In Situ High-Pressure Synthesis of New Outstanding Light-Element Materials Under Industrial P-T Range
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pressure, Stress, and Strain Distribution in the Double-Stage Diamond Anvil Cell
Pressure, stress, and strain distribution in the double-stage diamond anvil cell Sergey S. Lobanov1,2,*, Vitali B. Prakapenka3, Clemens Prescher3, Zuzana Konôpkova4, Hanns-Peter Liermann4, Katherine Crispin1, Chi Zhang5, Alexander F. Goncharov1,6,7 1Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA 2V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090, Russia 3Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60632, USA 4Photon Sciences DESY, D-22607 Hamburg, Germany 5Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics CAS, Beijing 100029, China 6Key Laboratory of Materials Physics, Institute of Solid State Physics CAS, Hefei 230031, China 7University of Science and Technology of China, Hefei 230026, China *[email protected] Abstract Double stage diamond anvil cells (DAC) of two designs have been assembled and tested. We used a standard symmetric DAC as a primary stage and CVD microanvils machined by a focused ion beam – as a second. We evaluated pressure, stress, and strain distributions in Au and Fe-Au samples as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, 1 our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils. -
Open Keefer Dissertation.Pdf
The Pennsylvania State University The Eberly College of Science Department of Chemistry SYNTHESIS OF SP2 AND SP3 CARBON MATERIALS A Dissertation in Chemistry by Derek William Keefer © 2016 Derek William Keefer Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2016 The dissertation of Derek William Keefer was reviewed and approved* by the following: John V. Badding Professor of Chemistry Dissertation Advisor Chair of Committee Harry Allcock Evan Pugh University Professor of Chemistry Dave Allara Professor Emeritus of Chemistry Vin Crespi Professor of Physics Kenneth S. Feldman Professor of Chemistry Graduate Program Chair *Signatures are on file in the Graduate School ii Abstract Carbon is the backbone of hundreds of products ranging from conductors to insulators and lubricants to machining tools. Diamond is the hardest material known and graphite is one of the softest, but there is a need for materials in between these two extremes. By taking advantage of the different pressure-dependent thermodynamic stabilities of graphite and diamond, the degree of sp2 and sp3 bonding in amorphous carbon materials can be varied. This control over bonding opens avenues for tuning properties such as electrical conductivity, hardness, and optical transmission. Two approaches to controlling sp3 and sp2 carbon formation have been studied. The first investigates techniques to deposit carbon at elevated pressures by high-pressure chemical vapor deposition. The second group of experiments involves high pressure synthesis techniques using a diamond anvil cell and developing precursors that will react at lower temperatures and pressures to give materials with sought after properties. This report is an investigation of the effect of high-pressure on the formation of amorphous carbon materials deposited by high-pressure chemical vapor deposition, dielectric breakdown plasma enhanced chemical vapor deposition, and laser induced plasma enhanced chemical vapor deposition. -
Graphene – Diamond Nanomaterials: a Status Quo Review
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 July 2021 doi:10.20944/preprints202107.0647.v1 Article Graphene – diamond nanomaterials: a status quo review 1 Jana Vejpravová ,* 1 Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic. * Correspondence: JV, [email protected] Abstract: Carbon nanomaterials with a different character of the chemical bond – graphene (sp2) and nanodiamond (sp3) are the building bricks for a new class of all-carbon hybrid nanomaterials, where the two different carbon networks with the sp3 and sp2 hybridization coexist, interact and even transform into one another. The unique electronic, mechanical, and chemical properties of the two border nanoallotropes of carbon ensure the immense application potential and versatility of these all-carbon graphene – diamond nanomaterials. The review gives an overview of the current state of the art of graphene – diamond nanomaterials, including their composites, heterojunctions, and other hybrids for sensing, electronic, energy storage, and other applications. Also, the graphene- to-diamond and diamond-to-graphene transformations at the nanoscale, essential for innovative fabrication, and stability and chemical reactivity assessment are discussed based on extensive theo- retical, computational, and experimental studies. Keywords: graphene; diamond; nanodiamond; diamane; graphene-diamond nanomaterials; all car- bon materials; electrochemistry; mechanochemistry; sensor; supercapacitor; -
Equations of State of New Boron-Rich Selenides B6se and B12se
