First Cretaceous Fish Fauna from Malaysia

Total Page:16

File Type:pdf, Size:1020Kb

First Cretaceous Fish Fauna from Malaysia Journal of Vertebrate Paleontology ISSN: 0272-4634 (Print) 1937-2809 (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 First Cretaceous fish fauna from Malaysia Yu He Teng, Masatoshi Sone, Ren Hirayama, Masataka Yoshida, Toshifumi Komatsu, Suchada Khamha & Gilles Cuny To cite this article: Yu He Teng, Masatoshi Sone, Ren Hirayama, Masataka Yoshida, Toshifumi Komatsu, Suchada Khamha & Gilles Cuny (2019): First Cretaceous fish fauna from Malaysia, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2019.1573735 To link to this article: https://doi.org/10.1080/02724634.2019.1573735 Published online: 01 May 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1573735 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2019.1573735 ARTICLE FIRST CRETACEOUS FISH FAUNA FROM MALAYSIA YU HE TENG,1 MASATOSHI SONE, *,1 REN HIRAYAMA, 2 MASATAKA YOSHIDA,2,3 TOSHIFUMI KOMATSU,4 SUCHADA KHAMHA,5 and GILLES CUNY 6 1Department of Geology, University of Malaya, Kuala Lumpur 50603, Malaysia, [email protected]; 2School of International Liberal Studies, Waseda University, Nishiwaseda 1-6-1, Shinjuku, Tokyo 169-8050, Japan; 3Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; 4Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; 5Palaeontological Research and Education Centre, Mahasarakham University, Khamrieng, Kantharawichai, Maha Sarakham 44150, Thailand; 6Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France ABSTRACT—Cretaceous fish fossils are reported from Malaysia for the first time. They were found with dinosaur and turtle remains in nonmarine sediments in the interior of Pahang State, Peninsular Malaysia. This fish assemblage consists mostly of isolated teeth, with minor amounts of noncranial remains, including vertebral centra, scales, coprolites, and hybodont fin spines. Over 100 fish teeth were examined. Nine taxa were confirmed from this fish assemblage: six (identified and unidentified) species of hybodont sharks, Heteroptychodus kokutensis, Isanodus paladeji, Lonchidion aff. khoratensis, Mukdahanodus aff. trisivakulii, Egertonodus sp., and Hybodontidae indet., and three species of actinopterygians (ray-finned fishes): ‘Lepidotes’ sp., Halecomorphi indet., and Ginglymodi indet. This fish assemblage has strong affinities with Early Cretaceous (Barremian–early Aptian) faunas of Thailand, because the four hybodont species, H. kokutensis, I. paladeji, L. khoratensis, and M. trisivakulii, were previously known only from the Sao Khua Formation (Khorat Group) and equivalent strata of Ko Kut (Kut Island). Egertonodus has been confirmed in Asia for the first time. Overall, this fish assemblage shows a close linkage to Early Cretaceous (Barremian–early Aptian) faunas of Thailand. Based on faunal composition and biostratigraphic correlation, we suggest a Barremian–early Aptian age for this new fauna from Malaysia. Citation for this article: Teng, Y. H., M. Sone, R. Hirayama, M. Yoshida, T. Komatsu, S. Khamha, and G. Cuny. 2019. First Cretaceous fish fauna from Malaysia. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2019.1573735. INTRODUCTION GEOLOGICAL SETTING For the past 20 years, our knowledge of Cretaceous freshwater The fossil-bearing unit is informally referred to as ‘the Pahang fishes in Southeast Asia has been based mainly on finds from the vertebrate bed’ in this report (Fig. 1). The unit consists of thick Khorat Basin in northeast Thailand. Abundant isolated fish teeth fine-grained sandstones at the base, fining upward into medium- and scales have been reported from the Khorat Basin (e.g., grained sandstone-siltstone laminations. Small-scale tabular Cappetta et al., 1990, 2006; Cuny et al., 2003, 2006, 2008, 2009, cross-bedding is common in some sandstone beds. The presence 2014; Khamha et al., 2016). On the other hand, no information of dinosaurs, terrestrial turtles, and some plant fossils in the unit has been available from the other Cretaceous nonmarine basins suggests that the depositional site might have been near to a ter- in the region. restrial environment where these organisms lived. The absence of In 2014, the University of Malaya’s paleontological team marine fossils suggests that the depositional