High Levels of Soluble Herpes Virus Entry Mediator in Sera of Patients with Allergic and Autoimmune Diseases

Total Page:16

File Type:pdf, Size:1020Kb

High Levels of Soluble Herpes Virus Entry Mediator in Sera of Patients with Allergic and Autoimmune Diseases EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 35, No. 6, 501-508, December 2003 High levels of soluble herpes virus entry mediator in sera of patients with allergic and autoimmune diseases Hyo Won Jung1, Su Jin La1, Ji Young Kim2 neutrophils and dendritic cells. In three-way MLR, Suk Kyeung Heo1, Ju Yang Kim1, Sa Wang3 mAb 122 and 139 were agonists and mAb 108 had Kack Kyun Kim4, Ki Man Lee5, Hong Rae Cho6 blocking activity. An ELISA was developed to detect Hyeon Woo Lee1, Byungsuk Kwon1 sHVEM in patient sera. sHVEM levels were elevated 1 1,7,8 in sera of patients with allergic asthma, atopic Byung Sam Kim and Byoung Se Kwon dermatitis and rheumatoid arthritis. The mAbs dis- 1 cussed here may be useful for studies of the role The Immunomodulation Research Center and of HVEM in immune responses. Detection of soluble Department of Biological Sciences HVEM might have diagnostic and prognostic value University of Ulsan, Ulsan 680-749, Korea in certain immunological disorders. 2The Immunomics Inc. Ulsan 680-749, Korea Keywords: asthma; atopic; autoimmune diseases; der- 3Department of Microbiology and Immunology matitis; inflammation mediators; rheumatoid arthritis; Indiana University School of Medicine tumor necrosis factor Indianapolis, IN 46202, USA 4Department of Oral Microbiology College of Dentistry, Seoul National University Seoul 110-744, Korea Introduction 5Department of Internal Medicine Members of the tumor necrosis factor receptor Ulsan University Hospital, University of Ulsan (TNFR) superfamily share a similar architecture of Ulsan 682-714, Korea their extracellular domain; this consists of a series of 6Department of Surgery cysteine-rich segments containing 30-40 amino acids Ulsan University Hospital, University of Ulsan with six cysteines in each segment (Mallett et al., Ulsan 682-714, Korea 7 1991). They are involved in the regulation of diverse LSU Eye Center immune functions. Some of the members of this Louisiana State University School of Medicine family regulate signals leading to apoptosis, whereas 2020 Gravier Street New Orleans LA 70112, USA 8 others are involved in lymphocyte activation and Corresponding author: Tel, 82-52-259-2392; differentiation (Locksley et al., 2001; Kwon et al., Fax, 82-52-259-2740; E-mail, [email protected] 2003). The open reading frame of herpes virus entry mediator (HVEM) encodes a 283 amino acid sequence, Accepted 23 October 2003 two perfect TNFR-like cysteine-rich domains, two im- perfect cysteine-rich domains, and a short cytoplasmic Abbreviations: DC, dendritic cell; HVEM, herpes virus entry medi- tail similar to that seen in 4-1BB and CD40 (Mont- ator; GST, glutathione S-transferase; MLR, mixed leukocyte gomery et al., 1996; Kwon et al., 1997). Because an reaction; RA, rheumatoid arthritis; sHVEM, soluble HVEM; SLE, HVEM-Fc fusion protein inhibited proliferation in a systemic lupus erythematosus; TNFR, TNF receptor; TRAF, TNFR mixed lymphocyte reaction using patient lymphocytes associated factor (Harrop et al., 1998), HVEM may either play a direct role in T cell stimulation or bind to a ligand that stimulates T cell proliferation. HVEM is a cellular Abstract mediator of the entry of herpes simplex virus type-1 (HSV-1) (Montgomery et al., 1996) and interacts Herpes virus entry mediator (HVEM) is a newly directly with the HSV virion glycoprotein D (gD) discovered member of the tumor necrosis factor required for entry into HVEM expressing cells (Whit- receptor (TNFR) superfamily that has a role in beck et al., 1997). Hsu et al. (1997) found that the herpes simplex virus entry, in T cell