Role of EFNB2/EPHB4 Signaling in Spiral Artery Development During Pregnancy: an Appraisal

Total Page:16

File Type:pdf, Size:1020Kb

Role of EFNB2/EPHB4 Signaling in Spiral Artery Development During Pregnancy: an Appraisal ESSAY Molecular Reproduction & Development 83:12–18 (2016) Role of EFNB2/EPHB4 Signaling in Spiral Artery Development During Pregnancy: An Appraisal HONGMEI DONG,* CHAORAN YU, JIAO MU, JI ZHANG, AND WEI LIN Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China SUMMARY EFNB2 and EPHB4, which belong to a large tyrosine kinase receptor superfamily, are molecular markers of arterial and venous blood vessels, respectively. EFNB2/ EPHB4 signaling plays an important role in physiological and pathological angiogen- esis, and its role in tumor vessel development has been extensively studied. [W]e hypothesize that changing Pregnancy and tumors share similar features, including continuous cell proliferation the distinct spatiotemporal and increased demand for a blood supply. Our previous studies showed that Efnb2 expression of EFNB2/ Ephb4 and were expressed dynamically in the spiral arteries, uterine natural killer EPHB4...contributes to spiral À cells, and trophoblasts during mouse gestation Days 6.5 12.5. Moreover, uterine artery remodeling. natural killer cells and trophoblasts are required for the modification of spiral arteries. Oxygen tension within the pregnant uterus, which contributes to the vascular development, also affects EFNB2 and EPHB4 expression. Considering the role of ÃCorresponding author: EFNB2/EPHB4 signaling in embryonic and tumor vascular development, and its Department of Forensic Medicine Tongji Medical College of dynamic expression in the decidua and placenta, we hypothesize that EFNB2 and Huazhong University of EPHB4 are involved in the regulation of spiral artery remodeling. Investigating this Science and Technology hypothesis will help clarify the mechanisms of pathological pregnancy that may 13 Hangkong Road Wuhan, Hubei 430030, P. R. China. underlie abnormal spiral artery development. Email: [email protected] Grant sponsor: National Natural Science Foundation of China; Grant numbers: 30872323, 81471821; Grant sponsor: Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry Mol. Reprod. Dev. 83: 12À18, 2016. ß 2015 Wiley Periodicals, Inc. Published online 13 November 2015 in Wiley Online Library (wileyonlinelibrary.com). Received 6 December 2014; Accepted 22 October 2015 DOI 10.1002/mrd.22593 INTRODUCTION Erythropoietin-producing hepatocellular receptor B4 (EPHB4) and Eph-family receptor-interacting protein B2 (EFNB2) are members of the receptor tyrosine kinase superfamily. EFNB2 and EPHB4 represent arterial and Abbreviations: ANGPT, angiopoietin; EFNB2, Eph family receptor interact- venous markers, respectively (le Noble et al., 2004; Adams ing protein B2; EPHB4, erythropoietin producing hepatocellular receptor; HIF1A, and Alitalo, 2007). EFNB2 is specifically expressed in hypoxia inducible factor 1 alpha; HTR 8/SVneo cells, extravillous trophoblastic cell line; HUVECs, human umbilical vein endothelial cells; PGF, placental growth endothelial cells, vascular smooth muscle cells, and peri- factor; uNK cell, uterine natural killer cell; VEGF, vascular endothelial growth cytes of the artery, whereas EPHB4 is expressed in factor ß 2015 WILEY PERIODICALS, INC. ROLE OF EFNB2/EPHB4 SIGNALING IN SPIRAL ARTERY DEVELOPMENT endothelial cells of all diameters of the venous lineage with VEGF and other angiogenic factors to modulate an- (Lawson and Weinstein, 2002; Hirashima and Suda giogenic processes. 2006). Both EFNB2 and EPHB4 are membrane-bound proteins composed of extracellular, transmembrane, and intracellular domains. Cell-cell contact is required for their EFNB2/EPHB4 SIGNAL TRANSDUCTION IN interaction, which induces bidirectional signaling in both TUMOR ANGIOGENESIS receptor- and ligand-expressing cells: EFNB2 activates the downstream EPHB4 receptor in ‘‘forward’’ signaling, The overexpression of Eph family members has been whereas EPHB4 signaling through EFNB2 is ‘‘reverse’’ documented in a variety of human cancers. EPHB2 and signaling (Fuller et al., 2003; Hamada et al., 2003). EPHB4 abundance, for example, is associated with the EFNB2 is the ligand for EPHB2, EPHB4, and other kinases, histological grade, differentiation, progression, metastatic whereas EPHB4 can only be activated by EFNB2. Bidirec- status, and