environment had reported the first discovery of Cretaceous nonmarine vertebrate little to no marine influence. Based on the Early Cretaceous fossils from the state of Pahang, Peninsular Malaysia. This age of the Pahang vertebrate bed, we consider that it is correlated included the first dinosaurs (spinosaurid and ornithischian) to the Early Cretaceous part (Temus Shale) of the Tembeling from Malaysia (Sone et al., 2015). Together with the dinosaurs, Group. The depositional environment of the Tembeling Group abundant fossils of freshwater fish and terrestrial turtle remains is generally accepted to be fluvial-lacustrine (Koopmans, 1968; were recovered, including hybodont sharks. This paper aims to Khoo, 1977; Ahmad et al., 1991; Shamsudin and Morley, 1994; systematically study this fish assemblage and to interpret its Ainul et al., 2005). likely age based on biostratigraphic correlation. Traditionally, most Mesozoic nonmarine sediments in Malaysia Institutional Abbreviations—PRC, Palaeontological Research were dated using plant macrofossils, palynomorphs, and/or fresh- and Education Centre, Mahasarakham University, Maha Sarakham, water bivalves, for example, the plant Gleichenoides gagauensis, Thailand; TF, Thai Fossil specimens, Sirindhorn Museum, Kalasin, the bivalve Trigonioides sp. (Koopmans, 1968), and spores and Thailand; UM, Department of Geology, University of Malaya, pollen of Clavatipollenites sp., Classopollis sp., and Circulina sp. Kuala Lumpur, Malaysia. (Khoo, 1977; Shamsudin and Morley, 1994; Ainul et al., 2005; Uyop et al., 2007). These earlier studies suggested an Early Cre- taceous age for those nonmarine Mesozoic sediments in Malaysia. Due to our agreement with Pahang State Government to *Corresponding author. protect the fossiliferous site, the exact location of the sampling Color versions of one or more of the figures in the article can be found outcrop cannot be provided in this report. The Global Positioning online at www.tandfonline.com/ujvp. System (GPS) information of the location is kept at the Published online 01 May 2019 Teng et al.—First Cretaceous fish fauna from Malaysia (e1573735-2) FIGURE 1. A, map showing the distribution of Jurassic–Cretaceous nonmarine sediments in Southeast Asia. Information combined from Lovatt Smith et al. (1996), Yunus (2014), and Hinthong (1999). B, sedimentary log of the fossil locality with the position of the reported materials. University of Malaya. Any scientific inquiry concerning this fossil magnification of ×1–2 aided by a teleconverter. The lighting deposit can be referred to the Department of Geology, University sources used were a Nikon fiber optic illuminator and a Nikon of Malaya, Kuala Lumpur, or to the Pahang State Government, ring light. To take images at different depths of field, step size Kuantan, or directly to any of the authors. was determined by focusing the top and bottom of the specimens. The gaps were then divided into an average of eight steps. The raw images were aligned and stacked using graphic design soft- MATERIALS AND METHODS ware program CombineZP. The fossil fish assemblage from the Pahang vertebrate bed con- Another method was used for imaging smaller teeth with sists mostly of isolated teeth, many of which show signs of lengths less than 5 mm. A field emission scanning electron micro- abrasion. This implies that they were likely transported for scope (FESEM) was used for taking photomicrographs of the some distance prior to deposition. Rare fish scales, coprolites, specimens. The acceleration voltage used was 15.0 kV, and the hybodont fin spines, and osteichthyan (bony fish) vertebral working distance used ranged from 12 to 27.7 mm. Specimens centra also occur in this deposit. were pre-coated with gold by using a Leica EM SCD005 sputter All fossils were obtained from the field by surface collecting coater. and bulk sampling. Fossil preparation was performed chiefly using a mechanical engraver, knives, and sharp-pointed tools under a stereomicroscope. Wherever necessary, both liquid and SYSTEMATIC PALEONTOLOGY gel Paraloid B-72 thermoplastic resin and cyanoacrylate glue were applied to prevent fragmentation. Screen-sieving was Phylum CHORDATA Haeckel, 1874 attempted, but it was not an effective method to free the fossils Class CHONDRICHTHYES Huxley, 1880 