Equations of state of new boron-rich selenides B6Se and B12Se Kirill A. Cherednichenko,1,2 Yann Le Godec,3 and Vladimir L. Solozhenko 1,* 1 LSPM–CNRS, Université Sorbonne Paris Nord, 93430 Villetaneuse, France 2 Department of Physical and Colloid Chemistry, Gubkin University, Moscow, 119991, Russia 3 IMPMC–CNRS, UPMC Sorbonne Universités, 75005 Paris, France Abstract Two novel of boron-rich selenides, orthorhombic B6Se and rhombohedral B12Se, have been recently synthesized at high pressure – high temperature conditions. Room-temperature compressibilities of these phases were studied in a diamond anvil cell using synchrotron powder X-ray diffraction. A fit of experimental p-V data by third-order Birch-Murnaghan equation of state yielded the bulk moduli of 155(2) GPa for B12Se and 144(3) GPa for B6Se. No pressure-induced phase transitions have been observed in the studied pressure range, i.e. up to 35 GPa. Keywords : boron-rich selenides; high pressure; equation of state Introduction Boron-rich compounds containing B12-icosahedra have been known since 1960-s [1]. The majority of these compounds are the structural derivatives of elemental α-rhombohedral boron (α-B12) with general stoichiometry: B12Xy (where X is interstitial atom, y ≤ 2). They received a considerable attention due to the high hardness, chemical inertness, thermal conductivity, radiation resistance and unusual electronic properties [2-5]. For instance, boron carbide B12C3 is hard compound widely used as abrasive and armor material [6,7], boron suboxide B12O2 is the hardest known oxide [8,9], and B12As2 was found to be extremely stable under electron bombardment and able to the self-healing [10]. -
Towards the Theory of Hardness of Materials
Towards the theory of hardness of materials. Artem R. Oganov1,2, Andriy O. Lyakhov1 1 Department of Geosciences, Department of Physics and Astronomy, and New York Center for Computational Sciences, Stony Brook University, Stony Brook, New York 11794-2100, USA 2 Geology Department, Moscow State University, 119992 Moscow, Russia Recent studies showed that hardness, a complex property, can be calculated using very simple approaches or even analytical formulae. These form the basis for evaluating controversial experimental results (as we illustrate for TiO2-cotunnite) and enable a systematic search for novel hard materials, for instance, using global optimization algorithms (as we show on the example of SiO2 polymorphs). We all know that diamond is very hard, while graphite and talc are soft. Hardness, as a property of materials, determines many of their technological applications, but remains a poorly understood property. The aim of this Special Issue is to review some of the most important recent developments in the understanding of hardness. Mohs’s relative scale of hardness appeared in the XIX century and is still widely used by mineralogists; in this scale talc has hardness 1, and diamond has hardness 10. There are several absolute definitions of hardness – the most popular ones being the Knoop and Vickers tests of hardness, which involve indentation (rather than scratching, as in Mohs’s hardness). The absolute hardness is measured in GPa, the same units as pressure or elastic moduli (bulk modulus, shear modulus). This hints that hardness may be correlated with the elastic properties – indeed, there is such a correlation, especially with the shear modulus. -
Magnetic Measurements on Micron-Size Samples Under High Pressure Using Designed NV Centers
Magnetic measurements on micron-size samples under high pressure using designed NV centers Margarita Lesik1,∗ Thomas Plisson2;∗†, Lo¨ıc Toraille1;∗, Justine Renaud3, Florent Occelli2, Martin Schmidt1, Olivier Salord3, Anne Delobbe3, Thierry Debuisschert4, Lo¨ıc Rondin1, Paul Loubeyre2, and Jean-Franc¸ois Roch1;y 1Laboratoire Aime´ Cotton, CNRS, Univ. Paris-Sud, ENS Cachan, Universite´ Paris-Saclay, 91405, Orsay Cedex, France 2CEA, DAM, DIF, 91297 Arpajon, France 3Orsay Physics S. A., 95 avenue des Monts Aureliens,´ 13710 Fuveau, France 4Thales Research & Technology, 1, avenue Augustin Fresnel, 91767 Palaiseau, France yTo whom correspondence should be addressed; E-mail: [email protected], [email protected]. Pressure is a unique tool to tune the interplay between structural, electronic and magnetic interactions. It leads to remarkable properties of materials such as recent temperature records in superconductivity. Advanced magnetic mea- surements under very high pressure in the Diamond Anvil Cell (DAC) use syn- chrotron approaches but these are lacking a formal link to the macroscopic magnetic properties. We report an alternative method consisting in optical magnetometry based on nitrogen-vacancy (NV) centers created at the surface of a diamond anvil. We illustrate the method by two measurements realized at arXiv:1812.09894v1 [cond-mat.mes-hall] 24 Dec 2018 room and low temperature respectively: the pressure evolution of the magne- tization of an iron bead up to 30 GPa showing the iron ferromagnetic collapse and the detection of the superconducting transition of MgB2 at 7 GPa. ∗These authors contributed equally to this work. 1 Compression of a solid directly changes its electron density inducing a large diversity of magnetic phenomena such as quantum critical points or high-spin low-spin transitions (1). -