activation and cytoplasmic region of HVEM binds to several mem- in tumor immunity. We generated mAb against bers of the TNFR-associated factor (TRAF) family, HVEM and detected soluble HVEM (SHVEM) in the namely, TRAF1, TRAF2, TRAF3, and TRAF5, but not sera of patients with various autoimmune diseases. to TNFR4 or TRAF6, and that it activates transcription HVEM was constitutively expressed on CD4+ and factors NF-κB and AP-1 (Marsters et al., 1997). As CD8+ T cells, CD19+ B cells, CD14+ monocytes, anti-HVEM mAb are needed for or in-depth studies 502 Exp. Mol. Med. Vol. 35(6), 501-508, 2003 of the role of HVEM in immune responses and in ringer Mannheim, Indianapolis, IN). Cells were se- clinical settings, we generated several mAbs and lected in HAT medium (Boehringer Manheim) using used them to characterize HVEM, and to detect peritoneal macrophages as feeder cells. Antibody soluble HVEM in clinical samples. activity was determined after 10-14 days. ELISA screening Materials and Methods We determined the anti-HVEM activity of supernatants Cells and cell culture of the hybridoma cells by ELISA (Jin et al., 2001). ninety-six-well polypropylene microplates (Falcon, Monocyte-like cell lines HL-60, U937, and THP-1, Oxnard, CA) were coated with 5 mg/ml HVEM-Fc in human CD4+ T cell lines Jurkat and PM-1, human NaHCO overnight at 4oC, blocked with 3% BSA, and embryonic kidney cell line 293, and SP2/0 myeloma 3 incubated with the supernatants. Goat anti-mouse IgG cell line were obtained from the American Type conjugated with horseradish peroxidase (Sigma, St. Culture Collection (ATCC, Manassas, VA). They were Louis, CA) was used as secondary antibody. Plates cultured in either RPMI 1640 or DMEM, supplemented were washed five times with PBS/Tween-20 before with 10% FBS (Hyclone) and antibiotics. Growth was detecting bound antibody by incubation with ABT at 37oC with 5% CO /air. 2 peroxidase substrate (Kirkegaard and Perry Lab, Inc., Gaithersburg, MD). Serum obtained from the mouse Expression and purification of recombinant used to provide the splenocytes was used as a HVEM-GST and HVEM-Fc fusion proteins positive control. The Ig class and subclass of the resulting monoclonal antibodies was determined with We used PCR to amplify the cDNA sequence that the ImmunoPure Monoclonal Antibody Isotyping Kit encodes the ectodomain of HVEM. It was fused in (Pierce, Rockford, IL). frame with the GST-binding domain of glutathionine S-transferase (GST) or with human IgG1 Fc (including hinge, CH2 and CH3 domains). Each of the in-frame Purification of monoclonal antibodies fusions was confirmed by sequencing before being Balb/c mice were primed with Pristane and injected cloned into the PGEX-3 or pcDNA3 expression vector. IP with subcloned hybridoma cells to induce ascites pGEX-3-HVEM-transformed Escherichia coli were formation. The mAbs were purified from the ascites grown to an optical density of 0.6 (A590) before protein fluid by affinity column chromatography with protein expression was induced by the addition of 2 mM (final G-Sepharose (Zymed Lab, Inc, South San Francisco, concentration) isopropyl thiogalactopyranoside (IPTG). CA) (Coligan et al., 1991). The three monoclonal The HVEM-GST fusion protein was purified by two- antibodies (mAbs) used in this work, clones 108, 122 step chromatography with GSH-sepharose 4B. HVEM- and 139, were of isotypes IgG1 (colnes, 108 and 122) Fc fusion protein was produced in NIH 3T3 cells and or IgG2a (clone 139). purified with a protein G column. An automatic peptide sequencer (ABI, Perkin-Elmer, Norwalk) was used to determine N-terminal amino acid sequences. SDS-PAGE and Western blot analysis HVEM-GST was purified by two-step chromatography with GST-sepharose 4B, and used as control for Immunization and fusion Western blot analysis. Lysates (5×107 cells/ml) of A 6-8 week-old female Balb/c