from the strongly cemented sandstone. More than 100 isolated Subclass ELASMOBRANCHII Bonaparte, 1838 fish teeth from both hybodont sharks and actinopterygians (ray- Order HYBODONTIFORMES Patterson, 1966 finned fishes) were examined for this study. Family HYBODONTIDAE Owen, 1846 For imaging fish teeth, we used two different methods depend- HYBODONTIDAE indet. ing on the specimen size. For specimens larger than 0.5 mm in (Fig. 3A, B) length, a focus stacking technique was applied. Images at differ- ent depths of field were taken and then were combined to produce a focus-stacked image in which the whole specimen is Hybodus sp. Cuny, Laojumpon, Cheychiw, and Lauprasert, in focus (Brecko et al., 2014). We used a Nikon D300 digital 2010:416,
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Slater, TS, Duffin, CJ, Hildebrandt, C., Davies, TG, & Benton, MJ
    Slater, T. S., Duffin, C. J., Hildebrandt, C., Davies, T. G., & Benton, M. J. (2016). Microvertebrates from multiple bone beds in the Rhaetian of the M4–M5 motorway junction, South Gloucestershire, U.K. Proceedings of the Geologists' Association, 127(4), 464-477. https://doi.org/10.1016/j.pgeola.2016.07.001 Peer reviewed version License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.pgeola.2016.07.001 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0016787816300773. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ *Manuscript Click here to view linked References 1 1 Microvertebrates from multiple bone beds in the Rhaetian of the M4-M5 1 2 3 2 motorway junction, South Gloucestershire, U.K. 4 5 3 6 7 a b,c,d b b 8 4 Tiffany S. Slater , Christopher J. Duffin , Claudia Hildebrandt , Thomas G. Davies , 9 10 5 Michael J. Bentonb*, 11 12 a 13 6 Institute of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK 14 15 7 bSchool of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK 16 17 c 18 8 146 Church Hill Road, Sutton, Surrey SM3 8NF, UK 19 20 9 dEarth Science Department, The Natural History Museum, Cromwell Road, London SW7 21 22 23 10 5BD, UK 24 25 11 ABSTRACT 26 27 12 The Rhaetian (latest Triassic) is best known for its basal bone bed, but there are numerous 28 29 30 13 other bone-rich horizons in the succession.
    [Show full text]
  • OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
    STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl­ vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity.
    [Show full text]
  • The Strawberry Bank Lagerstätte Reveals Insights Into Early Jurassic Lifematt Williams, Michael J
    XXX10.1144/jgs2014-144M. Williams et al.Early Jurassic Strawberry Bank Lagerstätte 2015 Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 2014-144review-articleReview focus10.1144/jgs2014-144The Strawberry Bank Lagerstätte reveals insights into Early Jurassic lifeMatt Williams, Michael J. Benton &, Andrew Ross Review focus Journal of the Geological Society Published Online First doi:10.1144/jgs2014-144 The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life Matt Williams1, Michael J. Benton2* & Andrew Ross3 1 Bath Royal Literary and Scientific Institution, 16–18 Queen Square, Bath BA1 2HN, UK 2 School of Earth Sciences, University of Bristol, Bristol BS8 2BU, UK 3 National Museum of Scotland, Chambers Street, Edinburgh EH1 1JF, UK * Correspondence: [email protected] Abstract: The Strawberry Bank Lagerstätte provides a rich insight into Early Jurassic marine vertebrate life, revealing exquisite anatomical detail of marine reptiles and large pachycormid fishes thanks to exceptional preservation, and especially the uncrushed, 3D nature of the fossils. The site documents a fauna of Early Jurassic nektonic marine animals (five species of fishes, one species of marine crocodilian, two species of ichthyosaurs, cephalopods and crustaceans), but also over 20 spe- cies of insects. Unlike other fossil sites of similar age, the 3D preservation at Strawberry Bank provides unique evidence on palatal and braincase structures in the fishes and reptiles. The age of the site is important, documenting a marine ecosystem during recovery from the end-Triassic mass extinction, but also exactly coincident with the height of the Toarcian Oceanic Anoxic Event, a further time of turmoil in evolution.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Szabo Marton.Indd