prognosis of cancer (Alam et al., 2007; Kumar tional EFNB2/EPHB4 signaling results in attractive and et al., 2009). The correlation between EFNB2/EPHB4 and repulsive processes that guide cell adhesion, migration, tumors, however, is not entirely consistent: Lee et al. and repulsionÀÀparticularly in tissue boundary formation (2005) reported that EPHB4 expression in vivo was sig- (Poliakov et al., 2004), axonal guidance (Reber et al., nificantly greater in human prostate cancers than in 2007), lymphangiogenesis, and angiogenesis (Mosch matched normal prostate epithelial cells, whereas Berclaz et al., 2010). EFNB2/EPHB4 signaling is regulated by their et al. (2002) showed that loss of EPHB4 expression was abundance on the cell surface and their asymmetric characteristic of human breast carcinoma and correlated distribution. with tumor progression. A role for EFNB2/EPHB4 signal- The angiogenic role of EFNB2/EPHB4 signaling was ing in tumor angiogenesis and growth was also demon- first described in embryonic development. Loss of Efnb2 strated in multiple mouse models (Kertesz et al., 2006; (Wang et al., 1998; Adams et al., 1999) or Ephb4 (Gerety Kimura et al., 2009; Krasnoperov et al., 2010; Abengozar et al., 1999) in mice leads to early embryonic lethality, et al., 2012). due to impaired remodeling of the embryonic vascular Considering the overlapping data that support a role for system. The angiogenesis phenotype of the Efnb2 or EFNB2/EPHB4 signaling in tumor progression, this path- Ephb4 single mutants is also almost indistinguishable, way has been vetted as a potential therapeutic target which further supports their close relationship in vascula- (Kertesz et al., 2006; Abengozar et al., 2012). Inhibition of ture development. EFNB2/EPHB4 signaling suppressed tumor growth in murine tumor xenograft models by preventing endothelial cell migration, adhesion, and tube formation in vitro, and INTERPLAY BETWEEN EFNB2/EPHB4 SIGNALING inhibited the pro-angiogenic effects of VEGF and basic AND OTHER ANGIOGENIC MOLECULES fibroblast growth factor (FGF2) in vivo (Kertesz et al., 2006). Activation of EPHB4 by soluble EFNB2-Fc, on the Pro-angiogenic factors are needed to form a complex, other hand, suppressed the growth of head and neck collaborative network for blood vessel formation. Vascular squamous cell carcinoma xenografts by inducing tumor endothelial growth factor (VEGF) signaling is a key path- vessel maturation (Kimura et al., 2009). The regulatory way that regulates angiogenesis and morphogenesis. For mechanism of EFNB2/EPHB4 signaling on tumor angio- example, VEGF- and angiopoietin-1 (ANGPT1)-induced genesis was investigated further by Erber et al. (2006), proliferation and migration of human umbilical vein endo- who found that tumors overexpressing EPHB4 variants thelial cells (HUVECs) are suppressed by the activation of reorganize the vascular system to achieve parallel vessel endogenous EPHB kinases, via EFNB2-Fc through Ras/ alignment and unidirectional blood flow, whereas control mitogen-activated protein kinase (MAPK) signaling (Kim tumors were characterized by a chaotic microvascular et al., 2002). On the other hand, Martiny-Baron et al. (2010) network. Active EPHB4 signaling was also able to reduce demonstrated that an EPHB4 kinase inhibitor blocks both vascular permeability and decrease edema formation, EPHB4 kinase activity and VEGF-induced angiogenesis, resultinginenlargedbloodvesselsratherthanincreased revealing the intimate relationship between EFNB2 and vessel number to increase blood flow to the tumor. To- VEGF signaling. Indeed, EFNB2 is a likely modulator of gether, the data suggested that enhancing EPHB4 sig- VEGF that functions in all endothelial cells by controlling the naling in tumor endothelial cells does not affect initial internalization and signaling of two VEGF receptors during tumor angiogenesis, but instead markedly influences physiological and pathological angiogenesis (Sawamiphak subsequent morphogenesis and remodeling of the tumor et al., 2010; Wang et al., 2010) as well as an influencing vascular system, similar to observations made in the factor in the expression of angiogenic factors such as developing embryo. Noren et al. (2004) also reported ANGPT1, ANGPT2, and the angiopoietin receptor 2 that EPHB4 promotes vascular formation and remodeling (TEK or TIE2) (Kim et al., 2002; Erber et al., 2006). On via