Symmetry 2009, 1, 115-144; doi:10.3390/sym1020115 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Review Supersymmetry of Generalized Linear Schrodinger¨ Equations in (1+1) Dimensions Axel Schulze-Halberg 1;? and Juan M. Carballo Jimenez 2 1 Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408, USA 2 Escuela Superior de Computo,´ Instituto Politecnico´ Nacional, Col. Lindavista, 07738 Mexico´ DF, Mexico ? Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel. +1 219 980 6780; Fax +1 219 981 4247. Received: 3 September 2009 / Accepted: 2 October 2009 / Published: 6 October 2009 Abstract: We review recent results on how to extend the supersymmetry SUSY formalism in Quantum Mechanics to linear generalizations of the time-dependent Schrodinger¨ equation in (1+1) dimensions. The class of equations we consider contains many known cases, such as the Schrodinger¨ equation for position-dependent mass. By evaluating intertwining rela- tions, we obtain explicit formulas for the interrelations between the supersymmetric partner potentials and their corresponding solutions. We review reality conditions for the partner potentials and show how our SUSY formalism can be extended to the Fokker-Planck and the nonhomogeneous Burgers equation. Keywords: time-dependent Schrodinger¨ equation; supersymmetry; Darboux transformation Classification: PACS 03.65.Ge, 03.65.Ca 1. Introduction Supersymmetry (SUSY) is a theory that intends to unify the strong, the weak and the electromagnetic interaction. Technically, SUSY assigns a partner (superpartner) to every particle, the spin of which Symmetry 2009, 1 116 differs by one-half from the spin of its supersymmetric counterpart.