    FRAGMENTA PALAEONTOLOGICA HUNGARICA Volume 34 Budapest, 2017 pp. 49–61 Fish remains from the Lower Cretaceous (Valanginian-Hauterivian) of Hárskút (Hungary, Bakony Mts) Márton Szabó1, 2 1Department of Palaeontology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; 2Department of Palaeontology and Geology, Hungarian Natural History Museum, H-1083 Budapest, Ludovika tér 2, Hungary. E-mail [email protected] Abstract – Lower Cretaceous (Valanginian-Hauterivian) fi sh remains, collected in the Közöskút Ravine (nearby Hárskút, Hungary) in the 1960s are detailed here. Although the material is poorly preserved, it is of great importance, because this geographical region and stratigraphical prove- nance are relatively undersampled for marine vertebrates. Th e collected material includes four or- ders of fi sh: Hexanchiformes, Synechodontiformes, Semionotiformes and Pycnodontiformes. Th is is the fi rst, actualized report of some of the Hárskút fi sh taxa from the Mesozoic of Hungary. Th e results add important data to the distribution of the identifi ed taxa, especially to that of Gyrodus. With 20 fi gures and 1 table. Key words – Gyrodus, Hauterivian, Hárskút, Hexanchidae, Lepidotes, Sphenodus, Valanginian INTRODUCTION Our knowledge on the Mesozoic marine fi shes of the Pannonian Basin is yet incomplete. Only a few papers describe these faunas (or faunal elements) in de- tail (e.g., Ősi et al. 2013, 2016; Pászti 2004; Szabó et al. 2016a, b; Szabó & Ősi 2017), while further works mention Mesozoic fi sh remains shortly (e.g., Dulai et al. 1992; Főzy & Szente 2014). A large amount of Mesozoic fi sh remains were collected in the last century, however, most of them were found during excava- tions aft er invertebrate faunas.
    [Show full text]
  • Database of Bibliography of Living/Fossil
    www.shark-references.com Version 16.01.2018 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2017 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 DOI: 10.13140/RG.2.2.32409.72801 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 16.01.2018 Abstract: This paper contains a collection of 817 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2017. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2017, list of descriptions of extinct and extant species from 2017, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide data information on the geographic and depth distribution of newly described species, i.e. the type specimens from the years 1990 to 2017 in a hot spot analysis. New in this year's POTY is the subheader "biodiversity" comprising a complete list of all valid chimaeriform, selachian and batoid species, as well as a list of the top 20 most researched chondrichthyan species. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however, possible errors cannot entirely be excluded.
    [Show full text]
  • A Synoptic Review of the Vertebrate Fauna from the “Green Series
    A synoptic review of the vertebrate fauna from the “Green Series” (Toarcian) of northeastern Germany with descriptions of new taxa: A contribution to the knowledge of Early Jurassic vertebrate palaeobiodiversity patterns I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Sebastian Stumpf geboren am 9. Oktober 1986 in Berlin-Hellersdorf Greifswald, Februar 2017 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Ingelore Hinz-Schallreuter 2. Gutachter: Prof. Dr. Paul Martin Sander Tag des Promotionskolloquiums: 22. Juni 2017 2 Content 1. Introduction .................................................................................................................................. 4 2. Geological and Stratigraphic Framework .................................................................................... 5 3. Material and Methods ................................................................................................................... 8 4. Results and Conclusions ............................................................................................................... 9 4.1 Dinosaurs .................................................................................................................................. 10 4.2 Marine Reptiles .......................................................................................................................