EFNB2. Indeed, the role of EFNB2/EPHB4 signaling in the other hand, VEGF can up-regulate EFNB2 (Mu- tumor vascular morphogenesis, as a modification or re- kouyama et al., 2002) while VEGFA inhibited EPHB4 application of process, is also involved in normal postnatal expression in adult venous endothelial cells (Yang et al., angiogenesis (Zamora et al., 2005; Erber et al., 2006; 2013). Therefore, EFNB2/EPHB4 signaling likely works Davies et al., 2009). Mol. Reprod. Dev. 83:12–18 (2016) 13 Molecular Reproduction & Development DONG ET AL. SPIRAL ARTERY REMODELING AND ITS induced cytotrophoblast invasion in vitro (Zhou et al., MODULATION 2002). Oxygen concentration within the uteroplacental environ- Malignant tumors and implanted embryos both need a ment varies with gestational age (Tuuli et al., 2011), rich blood supply to
Recommended publications
  • Epha4/Tie2 Crosstalk Regulates Leptomeningeal Collateral Remodeling Following Ischemic Stroke
    EphA4/Tie2 crosstalk regulates leptomeningeal collateral remodeling following ischemic stroke Benjamin Okyere, … , John B. Matson, Michelle H. Theus J Clin Invest. 2019. https://doi.org/10.1172/JCI131493. Research In-Press Preview Neuroscience Vascular biology Leptomeningeal anastomoses or pial collateral vessels play a critical role in cerebral blood flow (CBF) restoration following ischemic stroke. The magnitude of this adaptive response is postulated to be controlled by the endothelium, although the underlying molecular mechanisms remain under investigation. Here we demonstrated that endothelial genetic deletion, using EphA4f/f/Tie2-Cre and EphA4f/f/VeCahderin-CreERT2 mice and vessel painting strategies, implicated EphA4 receptor tyrosine kinase as a major suppressor of pial collateral remodeling, CBF and functional recovery following permanent middle cerebral artery occlusion. Pial collateral remodeling is limited by the cross talk between EphA4-Tie2 signaling in vascular endothelial cells, which is mediated through p-Akt regulation. Furthermore, peptide inhibition of EphA4 resulted in acceleration of the pial arteriogenic response. Our findings demonstrate EphA4 is a negative regulator of Tie2 receptor signaling which limits pial collateral arteriogenesis following cerebrovascular occlusion. Therapeutic targeting of EphA4 and/or Tie2 represents an attractive new strategy for improving collateral function, neural tissue health and functional recovery following ischemic stroke. Find the latest version: https://jci.me/131493/pdf 1 EphA4/Tie2
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Molecular Targeted and Immune Checkpoint Therapy for Advanced
    Liu et al. Journal of Experimental & Clinical Cancer Research (2019) 38:447 https://doi.org/10.1186/s13046-019-1412-8 REVIEW Open Access Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma Ziyu Liu1†, Yan Lin2†, Jinyan Zhang2, Yumei Zhang2, Yongqiang Li2, Zhihui Liu2, Qian Li2, Ming Luo2, Rong Liang2* and Jiazhou Ye3* Abstract Molecular targeted therapy for advanced hepatocellular carcinoma (HCC) has changed markedly. Although sorafenib was used in clinical practice as the first molecular targeted agent in 2007, the SHARPE and Asian-Pacific trials demonstrated that sorafenib only improved overall survival (OS) by approximately 3 months in patients with advanced HCC compared with placebo. Molecular targeted agents were developed during the 10-year period from 2007 to 2016, but every test of these agents from phase II or phase III clinical trial failed due to a low response rate and high toxicity. In the 2 years after, 2017 through 2018, four successful novel drugs emerged from clinical trials for clinical use. As recommended by updated Barcelona Clinical Liver cancer (BCLC) treatment algorithms, lenvatinib is now feasible as an alternative to sorafenib as a first-line treatment for advanced HCC. Regorafenib, cabozantinib, and ramucirumab are appropriate supplements for sorafenib as second-line treatment for patients with advanced HCC who are resistant, show progression or do not tolerate sorafenib. In addition, with promising outcomes in phase II trials, immune PD-1/PD-L1 checkpoint inhibitors nivolumab and pembrolizumab have been applied for HCC treatment. Despite phase III trials for nivolumab and pembrolizumab, the primary endpoints of improved OS were not statistically significant, immune PD-1/PD-L1 checkpoint therapy remains to be further investigated.