mouse (Harlan, India- THP-1 and Jurkat cells were digested in lysis buffer napolis, IN) was injected i.p. with 30 µg HVEM-GST [1% Triton X-100 in 150 mM NaCl and 20 mM fusion protein emulsified with an equal volume of Tris-HCl (pH 8.0)] at 4oC for 30 min. The lysates and Freund's complete adjuvant (Gibco-BRL, Gaithersburg, HVEM-GST were denatured by boiling for 5 min with MD). After two weeks the mouse was injected IP with 0.5% SDS and 1% β-mercaptoethanol, subjected to the same amount of HVEM-GST fusion protein emul- SDS-PAGE, and transferred to nitrocellulose mem- sified with an equal volume of Freund's incomplete branes. The membranes were blocked in reaction adjuvant. Two weeks later the mice received a third buffer (10 mM Tris [pH 7.4], 150 mM NaCl, 10% injection i.v. of 30 µg of HVEM-GST in PBS. Fusion nonfat dried milk, 0.05% Tween-20) for 1 h and of myeloma cells with splenocytes was performed as incubated with anti-HVEM mAb 108 diluted 1:5,000 in described by Kohler and Milstein (1975). SP2/0 were reaction buffer, followed by horse peroxidase-coupled used as fusion partner during exponential growth, with goat anti-mouse IgG (Boehringer Mannheim) diluted more than 95% viability. Primed lymphocytes were 1:10,000. Secondary antibody was detected by in- mixed with myeloma cells at a ratio of 5:1 and fused cubation in ECL reagent (Amersham Biosciences, in 50% (w/v) polyethylene glycol MW 1500 (Boeh- Piscataway, NJ) and exposure to X-ray film (Kodak, Detection of soluble HVEM in sera of patients 503 Rochester, NY). (ICN Biomedicals, Costa Mesa, CA) was then added for an additional 16 h. The cells were harvested, and radioactivity counted. Flow cytometry 293 cells transfected with HVEM-pcDNA3 were stained 48 h after transfection. Cultured cells were also Detection of soluble HVEM (sHVEM) in human serum stained with or without stimulation with anti-CD3 sHVEM was detected by ELISA using 108 as cap- (OKT3; 1 µg/ml) and LPS (100 ng/ml). They were turing mAb, and 122 as detecting mAb. A standard washed twice, resuspended in 1% paraformaldehyde curve was constructed with HVEM-Fc (R & D system, and analyzed by flow-cytometry with a FACScan Minneapolis, MN) as antigen.
Recommended publications
  • A TRAF2 Binding Independent Region of TNFR2 Is Responsible for TRAF2 Depletion and Enhancement of Cytotoxicity Driven by TNFR1
    www.impactjournals.com/oncotarget/ Oncotarget, January, Vol. 5, No. 1 A TRAF2 binding independent region of TNFR2 is responsible for TRAF2 depletion and enhancement of cytotoxicity driven by TNFR1 Lucía Cabal-Hierro1,3, Noelia Artime1, Julián Iglesias1, Miguel A. Prado1,4, Lorea Ugarte-Gil1, Pedro Casado1,5, Belén Fernández-García1, Bryant G. Darnay2 and Pedro S. Lazo1. 1 Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain. 2 University of Texas. MD Anderson Cancer Center. Houston, Texas, USA. 3 Present address: Abramson Cancer Center. Perelman School of Medicine, University of Pennsylvania Philadelphia, PA. USA. 4 Present address: Department of Cell Biology. Harvard Medical School. Boston, MA. USA. 5 Present address: Institute of Cancer, Barts Cancer Institute. Queen Mary University of London. London, UK Correspondence to: Pedro S. Lazo, email:[email protected] Keywords: TNF receptors; Death Receptors; TRAF2; Apoptosis; NF-kappaB Received: October 11, 2013 Accepted: November 27, 2013 Published: November 29, 2013 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Tumor Necrosis Factor (TNF) interacts with two receptors known as TNFR1 and TNFR2. TNFR1 activation may result in either cell proliferation or cell death. TNFR2 activates Nuclear Factor-kappaB (NF-kB) and c-Jun N-terminal kinase (JNK) which lead to transcriptional activation of genes related to cell proliferation and survival. This depends on the binding of TNF Receptor Associated Factor 2 (TRAF2) to the receptor.