    [Show full text]
  • ︎Accepted Manuscript
    ︎Accepted Manuscript First remains of neoginglymodian actinopterygians from the Jurassic of Monte Nerone area (Umbria-Marche Apennine, Italy) Marco Romano, Angelo Cipriani, Simone Fabbi & Paolo Citton To appear in: Italian Journal of Geosciences Received date: 24 May 2018 Accepted date: 20 July 2018 doi: https://doi.org/10.3301/IJG.2018.28 Please cite this article as: Romano M., Cipriani A., Fabbi S. & Citton P. - First remains of neoginglymodian actinopterygians from the Jurassic of Monte Nerone area (Umbria-Marche Apennine, Italy), Italian Journal of Geosciences, https://doi.org/10.3301/ IJG.2018.28 This PDF is an unedited version of a manuscript that has been peer reviewed and accepted for publication. The manuscript has not yet copyedited or typeset, to allow readers its most rapid access. The present form may be subjected to possible changes that will be made before its final publication. Ital. J. Geosci., Vol. 138 (2019), pp. 00, 7 figs. (https://doi.org/10.3301/IJG.2018.28) © Società Geologica Italiana, Roma 2019 First remains of neoginglymodian actinopterygians from the Jurassic of Monte Nerone area (Umbria-Marche Apennine, Italy) MARCO ROMANO (1, 2, 3), ANGELO CIPRIANI (2, 3), SIMONE FABBI (2, 3, 4) & PAOLO CITTON (2, 3, 5, 6) ABSTRACT UMS). The Mt. Nerone area attracted scholars from all Since the early nineteenth century, the structural high of Mt. over Europe and was studied in detail since the end of Nerone in the Umbria-Marche Sabina Domain (UMS – Central/ the nineteenth century, due to the richness in invertebrate Northern Apennines, Italy) attracted scholars from all over macrofossils, especially cephalopods, and the favorable Europe due to the wealth of fossil fauna preserved in a stunningly exposure of the Mesozoic succession (e.g.
    [Show full text]
  • Semionotiform Fish from the Upper Jurassic of Tendaguru (Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 2 (1999) 135-153 19.10.1999 Semionotiform Fish from the Upper Jurassic of Tendaguru (Tanzania) Gloria Arratial & Hans-Peter Schultze' With 12 figures Abstract The late Late Jurassic fishes collected by the Tendaguru expeditions (1909-1913) are represented only by a shark tooth and various specimens of the neopterygian Lepidotes . The Lepidotes is a new species characterized by a combination of features such as the presence of scattered tubercles in cranial bones of adults, smooth ganoid scales, two suborbital bones, one row of infraorbital bones, non-tritoral teeth, hyomandibula with an anteriorly expanded membranous outgrowth, two extrascapular bones, two postcleithra, and the absence of fringing fulcra on all fins. Key words: Fishes, Actinopterygii, Semionotiformes, Late Jurassic, East-Africa . Zusammenfassung Die spätoberjurassischen Fische, die die Tendaguru-Expedition zwischen 1909 und 1913 gesammelt hat, sind durch einen Haizahn und mehrere Exemplare des Neopterygiers Lepidotes repräsentiert. Eine neue Art der Gattung Lepidotes ist be- schrieben, sie ist durch eine Kombination von Merkmalen (vereinzelte Tuberkel auf den Schädelknochen adulter Tiere, glatte Ganoidschuppen, zwei Suborbitalia, eine Reihe von Infraorbitalia, nichttritoriale Zähne, Hyomandibulare mit einer membra- nösen nach vorne gerichteten Verbreiterung, zwei Extrascapularia, zwei Postcleithra und ohne sich gabelnde Fulkren auf dem Vorderrand der Flossen) gekennzeichnet. Schlüsselwörter: Fische, Actinopterygii, Semionotiformes, Oberer Jura, Ostafrika. Introduction margin, crescent shaped lateral line pore, and the number of scales in vertical and longitudinal At the excavations of the Tendaguru expeditions rows), and on the shape of teeth (non-tritoral) . (1909-1913), fish remains were collected to- However, the Tendaguru lepidotid differs nota- gether with the spectacular reptiles in sediments bly from L.