    [Show full text]
  • 4 Transcription and Secretion Novel Regulator of Angiopoietin-Like Protein A
    Acute-Phase Protein α1-Antitrypsin−−A Novel Regulator of Angiopoietin-like Protein 4 Transcription and Secretion This information is current as Eileen Frenzel, Sabine Wrenger, Stephan Immenschuh, of September 28, 2021. Rembert Koczulla, Ravi Mahadeva, H. Joachim Deeg, Charles A. Dinarello, Tobias Welte, A. Mario Q. Marcondes and Sabina Janciauskiene J Immunol 2014; 192:5354-5362; Prepublished online 23 April 2014; Downloaded from doi: 10.4049/jimmunol.1400378 http://www.jimmunol.org/content/192/11/5354 Supplementary http://www.jimmunol.org/content/suppl/2014/04/23/jimmunol.140037 http://www.jimmunol.org/ Material 8.DCSupplemental References This article cites 56 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/192/11/5354.full#ref-list-1 Why The JI? Submit online. by guest on September 28, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Acute-Phase Protein a1-Antitrypsin—A Novel Regulator of Angiopoietin-like Protein 4 Transcription and Secretion Eileen Frenzel,* Sabine Wrenger,* Stephan Immenschuh,† Rembert Koczulla,‡ Ravi Mahadeva,x H.
    [Show full text]
  • Angiocrine Endothelium: from Physiology to Cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3
    Pasquier et al. J Transl Med (2020) 18:52 https://doi.org/10.1186/s12967-020-02244-9 Journal of Translational Medicine REVIEW Open Access Angiocrine endothelium: from physiology to cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3 Abstract The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The sig- nifcance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogen- esis that is critical for tumor initiation and growth. Nevertheless, the identifcation of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profling studies have demonstrated distinctive expression patterns in tumor- associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identifed which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies. Keywords: Angiocrine, Endothelium, Cancer, Cancer microenvironment, Angiogenesis Introduction of blood vessels in initiation of tumor growth and stated Metastatic disease accounts for about 90% of patient that in the absence of such angiogenesis, tumors can- mortality. Te difculty in controlling and eradicating not expand their mass or display a metastatic phenotype metastasis might be related to the heterotypic interaction [7]. Based on this theory, many investigators assumed of tumor and its microenvironment [1].
    [Show full text]
  • Stromal Cell Interactions Mediated by Hypoxia-Inducible Factors Promote Angiogenesis, Lymphangiogenesis, and Metastasis
    Oncogene (2013) 32, 4057–4063 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc REVIEW Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis GL Semenza Interactions between cancer cells and stromal cells, including blood vessel endothelial cells (BECs), lymphatic vessel endothelial cells (LECs), bone marrow-derived angiogenic cells (BMDACs) and other bone marrow-derived cells (BMDCs) play important roles in cancer progression. Intratumoral hypoxia, which affects both cancer and stromal cells, is associated with a significantly increased risk of metastasis and mortality in many human cancers. Recent studies have begun to delineate the molecular mechanisms underlying the effect of intratumoral hypoxia on cancer progression. Reduced O2 availability induces the activity of hypoxia- inducible factors (HIFs), which activate the transcription of target genes encoding proteins that play important roles in many critical aspects of cancer biology. Included among these are secreted factors, including angiopoietin 2, angiopoietin-like 4, placental growth factor, platelet-derived growth factor B, stem cell factor (kit ligand), stromal-derived factor 1, and vascular endothelial growth factor. These factors are produced by hypoxic cancer cells and directly mediate functional interactions with BECs, LECs, BMDACs and other BMDCs that promote angiogenesis, lymphangiogenesis, and metastasis. In addition, lysyl oxidase (LOX) and LOX-like proteins,