    [Show full text]
  • Expression of the Tumor Necrosis Factor Receptor-Associated Factors
    Expression of the Tumor Necrosis Factor Receptor- Associated Factors (TRAFs) 1 and 2 is a Characteristic Feature of Hodgkin and Reed-Sternberg Cells Keith F. Izban, M.D., Melek Ergin, M.D, Robert L. Martinez, B.A., HT(ASCP), Serhan Alkan, M.D. Department of Pathology, Loyola University Medical Center, Maywood, Illinois the HD cell lines. Although KMH2 showed weak Tumor necrosis factor receptor–associated factors expression, the remaining HD cell lines also lacked (TRAFs) are a recently established group of proteins TRAF5 protein. These data demonstrate that consti- involved in the intracellular signal transduction of tutive expression of TRAF1 and TRAF2 is a charac- several members of the tumor necrosis factor recep- teristic feature of HRS cells from both patient and tor (TNFR) superfamily. Recently, specific members cell line specimens. Furthermore, with the excep- of the TRAF family have been implicated in promot- tion of TRAF1 expression, HRS cells from the three ing cell survival as well as activation of the tran- HD cell lines showed similar TRAF protein expres- ␬ scription factor NF- B. We investigated the consti- sion patterns. Overall, these findings demonstrate tutive expression of TRAF1 and TRAF2 in Hodgkin the expression of several TRAF proteins in HD. Sig- and Reed–Sternberg (HRS) cells from archived nificantly, the altered regulation of selective TRAF paraffin-embedded tissues obtained from 21 pa- proteins may reflect HRS cell response to stimula- tients diagnosed with classical Hodgkin’s disease tion from the microenvironment and potentially (HD). In a selective portion of cases, examination of contribute both to apoptosis resistance and cell HRS cells for Epstein-Barr virus (EBV)–encoded maintenance of HRS cells.
    [Show full text]
  • Nuclear TRAF3 Is a Negative Regulator of CREB in B Cells
    Nuclear TRAF3 is a negative regulator of CREB in B cells Nurbek Mambetsarieva,b,c,1, Wai W. Linb,1, Laura L. Stunza,d, Brett M. Hansona, Joanne M. Hildebranda,2, and Gail A. Bishopa,b,d,e,f,3 aDepartment of Microbiology, University of Iowa, Iowa City, IA 52242; bImmunology Graduate Program, University of Iowa, Iowa City, IA 52242; cMedical Scientist Training Program, University of Iowa, Iowa City, IA 52242; dHolden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242; eInternal Medicine, University of Iowa, Iowa City, IA 52242; and fDepartment of Veterans Affairs Medical Center, Research (151), Iowa City, IA 52246 Edited by Louis M. Staudt, National Cancer Institute, NIH, Bethesda, MD, and approved December 14, 2015 (received for review July 23, 2015) The adaptor protein TNF receptor-associated factor 3 (TRAF3) regu- deficient T cells and macrophages lack the enhanced survival phe- lates signaling through B-lymphocyte receptors, including CD40, notype, although they display constitutive NF-κB2 activation (12, BAFF receptor, and Toll-like receptors, and also plays a critical role 13). TRAF3 degradation is neither necessary nor sufficient for B-cell inhibiting B-cell homoeostatic survival. Consistent withthesefindings, NF-κB2 activation (14). These findings indicate that TRAF3 regu- loss-of-function human TRAF3 mutations are common in B-cell cancers, lates additional important prosurvival pathways in B cells. particularly multiple myeloma and B-cell lymphoma. B cells of B-cell– Nuclear localization of TRAF3 has been reported in several specific TRAF3−/− mice (B-Traf3−/−) display remarkably enhanced sur- nonhematopoietic cell types (15, 16), but the function of TRAF3 vival compared with littermate control (WT) B cells.
