A ¯At Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation

Total Page:16

File Type:pdf, Size:1020Kb

A ¯At Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation articles A ¯at Universe from high-resolution maps of the cosmic microwave background radiation P. de Bernardis1,P.A.R.Ade2, J. J. Bock3, J. R. Bond4, J. Borrill5,12, A. Boscaleri6, K. Coble7, B. P. Crill8, G. De Gasperis9, P. C. Farese7, P. G. Ferreira10, K. Ganga8,11, M. Giacometti1, E. Hivon8, V. V. Hristov8, A. Iacoangeli1, A. H. Jaffe12, A. E. Lange8, L. Martinis13, S. Masi1, P. V. Mason8, P. D. Mauskopf14,15, A. Melchiorri1, L. Miglio16, T. Montroy7, C. B. Netter®eld16, E. Pascale6, F. Piacentini1, D. Pogosyan4, S. Prunet4,S.Rao17, G. Romeo17, J. E. Ruhl7, F. Scaramuzzi13, D. Sforna1 & N. Vittorio9 ............................................................................................................................................................................................................................................................................ The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the ®rst images of resolved structure in the microwave background anisotropies over a signi®cant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and ®nd a peak at Legendre multipole l peak 197 6 6, with an amplitude DT 200 69 6 8 mK. This is consistent with that expected for cold dark matter models in a ¯at (euclidean) Universe, as favoured by standard in¯ationary models. 1=2 Photons in the early Universe were tightly coupled to ionized matter lpeak < 200=­0 . A precise measurement of lpeak can ef®ciently through Thomson scattering. This coupling ceased about 300,000 constrain the density and thus the curvature of the Universe. years after the Big Bang, when the Universe cooled suf®ciently to Observations of CMB anisotropies require extremely sensitive form neutral hydrogen. Since then, the primordial photons have and stable instruments. The DMR5 instrument on the COBE travelled freely through the Universe, redshifting to microwave satellite mapped the sky with an angular resolution of ,78, yielding frequencies as the Universe expanded. We observe those photons measurements of the angular power spectrum at multipoles l , 20. today as the cosmic microwave background (CMB). An image of the Since then, experiments with ®ner angular resolution6±16 have early Universe remains imprinted in the temperature anisotropy of detected CMB ¯uctuations on smaller scales and have produced the CMB. Anisotropies on angular scales larger than ,28 are evidence for the presence of a peak in the angular power spectrum at dominated by the gravitational redshift the photons undergo as lpeak < 200. they leave the density ¯uctuations present at decoupling1,2. Aniso- Here we present high-resolution, high signal-to-noise maps of tropies on smaller angular scales are enhanced by oscillations of the the CMB over a signi®cant fraction of the sky, and derive the angular photon±baryon ¯uid before decoupling3. These oscillations are power spectrum of the CMB from l 50 to 600. This power driven by the primordial density ¯uctuations, and their nature spectrum is dominated by a peak at multipole lpeak 197 6 6 depends on the matter content of the Universe. (1j error). The existence of this peak strongly supports in¯ationary In a spherical harmonic expansion of the CMB temperature ®eld, models for the early Universe, and is consistent with a ¯at, euclidean the angular power spectrum speci®es the contributions to the Universe. ¯uctuations on the sky coming from different multipoles l, each corresponding to the angular scale v p=l. Density ¯uctuations The instrument over spatial scales comparable to the acoustic horizon at decoupling The Boomerang (balloon observations of millimetric extragalactic produce a peak in the angular power spectrum of the CMB, radiation and geomagnetics) experiment is a microwave telescope occurring at multipole lpeak. The exact value of lpeak depends on that is carried to an altitude of ,38 km by a balloon. Boomerang both the linear size of the acoustic horizon and on the angular combines the high sensitivity and broad frequency coverage pio- diameter distance from the observer to decoupling. Both these neered by an earlier generation of balloon-borne experiments with quantities are sensitive to a number of cosmological parameters the long (,10 days) integration time available in a long-duration (see, for example, ref. 4), but lpeak primarily depends on the total balloon ¯ight over Antarctica. The data described here were density of the Universe, ­0. In models with a density ­0 near 1, obtained with a focal plane array of 16 bolometric detectors cooled to 0.3 K. Single-mode feedhorns provide two 189 full- 1 Dipartimento di Fisica, Universita' di Roma ``La Sapienza'', P.le A. Moro 2, 00185 Roma, Italy. width at half-maximum (FWHM) beams at 90 GHz and two 109 2 Department of Physics, Queen Mary and West®eld College, Mile End Road, London E1 4NS, UK. FWHM beams at 150 GHz. Four multi-band photometers each 3 Jet Propulsion Laboratory, Pasadena, California 91109, USA. 4 CITAUniversity of Toronto, TorontoM5S 3H8, Canada. 