Electronic Structure of Carbon Dioxide Under Pressure and Insights Into the Molecular-To-Nonmolecular Transition
Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition Sean R. Shieha,1, Ignace Jarrigeb, Min Wuc,d, Nozomu Hiraokae, John S. Tsed, Zhongying Mia,2, Linada Kacia, Jian-Zhong Jiangc, and Yong Q. Caib aDepartments of Earth Sciences, and Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 5B7; bPhoton Sciences, Brookhaven National Laboratory, Upton, NY 11973; cInternational Center for New Structured Materials and Laboratory of New Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China; dDepartment of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; and eNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan Edited* by Ho-kwang Mao, Carnegie Institution of Washington, Washington, DC, and approved October 8, 2013 (received for review March 23, 2013) Knowledge of the high-pressure behavior of carbon dioxide (CO2), to nonmolecular phase transformation ranging from 48 to 65 GPa an important planetary material found in Venus, Earth, and Mars, (17, 22, 23). is vital to the study of the evolution and dynamics of the planetary The discrepancies between different experiments and ambi- interiors as well as to the fundamental understanding of the C–O guities in the transition pressures in solid CO2 motivate a thorough bonding and interaction between the molecules. Recent studies investigation of the pressure dependence of the local structural have revealed a number of crystalline polymorphs (CO2-I to -VII) and electronic environment. Here we report a survey of the evo- – and an amorphous phase under high pressure temperature condi- lution of the chemical bonding of CO2 under pressure, using X-ray tions. -
Download Article (PDF)
American Mineralogist, Volume 80, pages 1-8, 1995 Equation of state, bonding character, and phase transition of cubanite, CuFe2S3, studied from 0 to 5 GPa CATHERINE A. MCCAMMON Bayerisches Geoinstitut, Universitat Bayreuth, D-95440 Bayreuth, Germany AOSTRACf An in-situ study of cubanite, CuFe2S3, was performed in a diamond-anvil cell using Mossbauer spectroscopy and energy-dispersive X-ray diffraction at room temperature and pressures up to 5 GPa. Mossbauer spectra of orthorhombic cubanite show a single Fe site with rapid electron transfer between FeH and FeH, a hyperfine magnetic field that is relatively insensitive to pressure, and a center shift that decreases with pressure because of increasing covalency. A phase transition occurs above 3.3 GPa that involves a change from the orthorhombic cubanite structure to a derivative of the hexagonal NiAs (B8) structure, with a zero-pressure volume decrease of 29%. The large difference in volume is caused by a change from tetrahedral to octahedral coordination and a significant shortening of metal-metal bonds. Volume-compression data were fitted to a second-order Birch- Murnaghan equation of state (K~ = 4) with the results Ko = 64 :t 3 GPa (orthorhombic phase) and Ko = 157 :t 16 GPa (high-pressure phase). Mossbauer data of the high-pressure phase indicate a single Fe site with no magnetic ordering and a valence intermediate between FeH and FeH. Consideration of likely ordering patterns in the high-pressure phase indicates that localized electron transfer could occur along face-shared pairs of Fe octahedra, and extended electron delocalization could occur along paths formed by face- and edge-shared octahedra. -
1 Carbonates Under High Pressure and Temperatures: Carbopat
1.2.-1 Carbonates under high Pressure and Temperatures: CarboPaT 1�2�-1 Carbonates under high Pressure and Temperatures: CarboPaT Thursday, 12/Sep/2019: 12:45pm–1:45pm Session Chair: Melanie Jutta Sieber Location: Hall C The missing source of hydrocarbon emissions to the atmosphere Daniil Aleksandrovich Kudriavtcev Royal institute of technology, Sweden Nowadays, the exponential growth of hydrocarbon emissions to the atmosphere is a rising problem of soci- ety, politics and science. The focus on the role of CO2emissions left in shade the problem of hydrocarbons, which have their own strong impact on the Earth. Emissions of hydrocarbons, mainly methane and its closest homologues (ethane, propane and butanes) lead to a complex series of chemical, physical or physicochemi- cal transformations leading to various problems and natural disasters. If with the role of CO2emissions and its sources we have a more or less clear understanding, the sources of hydrocarbons still remain questionable due to the attribution mainly to human activity. However, complex studies of Etiope and his group showed that there is a geological source of hydrocarbons in the atmosphere, which, in the case of methane, was recently appraised, while in the case of ethane, propane and butanes are always neglected. In this study, we modelled the synthesis of hydrocarbons from carbonates with the help of high-pressure techniques under the thermobaric conditions of Earth’s mantle and proposed the source of various hydrocarbon mixtures which could be generated in the deep Earth’s interior and then transported to the surface through the deep faults and cracks� Elasticity and structure evolution of carbonates at upper mantle conditions Lea Pennacchioni GFZ, Germany In this PhD work the attention will be focused on the carbon reservoirs in the Earth’s mantle. -