    [Show full text]
  • Cell Type-Specific Function of TRAF2 and TRAF3 in Regulating Type I IFN
    Xie et al. Cell Biosci (2019) 9:5 https://doi.org/10.1186/s13578-018-0268-5 Cell & Bioscience RESEARCH Open Access Cell type‑specifc function of TRAF2 and TRAF3 in regulating type I IFN induction Xiaoping Xie1, Jin Jin2, Lele Zhu1, Zuliang Jie1, Yanchuan Li1, Baoyu Zhao3, Xuhong Cheng1, Pingwei Li3 and Shao‑Cong Sun1,4* Abstract Background: TRAF3 is known as a central mediator of type I interferon (IFN) induction by various pattern recognition receptors, but the in vivo function of TRAF3 in host defense against viral infection is poorly defned due to the lack of a viable mouse model. Results: Here we show that mice carrying conditional deletion of TRAF3 in myeloid cells or dendritic cells do not have a signifcant defect in host defense against vesicular stomatitis virus (VSV) infection. However, whole-body inducible deletion of TRAF3 renders mice more sensitive to VSV infection. Consistently, TRAF3 was essential for type I IFN induction in mouse embryonic fbroblasts (MEFs) but not in macrophages. In dendritic cells, TRAF3 was required for type I IFN induction by TLR ligands but not by viruses. We further show that the IFN-regulating function is not unique to TRAF3, since TRAF2 is an essential mediator of type I IFN induction in several cell types, including mac‑ rophages, DCs, and MEFs. Conclusions: These fndings suggest that both TRAF2 and TRAF3 play a crucial role in type I IFN induction, but their functions are cell type- and stimulus-specifc. Keywords: TRAF2, TRAF3, Type I interferon, Antiviral immunity Background IPS-1) serves as an adaptor of RLRs, whereas stimulator Type I interferon (IFN) plays a crucial role in innate of interferon gene (STING) mediates type I IFN induc- immunity against viral infections [1, 2].
    [Show full text]
  • Lipid Rafts Are Important for the Association of RANK and TRAF6
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 35, No. 4, 279-284, August 2003 Lipid rafts are important for the association of RANK and TRAF6 Hyunil Ha1,3, Han Bok Kwak1,2,3, Introduction Soo Woong Lee1,2,3, Hong-Hee Kim2,4, 1,2,3,5 Osteoclasts are multinucleated giant cells responsible and Zang Hee Lee for bone resorption. These cells are differentiated from 1 hematopoietic myeloid precursors of the monocyte/ National Research Laboratory for Bone Metabolism macrophage lineage (Suda et al., 1992). For the dif- 2Research Center for Proteineous Materials 3 ferentiation of osteoclast precursors into mature osteo- School of Dentistry clasts, a cell-to-cell interaction between osteoclast Chosun University, Gwangju 501-759, Korea 4 precursors and osteoblasts/stromal cells are required Department of Cell and Developmental Biology (Udagawa et al., 1990). Recently, many studies have College of Dentistry, Seoul National University provided ample evidences that the TNF family mem- Seoul 110-749, Korea κ 5 ber RANKL (receptor activator of NF- B ligand; also Corresponding author: Tel, 82-62-230-6872; known as ODF, OPGL, and TRANCE) is expressed Fax, 82-62-227-6589; E-mail, [email protected] on the surface of osteoblasts/stromal cells and es- sential for osteoclast differentiation (Anderson et al., Accepted 19 June 2003 1997; Yasuda et al., 1998; Takahashi et al., 1999). When its receptor RANK was stimulated by RANKL, Abbreviations: MAPK, mitogen-activated protein kinase; MCD, several TNF receptor-associated factors (TRAFs), methyl-β-cyclodextrin; RANK, receptor activator of NF-κB; TLR, especially TRAF6, can be directly recruited into RANK Toll-like receptor; TNFR, TNF receptor; TRAF, TNF receptor- cytoplasmic domains and may trigger downstream associated factor signaling molecules for the activation of NF-κB and mitogen activated protein kinases (MAPKs) (Darnay et al., 1998; Wong et al., 1998; Kim et al., 1999).