5 NERSC-LBNL, Berkeley, California 94720, USA. 6 IROE±CNR, Via Panciatichi 64, 50127 provide a 10.59,149 and 139 FWHM beam at 150, 240 and 400 GHz Firenze, Italy. 7 Department of Physics, University of California at Santa Barbara, Santa Barbara, respectively. The average in-¯ight sensitivity to CMB anisotropies California 93106, USA. 8 California Institute of Technology, Mail Code 59-33, Pasadena, California was 140, 170, 210 and 2,700 mKs1/2 at 90, 150, 240 and 400 GHz, 91125, USA. 9 Dipartimento di Fisica, Universita' di Roma Tor Vergata, Via della Ricerca Scienti®ca 1, 00133 Roma, Italy. 10 Astrophysics, University of Oxford, Keble Road, OX1 3RH, UK. 11 PCC, College de respectively. The entire optical system is heavily baf¯ed against France, 11 pl. Marcelin Berthelot, 75231 Paris Cedex 05, France. 12 Center for Particle Astrophysics, terrestrial radiation. Large sunshields improve rejection of radiation University of California at Berkeley, 301 Le Conte Hall, Berkeley, California 94720, USA. 13 ENEA Centro Ricerche di Frascati, Via E. Fermi 45, 00044 Frascati, Italy. 14 Physics and Astronomy Department, Cardiff from .608 in azimuth from the telescope boresight. The rejection University, Cardiff CF2 3YB, UK. 15 Department of Physics and Astronomy, University of Massachusetts, has been measured to be greater than 80 dB at all angles occupied by Amherst, Massachusetts 01003, USA. 16 Department of Physics and Astronomy, University of Toronto, the Sun during the CMB observations. Further details on the Toronto M5S 3H8, Canada. 17 Istituto Nazionale di Geo®sica, Via di Vigna Murata 605, 00143, Roma, Italy. instrument can be found in refs 17±21. NATURE | VOL 404 | 27 APRIL 2000 | www.nature.com © 2000 Macmillan Magazines Ltd 955 articles Observations stellar dust22 and that is approximately opposite the Sun during the Boomerang was launched from McMurdo Station (Antarctica) on austral summer. We mapped this region by repeatedly scanning the 29 December 1998, at 3:30 GMT. Observations began 3 hours later, telescope through 608 at ®xed elevation and at constant speed. Two and continued uninterrupted during the 259-hour ¯ight. The scan speeds (18 s-1 and 28 s-1 in azimuth) were used to facilitate tests payload approximately followed the 798 S parallel at an altitude for systematic effects. As the telescope scanned, degree-scale varia- that varied daily between 37 and 38.5 km, returning within 50 km of tions in the CMB generated sub-audio frequency signals in the the launch site. output of the detector23. The stability of the detector system was We concentrated our observations on a target region, centred at suf®cient to allow sensitive measurements on angular scales up to roughly right ascension (RA) 5h, declination (dec.) -458, that is tens of degrees on the sky. The scan speed was suf®ciently rapid with uniquely free of contamination by thermal emission from inter- respect to sky rotation that identical structures were observed by –300 –200–100 0 100 200 300 µK b = –10 b = –10 –30 b = –20 b = –20 –35 –40 –45 Dec. (deg.) –50 –55 –60 90 GHz 90 GHz - 150 GHz b = –10 b = –10 –30 b = –20 b = –20 –35 –40 –45 Dec. (deg.) –50 –55 –60 150 GHz 240 GHz - 150 GHz b = –10 b = –10 –30 b = –20 b = –20 –35 –40 –45 Dec. (deg.) –50 –55 –60 240 GHz 400 GHz 30 45 60 75 90 105 120 135 30 45 60 75 90 105 120 135 RA (deg.) RA (deg.) Figure 1 Boomerang sky maps (equatorial coordinates). The sky maps at 90, 150 and ISD emission mapped by IRAS/DIRBE22. This emission is strongly concentrated towards 240 GHz (left panels) are shown with a common colour scale, using a thermodynamic the right-hand edge of the maps, near the plane of the Galaxy. The same structures are temperature scale chosen such that CMB anisotropies will have the same amplitude in the evident in the 90, 150 and 240 GHz maps at Galactic latitude b .2158, albeit with an three maps. Only the colour scale of the 400 GHz map (bottom right) is 14 times larger amplitude that decreases steeply with decreasing frequency. The large-scale gradient than the others: this has been done to facilitate comparison of emission from interstellar evident especially near the right edge of the 240 GHz map is a result of high-pass-®ltering dust (ISD), which dominates this map, with ISD emission present in the lower-frequency the very large signals near the Galactic plane (not shown).
