proteases 1. Introduction cerebral vascular vessels (Cossins et al., 1997; Kouwenhoven et al., 2002; Agrawal et al., 2006; Toft-Hansen et al., 2006). Multiple sclerosis (MS) is an autoimmune neurological Besides participating in BBB breakdown, MMPs can also disease primarily affecting young adults. Experimental auto- produce demyelination and axonal injury, promote neuroin- immune encephalomyelitis (EAE), a commonly used animal flammation via the proteolysis of zymogens, and participate in model of MS, has provided many clues to the general mediating cell death (Kieseier et al., 1999; Yong et al., 2001; understanding of MS, but the etiology of the disease remains Opdenakker et al., 2003).
    [Show full text]