    [Show full text]
  • Human TRAF-2 Antibody Antigen Affinity-Purified Polyclonal Goat Igg Catalog Number: AF3277
    Human TRAF-2 Antibody Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: AF3277 DESCRIPTION Species Reactivity Human Specificity Detects human TRAF­2 in Western blots. In Western blots, less than 1% cross­reacivity with recombinant human TRAF­1, ­3, ­4, ­5, or ­6 is observed. Source Polyclonal Goat IgG Purification Antigen Affinity­purified Immunogen E. coli­derived recombinant human TRAF­2 Met1­Leu501 Accession # Q12933 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 0.5 µg/mL See Below Knockout Validated TRAF­2 is specifically detected in HEK293T human embryonic kidney parental cell line but is not detectable in TRAF­2 knockout HEK293T cell line. DATA Western Blot Knockout Validated Detection of Human TRAF­2 by Western Western Blot Shows Human TRAF­2 Blot. Western blot shows lysates of Raji human Specificity by Using Knockout Cell Line. Burkitt's lymphoma cell line and HeLa human Western blot shows lysates of HEK293T cervical epithelial carcinoma cell line. PVDF human embryonic kidney parental cell line and membrane was probed with 0.5 µg/mL Goat Anti­ TRAF­2 knockout HEK293T cell line (KO). Human TRAF­2 Antigen Affinity­purified PVDF membrane was probed with 0.5 µg/mL Polyclonal Antibody (Catalog # AF3277) followed of Goat Anti­Human TRAF­2 Antigen Affinity­ by HRP­conjugated Anti­Goat IgG Secondary purified Polyclonal Antibody (Catalog # Antibody (Catalog # HAF017).
    [Show full text]
  • TRAF6, a Molecular Bridge Spanning Adaptive Immunity, Innate Immunity and Osteoimmunology Hao Wu1* and Joseph R
    Review articles TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology Hao Wu1* and Joseph R. Arron2 Summary receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene Tumor necrosis factor (TNF) receptor associated factor targeting experiments have identified several indispen- 6 (TRAF6) is a crucial signaling molecule regulating a sable physiological functions of TRAF6, and structural diverse array of physiological processes, including and biochemical studies have revealed the potential adaptive immunity, innate immunity, bone metabolism mechanisms of its action. By virtue of its many signaling and the development of several tissues including lymph roles, TRAF6 represents an important target in the regu- nodes, mammary glands, skin and the central nervous lation of many disease processes, including immunity, system. It is a member of a group of six closely related inflammation and osteoporosis. BioEssays 25:1096– TRAF proteins, which serve as adapter molecules, coupl- 1105, 2003. ß 2003 Wiley Periodicals, Inc. ing the TNF receptor (TNFR) superfamily to intracellular signaling events. Among the TRAF proteins, TRAF6 is unique in that, in addition to mediating TNFR family Introduction signaling, it is also essential for signaling downstream of The tumor necrosis factor (TNF) receptor associated factors an unrelated family of receptors, the interleukin-1 (IL-1) (TRAFs) were first identified as two intracellular proteins, TRAF1 and TRAF2, associated with TNF-R2,(1) a member of 1Department of Biochemistry, Weill Medical College of Cornell the TNF receptor (TNFR) superfamily. There are currently six University, New York. mammalian TRAFs (TRAF1-6), which have emerged as 2Tri-Institutional MD-PhD Program, Weill Medical College of Cornell important proximal signal transducers for the TNFR super- University, New York.