Recommended publications
  • Maps of the Millimetre Sky from the Boomerang Experiment 35
    Maps of the Cosmos ASP Conference Series, Vol. 216, 2005 M. Colless, L. Staveley-Smith, R. Stathakis Maps of the Millimetre Sky from the BOOMERanG Experiment 1 P. de Bernardis", G. De Troia , M. Giacometti", A. Iacoangeli", 1 S. Masi", A. Melchiorri", F. Nati , F. Piacentini", G. Polenta", 2 S. Ricciardi", P. A. R. Ade , P. D. Mauskopf", A. Balbi3 , P. Cabella3 , 4 5 G. De Gasperis'', P. Natoli'', N. Vittorio'', J. J. Bock , J. R. Bond , C. R. Contaldi'', J. Borrill", A. Boscaleri", E. Pascale7,14 , W. C. Jones", A. E. Lange", P. Mason", V. V. Hristov", B. P. CriU8,9 , A. De-Oliveira 11 11 Costal", M. Tegmark!", K. Ganga , E. Hivon , T. Montroyl", T. Kisnerl", J E. Ruh112 , A. H. Jaffe l 3 , C. MacTavish14 , C. B. Netterfield'", D. Pogosyanl", S. Prunet'", and G. Romeo 17 1 Dipartimento di Fisica, Universita' La Sapienza, Roma, Italy 2 Dept. of Physics and Astronomy, Cardiff University, Wales, UK 3 Dipartimento di Fisica, Universita' di Tor Vergata, Roma, Italy 4 Jet Propulsion Laboratory, Pasadena, CA, USA 5 CITA, University of Toronto, Canada 6 NERSC, LBNL, Berkeley, CA, USA 7 IFAC-CNR, Firenze, Italy 8 California Institute of Technology, Pasadena, CA, USA 9 CSU Dominguez Hills, Carson, CA, USA 10 Phys. Dept. University of Pennsylvanya, Philadelphia, PA, USA 11 IPAC, CalTech, Pasadena, CA, USA 12 Physics Department, CWRU, Cleveland, OH, USA 13 Astrophysics Group, Imperial College, London, UK 14 Depts. of Physics and Astronomy, University of Toronto, Canada 15 Physics Dept., University of Alberta, Alberta, Canada 16 Institut d'Astrophysique, Paris, France 17 Istituto Nazionale di Geofisica, Roma, Italy Abstract.
    [Show full text]
  • The Theory of Anisotropies in the Cosmic Microwave Background
    TACMB-1: The Theory of Anisotropies in the Cosmic Microwave Background: Martin White and J.D. Cohn Dept. of Astronomy 601 Campbell Hall UC Berkeley Berkeley, CA 94720-3411 USA Abstract This Resource Letter provides a guide to the literature on the theory of anisotropies in the cosmic microwave background. Journal articles, web pages, and books are cited for the following topics: discovery, cosmological origin, early work, recombination, general CMB anisotropy references, primary CMB anisotropies (numerical, analytical work), secondary effects, Sunyaev-Zel’dovich effect(s), lensing, reionization, polarization, gravity waves, defects, topology, origin of fluctuations, development of fluctuations, inflation and other ties to particle physics, parameter estimation, recent constraints, web resources, foregrounds, observations and observational issues, and gaussianity. Introduction The cosmic microwave background (CMB) radiation is a relic of a time when the universe was hot and dense, and as such it encodes a wealth of information about the early universe and the formation of the large-scale structure we see in the universe today. The very existence of the CMB is one of the four pillars of the hot big bang cosmology. That the spectrum [7, 8, 9] is the best measured black body spectrum in nature provides stringent constraints on its origin and on any injection of energy at early times [14]. Perhaps the most exciting and active area of CMB research, however, is the study of its anisotropies: the small fluctuations in intensity from point to point across the sky. As we shall discuss below, these anisotropies provide us with a snapshot of the conditions in the universe about 300, 000 years after the big bang, when the universe was a simpler place.