NMR Close to Mega-Bar Pressures
NMR close to Mega-Bar Pressures Thomas Meier1*, Saiana Khandarkhaeva1, Sylvain Petitgirard1, Thomas Körber2, Alexander Lauerer3, Ernst Rössler2, and Leonid Dubrovinsky1 1) Bayerisches Geoinstitut, Bayreuth University, Universitätsstraße 30, 95447 Bayreuth, Germany 2) Fakultät für Mathematik, Physik und Informatik, Experimentalphysik II, Bayreuth University, Universitätsstraße 30, 95447 Bayreuth, Germany 3) Institut für Materialwissenschaften, Hochschule Hof, Alfons-Goppel-Platz 1, 95028 Hof *) [email protected] Abstract The past 15 years have seen an astonishing increase in Nuclear Magnetic Resonance (NMR) sensitivity and accessible pressure range in high-pressure NMR experiments, owing to a series of new developments of NMR spectroscopy applied to the diamond anvil cell (DAC). Recently, with the application of electro-magnetic lenses, so-called Lenz lenses, in toroidal diamond indenter cells, pressures of up to 72 GPa with NMR spin sensitivities of about 1012 spin/Hz1/2 has been achieved. Here, we describe the implementation of a refined NMR resonator structure using a pair of double stage Lenz lenses driven by a Helmholtz coil within a standard DAC, allowing to measure sample volumes as small as 100 pl prior to compression. With this set-up, pressures close to the mega-bar regime (1 Mbar = 100 GPa) could be realised repeatedly, with enhanced spin sensitivities of about 5x1011 spin/Hz1/2. The manufacturing and handling of these new NMR-DACs is relatively easy and straightforward, which will allow for further applications in physics, chemistry, or biochemistry. Introduction available sample space is often much less than 5 nl Varying thermodynamic conditions opens the before compression, which is further reduced when possibility of accessing low-energy configurations, pressures exceeding several GPa are targeted. -
Sub-Kelvin Magnetic and Electrical Measurements in a Diamond Anvil Cell with in Situ Tunability A
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability A. Palmer, D. M. Silevitch, Yejun Feng, Yishu Wang, R. Jaramillo, A. Banerjee, Y. Ren, and T. F. Rosenbaum Citation: Review of Scientific Instruments 86, 093901 (2015); doi: 10.1063/1.4929861 View online: http://dx.doi.org/10.1063/1.4929861 View Table of Contents: http://scitation.aip.org/content/aip/journal/rsi/86/9?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements Rev. Sci. Instrum. 85, 033901 (2014); 10.1063/1.4867078 A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability Rev. Sci. Instrum. 82, 103702 (2011); 10.1063/1.3646468 Preparation of W–Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure Rev. Sci. Instrum. 82, 045108 (2011); 10.1063/1.3579515 Working Fluid State Properties Measurements in Medium and High Frequency Cryocoolers AIP Conf. Proc. 710, 1146 (2004); 10.1063/1.1774800 Transport measurements at low temperatures in a diamond anvil cell with helium as pressure medium Rev. Sci. Instrum. 68, 1514 (1997); 10.1063/1.1147639 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP: 131.215.225.9 On: Fri, 04 Sep 2015 13:51:04 REVIEW OF SCIENTIFIC INSTRUMENTS 86, 093901 (2015) Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability A. -
Some Recent Contributions to Our Knowledge of Metallic Reducing Agents.' by H
SOME RECENT CONTRIBUTIONS TO OUR KNOWLEDGE OF METALLIC REDUCING AGENTS.' BY H. F. KELLER. N the extraction of metals from their oxygen compounds, car- I bon is certainly the most iniportant and useful reducing agent. Its great affinity for oxjigen is utilized in the manufac- ture of iron and steel ; the coiiimercial production of other useful metals, such as copper, lead, zinc, and tin is accomplished, either directly or indirectly, with its aid; and under its influ- ence even the energetic metals of the alkalies release their pow- erful grip upon oxygen. Contrasted with this, the use of other substances for the purpose of abstracting oxygen is almost insig- nificant. Is it surprising, therefore, that carbon is looked upon as the reducing agent par excellence, or that the very idea of reduction seem to us inseparably associated with this element ? Hut the reducing power of a substance depends, in a large meas- ure, upon temperature. It is well known to chemists that, under certain conditions, many metals have affinities which are far more powerful than those of carbon. When we glance over the pages of our chemical text-books, we see described there numer- ous experiments based upon the superior combining power of iron, aluminum, zinc, magnesium, and the alkali metals. The great Swedish chemist who arranged the elements according to their supposed affinities in an electro-chemical series, was among the first to employ the positive alkali metals for isolating and preparing other elements. His method consisted in decom- posing the halogen compounds by means of potassium ; and it was subsequently improved by Berzelius' distinguished disciple , Wohler.