    [Show full text]
  • TRAF2 Deficiency Results in Hyperactivity of Certain TNFR1 Signals and Impairment of CD40-Mediated Responses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity, Vol. 11, 379±389, September, 1999, Copyright 1999 by Cell Press TRAF2 Deficiency Results in Hyperactivity of Certain TNFR1 Signals and Impairment of CD40-Mediated Responses Linh T. Nguyen,* Gordon S. Duncan,² molecules to the cytoplasmic regions of the receptors Christine Mirtsos,² Michelle Ng,² (Nagata, 1997). One major class of proximal signal trans- Daniel E. Speiser,³ Arda Shahinian,² duction molecules is the family of TNFR-associated fac- § ² Michael W. Marino, Tak W. Mak,* k tors (TRAFs) (Rothe et al., 1994, 1995; Cheng et al., 1995; ² Pamela S. Ohashi,*k and Wen-Chen Yeh k# Regnier et al., 1995; Cao et al., 1996; Ishida et al., 1996a, *Department of Immunology 1996b). TRAF proteins are characterized by a conserved University of Toronto TRAF-C domain, a coiled-coil TRAF-N domain and, ex- Toronto, Ontario cept for TRAF1, an N-terminal ring finger domain (Rothe Canada M5G 2M9 et al., 1994). The TRAF-C domain mediates TRAF associ- ² Amgen Institute ation with members of the TNFR superfamily as well as Ontario Cancer Institute interactions between TRAF proteins, while the ring finger Toronto, Ontario domain is implicated in downstream signaling events Canada M5G 2C1 (Rothe et al., 1995; Cao et al., 1996; Takeuchi et al., ³ Division of Clinical Onco-Immunology 1996). Ludwig Institute for Cancer Research TRAF1 and TRAF2 are prototypical members of the Lausanne Branch TRAF family proteins. They were originally purified from Centre Hospitalier Universitaire de Lausanne a protein complex associated with TNFR2.
    [Show full text]
  • Traf5 Is Differentially Expressed in High-Grade Serous Ovarian Cancer And
    1 Traf5 is differentially expressed in high-grade serous ovarian cancer and based on patient survival. 2 3 Shahan Mamoor1 4 [email protected] East Islip, NY 11730 5 High-grade serous ovarian cancer (HGSC) is the most common type of the most lethal 6 gynecologic malignancy (1). To identify genes whose expression was specifically perturbed in HGSC, we used published microarray data (2, 3) to compare the global gene expression 7 profiles of primary HGSC tumors to normal ovarian tissue. We found that the TNF receptor 8 associated factor 5 (TRAF5) (4, 5) was among the genes most differentially expressed in HGSC tumors relative to the normal ovary. In a separate dataset from patients enrolled in the ICON7 9 trial (6), the Traf5 gene was among those most differentially expressed when comparing HGSC tumor gene expression based on patient survival outcomes. Traf5 may be relevant to the 10 biology of high-grade serous ovarian cancers. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Keywords: ovarian cancer, high-grade serous ovarian cancer, HGSC, targeted therapeutics in 28 ovarian cancer, systems biology of ovarian cancer. 1 OF 13 1 High-grade serous ovarian cancer (HGSC) is the most prevalent type of the most lethal 2 gynecologic malignancy: ovarian cancer (1, 7, 8). The five-year survival rate for women 3 diagnosed with high-grade serous ovarian cancer is between 30-40% and has not changed 4 significantly in decades (7, 8). Understanding how the gene expression of tumors differs from 5 the organ from which it is derived can provide insight into the mechanisms by which cancers 6 are initiated and maintained.