    [Show full text]
  • Altiratinib Inhibits Tumor Growth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance Via Balanced Inhibition of MET, TIE2, and VEGFR2 Bryan D
    Published OnlineFirst August 18, 2015; DOI: 10.1158/1535-7163.MCT-14-1105 Small Molecule Therapeutics Molecular Cancer Therapeutics Altiratinib Inhibits Tumor Growth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance via Balanced Inhibition of MET, TIE2, and VEGFR2 Bryan D. Smith1, Michael D. Kaufman1, Cynthia B. Leary1, Benjamin A. Turner1, Scott C. Wise1, Yu Mi Ahn1, R. John Booth1, Timothy M. Caldwell1, Carol L. Ensinger1, Molly M. Hood1, Wei-Ping Lu1, Tristan W. Patt1, William C. Patt1, Thomas J. Rutkoski1, Thiwanka Samarakoon1, Hanumaiah Telikepalli1, Lakshminarayana Vogeti1, Subha Vogeti1, Karen M. Yates1, Lawrence Chun2, Lance J. Stewart2, Michael Clare1, and Daniel L. Flynn1,3 Abstract Altiratinib (DCC-2701) was designed based on the rationale of wild-type and mutated forms, in vitro and in vivo. Through its engineering a single therapeutic agent able to address multiple balanced inhibitory potency versus MET, TIE2, and VEGFR2, hallmarks of cancer (1). Specifically, altiratinib inhibits not only altiratinib provides an agent that inhibits three major evasive mechanisms of tumor initiation and progression, but also drug (re)vascularization and resistance pathways (HGF, ANG, and resistance mechanisms in the tumor and microenvironment VEGF) and blocks tumor invasion and metastasis. Altiratinib through balanced inhibition of MET, TIE2 (TEK), and VEGFR2 exhibits properties amenable to oral administration and exhibits (KDR) kinases. This profile was achieved by optimizing binding substantial blood–brain barrier penetration, an attribute of into the switch control pocket of all three kinases, inducing type II significance for eventual treatment of brain cancers and brain inactive conformations. Altiratinib durably inhibits MET, both metastases. Mol Cancer Ther; 14(9); 1–12.
    [Show full text]
  • Proteolytic Cleavages in the Extracellular Domain of Receptor Tyrosine Kinases by Membrane-Associated Serine Proteases
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 34), pp: 56490-56505 Research Paper Proteolytic cleavages in the extracellular domain of receptor tyrosine kinases by membrane-associated serine proteases Li-Mei Chen1 and Karl X. Chai1 1Burnett School of Biomedical Sciences, Division of Cancer Research, University of Central Florida College of Medicine, Orlando, FL 32816-2364, USA Correspondence to: Karl X. Chai, email: [email protected] Keywords: receptor tyrosine kinase, matriptase, prostasin, Herceptin, breast cancer Received: August 05, 2016 Accepted: March 21, 2017 Published: April 10, 2017 Copyright: Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The epithelial extracellular membrane-associated serine proteases matriptase, hepsin, and prostasin are proteolytic modifying enzymes of the extracellular domain (ECD) of the epidermal growth factor receptor (EGFR). Matriptase also cleaves the ECD of the vascular endothelial growth factor receptor 2 (VEGFR2) and the angiopoietin receptor Tie2. In this study we tested the hypothesis that these serine proteases may cleave the ECD of additional receptor tyrosine kinases (RTKs). We co-expressed the proteases in an epithelial cell line with Her2, Her3, Her4, insulin receptor (INSR), insulin-like growth factor I receptor (IGF-1R), the platelet-derived growth factor receptors (PDGFRs) α and β, or nerve growth factor receptor A (TrkA). Western blot analysis was performed to detect the carboxyl-terminal fragments (CTFs) of the RTKs. Matriptase and hepsin were found to cleave the ECD of all RTKs tested, while TMPRSS6/matriptase-2 cleaves the ECD of Her4, INSR, and PDGFR α and β.