    [Show full text]
  • Middle Triassic Sharks from the Catalan Coastal Ranges (NE Spain) and Faunal Colonization Patterns During the Westward Transgression of Tethys T ⁎ E
    Palaeogeography, Palaeoclimatology, Palaeoecology 539 (2020) 109489 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Middle Triassic sharks from the Catalan Coastal ranges (NE Spain) and faunal colonization patterns during the westward transgression of Tethys T ⁎ E. Manzanaresa, M.J. Escudero-Mozob, H. Ferrónc,d, C. Martínez-Pérezc,d, H. Botellac, a Botany and Geology Department, University of Valencia, Avda. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain b Instituto de Geociencias, UCM, CSIC, Calle del Dr. Severo Ochoa, 7, 28040 Madrid, Spain c Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, Paterna 46980, Valencia, Spain d School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK ARTICLE INFO ABSTRACT Keywords: Palaeogeographic changes that occurred during the Middle Triassic in the westernmost Tethyan domain were Dispersal strategies governed by a westward marine transgression of the Tethys Ocean. The transgression flooded wide areas of the Palaeocurrents eastern part of Iberia, forming new epicontinental shallow-marine environments, which were subsequently Anisian colonized by diverse faunas, including chondrichthyans. The transgression is recorded by two successive Ladinian transgressive–regressive cycles: (1) middle–late Anisian and (2) late Anisian–early Carnian. Here, we describe Coastal chondrichthyans the chondrichthyan fauna recovered from several Middle Triassic stratigraphic sections (Pelsonian- Longobardian) located at the Catalan Coastal Basin (western-most Tethys). The assemblage consists of isolated teeth of the species Hybodus plicatilis, Omanoselache bucheri, O. contrarius and Pseudodalatias henarejensis. Our data complement a series of recent studies on chondrichthyan faunas from Middle-Late Triassic marine basins of the Iberian Peninsula, allowing us to evaluate patterns of faunal colonization.
    [Show full text]
  • A Speiballen from the Lower Jurassic Posidonia Shale of South Germany
    N. Jb. Geol. Paläont. Abh. 267/1, 117–124 Article Published online December 2012 A Speiballen from the Lower Jurassic Posidonia Shale of South Germany Detlev Thies and Rolf Bernhard Hauff with 1 figure Thies, D. & hauff, R.B. (2013): A Speiballen from the Lower Jurassic Posidonia Shale of South Ger- many. – N. Jb. Geol. Paläont. Abh., 267: 117–124; Stuttgart. Abstract: A Speiballen (regurgitated compacted mass of indigestible stomach contents) from the Lower Jurassic Posidonia Shale of Ohmden, South Germany contains remains of four specimens of the actinopterygian Dapedium sp., the specific identity of which remains obscure, and a lower jaw of a specimen identified as Lepidotes sp. A list of five suitable characters is proposed to distinguish fossil Speiballen containing specimens from other vertebrate fossils. Large, potentially piscivorous animals in the Posidonia Shale ecosystem comprise chondrichthyans (Hybodus), other actinoptery- gians (pachycormiforms) and marine reptiles (crocodilians, ichthyosaurs, plesiosaurs). Only juvenile ichthyosaurs (Stenopterygius) are known to have preyed on Dapedium. Available data are, however, insufficient to clearly identify the Speiballen producer. The heavy scale armour of basal neoptery- gians such as Dapedium undoubtedly hampered digestion of these fishes and in this way provided additional protection against predators. Key words: Jurassic, Fossillagerstätte, Holzmaden, ecosytem, predation. 1. Introduction English equivalent of the German term ‘Speiballen’ (or ‘Gewölle’, which means the same) does not seem to Speiballen are understood to be regurgitated com- exist. Burrow & Turner (2010) described an assem- pacted masses of indigestible stomach contents. They blage of skeletal element, tooth whorls and scales of are released in the form of gastric pellets through the the acanthodian Nostolepis scotica from the Early De- pharynx in contrast to faeces that represent intestinal vonian of Scotland comparable in terms of taphonomy contents that are excreted through the anus.
    [Show full text]