    [Show full text]
  • Family in Amphioxus, the Basal Chordate TNF Receptor-Associated
    Genomic and Functional Uniqueness of the TNF Receptor-Associated Factor Gene Family in Amphioxus, the Basal Chordate This information is current as Shaochun Yuan, Tong Liu, Shengfeng Huang, Tao Wu, Ling of September 26, 2021. Huang, Huiling Liu, Xin Tao, Manyi Yang, Kui Wu, Yanhong Yu, Meiling Dong and Anlong Xu J Immunol 2009; 183:4560-4568; Prepublished online 14 September 2009; doi: 10.4049/jimmunol.0901537 Downloaded from http://www.jimmunol.org/content/183/7/4560 Supplementary http://www.jimmunol.org/content/suppl/2009/09/14/jimmunol.090153 Material 7.DC1 http://www.jimmunol.org/ References This article cites 38 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/183/7/4560.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Genomic and Functional Uniqueness of the TNF Receptor-Associated Factor Gene Family in Amphioxus, the Basal Chordate1 Shaochun Yuan, Tong Liu, Shengfeng Huang, Tao Wu, Ling Huang, Huiling Liu, Xin Tao, Manyi Yang, Kui Wu, Yanhong Yu, Meiling Dong, and Anlong Xu2 The TNF-associated factor (TRAF) family, the crucial adaptor group in innate immune signaling, increased to 24 in amphioxus, the oldest lineage of the Chordata.
    [Show full text]
  • Intracellular Signaling Pathways in Rheumatoid Arthritis
    C al & ellu ic la n r li Im C m f u Journal of Malemud, J Clin Cell Immunol 2013, 4:4 o n l o a l n o r DOI: 10.4172/2155-9899.1000160 g u y o J ISSN: 2155-9899 Clinical & Cellular Immunology ReviewResearch Article Article OpenOpen Access Access Intracellular Signaling Pathways in Rheumatoid Arthritis Charles J Malemud* Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA Abstract Dysfunctional intracellular signaling involving deregulated activation of the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and “cross-talk” between JAK/STAT and the stress-activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK) and Phosphatidylinositide-3-Kinase/AKT/mammalian Target of Rapamycin (PI-3K/AKT/mTOR) pathways play a critical role in rheumatoid arthritis. This is exemplified by immune-mediated chronic inflammation, up-regulated matrix metalloproteinase gene expression, induction of articular chondrocyte apoptosis and “apoptosis-resistance” in rheumatoid synovial tissue. An important consideration in the development of novel therapeutics for rheumatoid arthritis will be the extent to which inhibiting these signal transduction pathways will sufficiently suppress immune cell-mediated inflammation to produce a lasting clinical remission and halt the progression of rheumatoid arthritis pathology. In that regard, the majority of the evidence accumulated over the past decade indicated that merely suppressing pro-inflammatory cytokine-mediated JAK/ STAT, SAPK/MAPK or PI-3K/AKT/mTOR activation in RA patients may be necessary but not sufficient to result in clinical improvement.
    [Show full text]
  • TNF Receptor-Associated Factor 6 Is an Essential Mediator of CD40
    TNF Receptor-Associated Factor 6 Is an Essential Mediator of CD40-Activated Proinflammatory Pathways in Monocytes and Macrophages This information is current as of September 26, 2021. Lata Mukundan, Gail A. Bishop, Kimberly Z. Head, Lihua Zhang, Larry M. Wahl and Jill Suttles J Immunol 2005; 174:1081-1090; ; doi: 10.4049/jimmunol.174.2.1081 http://www.jimmunol.org/content/174/2/1081 Downloaded from References This article cites 55 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/174/2/1081.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology TNF Receptor-Associated Factor 6 Is an Essential Mediator of CD40-Activated Proinflammatory Pathways in Monocytes and Macrophages1 Lata Mukundan,* Gail A. Bishop,† Kimberly Z. Head,* Lihua Zhang,* Larry M.
    [Show full text]