    [Show full text]
  • Cardiovascular Disease Products
    Cardiovascular Disease Products For more information, visit: www.bosterbio.com Cardiovascular Disease Research Cardiovascular disease is the leading cause of death in developed nations. Boster Bio aims to supply researchers with high-quality antibodies and ELISA kits so they can make new discoveries and help save lives. In this catalogue you will find a comprehensive list of high-affinity Boster antibodies and high sensitivity Boster ELISA kits targeted at proteins associated with cardiovascular disease. Boster: The Fastest Growing About Bosterbio Antibody Company In 2015 Boster is an antibody manufacturer founded in 1993 by histologist Steven Xia. Over the past two decades, Boster and its products have been cited in over 20,000 publications and counting. The firm specializes in developing antibodies and ELISA kits that feature high affinity, Boster Bio received the CitaAb award for high specificity at affordable the greatest increase in number of prices. citations during 2015 than any other antibody manufacturer. Table of Contents Boster Cardiovascular Disease Related Antibodies…………..………..... 2 Boster Cardiovascular Disease Related ELISA Kits……………………..…. 9 1 High Affinity Boster Antibodies Boster supplies only the highest quality antibodies. Our high-affinity polyclonal and monoclonal antibodies are thoroughly validated by Western Blotting, Immunohistochemistry and ELISA. This is our comprehensive catalog of our antibody products related to cardiovascular disease, sorted in alphabetical order by target gene name. Catalog No Product Name
    [Show full text]
  • High Circulating Angiopoietin-2 Levels Exacerbate Pulmonary
    Thorax Online First, published on September 25, 2017 as 10.1136/thoraxjnl-2017-210413 Pulmonary vasculature Thorax: first published as 10.1136/thoraxjnl-2017-210413 on 25 September 2017. Downloaded from ORIGINAL artiCLE High circulating angiopoietin-2 levels exacerbate pulmonary inflammation but not vascular leak or mortality in endotoxin-induced lung injury in mice Kenny Schlosser,1 Mohamad Taha,1,2 Yupu Deng,1 Lauralyn A McIntyre,3 Shirley H J Mei,1 Duncan J Stewart1,2,4 ► Additional material is ABSTRACT published online only. To view Background Elevated plasma levels of angiopoietin-2 Key messages please visit the journal online (http:// dx. doi. org/ 10. 1136/ (ANGPT2) have been reported in patients with acute thoraxjnl- 2017- 210413). lung injury (ALI); however, it remains unclear whether What is the key question? this increase contributes to, or just marks, the underlying ► Elevated plasma levels of angiopoietin-2 1Regenerative Medicine vasculopathic inflammation and leak associated with (ANGPT2) in acute lung injury (ALI)/acute Program, Ottawa Hospital ALI. Here we investigated the biological consequences respiratory distress syndrome patients are Research Institute , University associated with poor prognosis; however, of Ottawa, Ottawa, Ontario, of inducing high circulating levels of ANGPT2 in a mouse Canada model of endotoxin-induced ALI. it remains unclear whether these elevated 2Department of Cellular and Methods Transgenic mice (ANGPT2OVR) with elevated circulating levels are just a marker or mediator Molecular Medicine, University circulating levels of ANGPT2, achieved through of underlying pulmonary vascular dysfunction. of Ottawa, Ottawa, Ontario, conditional hepatocyte-specific overexpression, Canada What is the bottom line? 3 were examined from 3 to 72 hours following Clinical Epidemiology Program, ► For the first time, this study demonstrates Ottawa Hospital Research lipopolysaccharide (LPS)-induced ALI.
    [Show full text]
  • Germline Genetic Variants in TEK, ANGPT1, ANGPT2, MMP9, FGF2 and VEGFA Are Associated with Pathologic Complete Response to Bevacizumab in Breast Cancer Patients
    RESEARCH ARTICLE Germline Genetic Variants in TEK, ANGPT1, ANGPT2, MMP9, FGF2 and VEGFA Are Associated with Pathologic Complete Response to Bevacizumab in Breast Cancer Patients Issam Makhoul1*, Valentina K. Todorova2, Eric R. Siegel3, Stephen W. Erickson3, a1111111111 Ishwori Dhakal3, Vinay R. Raj2, Jeannette Y. Lee3, Mohammed S. Orloff4, Robert J. Griffin5, a1111111111 Ronda S. Henry-Tillman6, Suzanne Klimberg6,7, Laura F. Hutchins1, Susan A. Kadlubar5 a1111111111 a1111111111 1 Division of Hematology/Oncology Division, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America, 2 Division of Medical Genetics, University of Arkansas for Medical a1111111111 Sciences, Little Rock, Arkansas, United States of America, 3 Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America, 4 Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America, 5 Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America, 6 Division of Breast Surgical Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America, 7 Department of Pathology, University of OPEN ACCESS Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America Citation: Makhoul I, Todorova VK, Siegel ER, Erickson SW, Dhakal I, Raj VR, et al. (2017) * [email protected] Germline Genetic Variants in TEK, ANGPT1, ANGPT2, MMP9, FGF2 and VEGFA Are Associated with Pathologic Complete Response to Abstract Bevacizumab in Breast Cancer Patients. PLoS ONE 12(1): e0168550. doi:10.1371/journal. pone.0168550 Background Editor: Ratna B. Ray, Saint Louis University, UNITED STATES We previously reported improved pathologic complete response (pCR) in a prospective Received: August 14, 2016 phase II study using neoadjuvant bevacizumab in combination with chemotherapy com- pared to chemotherapy alone in breast cancer patients (41% vs.
    [Show full text]