    [Show full text]
  • A MEASUREMENT of Ω from the NORTH AMERICAN TEST FLIGHT of Boomerang A
    Preprint typeset using LATEX style emulateapj v. 04/03/99 A MEASUREMENT OF Ω FROM THE NORTH AMERICAN TEST FLIGHT OF Boomerang A. Melchiorri1;2;9, P.A.R. Ade3, P. de Bernardis1,J.J.Bock4;5, J. Borrill6;7,A. Boscaleri8,B.P.Crill4,G.DeTroia1,P.Farese10,P.G.Ferreira9;11;12,K.Ganga4;13, G. de Gasperis2, M. Giacometti1,V.V.Hristov4,A.H.Jaffe6, A.E. Lange4,S.Masi1, P.D. Mauskopf14,L.Miglio1;15,C.B.Netterfield15,E.Pascale8,F.Piacentini1,G. Romeo16, J.E. Ruhl10 and N. Vittorio2 1 Dipartimento di Fisica, Universita' La Sapienza, Roma, Italy 2 Dipartimento di Fisica, Universita' Tor Vergata, Roma, Italy 3 Queen Mary and Westfield College, London, UK 4 California Institute of Technology, Pasadena, CA, USA 5 Jet Propulsion Laboratory, Pasadena, CA, USA 6 Center for Particle Astrophysics, University of California, Berkeley, CA, USA 7 National Energy Research Scientific Computing Center, LBNL, Berkeley, CA, USA 8 IROE-CNR, Firenze, Italy 9 Dept. de Physique Theorique, Universite de Geneve, Switzerland 10 Dept. of Physics, Univ. of California, Santa Barbara, CA, USA 11 CENTRA, IST, Lisbon, Portugal 12 Theory Division, CERN, Geneva, Switzerland 13 Physique Corpusculaire et Cosmologie, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France 14 Dept. of Physics and Astronomy, University of Massachussets, Amherst, MA, USA 15 Depts. of Physics and Astronomy, University of Toronto, Canada 16 Istituto Nazionale di Geofisica, Roma, Italy ABSTRACT We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the Boomerang experiment, to constrain the geometry of the universe.
    [Show full text]
  • Astrophysics and Cosmology
    ASTROPHYSICS AND COSMOLOGY J. GarcÂõa-Bellido Theoretical Physics Group, Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, U.K. Abstract These notes are intended as an introductory course for experimental particle physicists interested in the recent developments in astrophysics and cosmology. I will describe the standard Big Bang theory of the evolution of the universe, with its successes and shortcomings, which will lead to inflationary cosmology as the paradigm for the origin of the global structure of the universe as well as the origin of the spectrum of density perturbations responsible for structure in our local patch. I will present a review of the very rich phenomenology that we have in cosmology today, as well as evidence for the observational revolution that this field is going through, which will provide us, in the next few years, with an accurate determination of the parameters of our standard cosmological model. 1. GENERAL INTRODUCTION Cosmology (from the Greek: kosmos, universe, world, order, and logos, word, theory) is probably the most ancient body of knowledge, dating from as far back as the predictions of seasons by early civiliza- tions. Yet, until recently, we could only answer to some of its more basic questions with an order of mag- nitude estimate. This poor state of affairs has dramatically changed in the last few years, thanks to (what else?) raw data, coming from precise measurements of a wide range of cosmological parameters. Further- more, we are entering a precision era in cosmology, and soon most of our observables will be measured with a few percent accuracy.
    [Show full text]
  • Arxiv:Astro-Ph/0004385V2 27 Jul 2000
    Boomerang returns unexpectedly1 Martin White Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Douglas Scott and Elena Pierpaoli Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 ABSTRACT Experimental study of the anisotropy in the cosmic microwave background (CMB) is gathering momentum. The eagerly awaited Boomerang results have lived up to expectations. They provide convincing evidence in favor of the standard paradigm: the Universe is close to flat and with primordial fluctuations which are redolent of inflation. Further scrutiny reveals something even more exciting however – two hints that there may be some unforeseen physical effects. Firstly the primary acoustic peak appears at slightly larger scales than expected. Although this may be explicable through a combination of mundane effects, we suggest it is also prudent to consider the possibility that the Universe might be marginally closed. The other hint is provided by a second peak which appears less prominent than expected. This may indicate one of a number of possibilities, including increased damping length or tilted initial conditions, but also breaking of coherence or features in the initial power spectrum. Further data should test whether the current concordance model needs only to be tweaked, or to be enhanced in some fundamental way. Subject headings: cosmology: theory – cosmic microwave background 1. Introduction The study of the Cosmic Microwave Background (CMB) anisotropy holds the promise of answering arXiv:astro-ph/0004385v2 27 Jul 2000 many of our fundamental questions about the Universe and the origin of the large-scale structure (see e.g. Bond 1996; Bennett, Turner & White 1997; Lawrence, Scott & White 1999).
    [Show full text]
  • A Mathematical Appendix
    381 A Mathematical Appendix A.1 Selected Formulae “Don’t worry about your difficulties in mathematics; I can assure you that mine are still greater.” Albert Einstein The solution of physics problems often involves mathemat- ics. In most cases nature is not so kind as to allow a precise mathematical treatment. Many times approximations are not only rather convenient but also necessary, because the gen- eral solution of specific problems can be very demanding and sometimes even impossible. In addition to these approximations, which often involve power series, where only the leading terms are relevant, ba- sic knowledge of calculus and statistics is required. In the following the most frequently used mathematical aids shall be briefly presented. 1. Power Series Binomial expansion: binomial expansion (1 ± x)m = m(m − 1) m(m − 1)(m − 2) 1 ± mx + x2 ± x3 +··· 2! 3! m(m − 1) ···(m − n + 1) + (±1)n xn +··· . n! For integer positive m this series is finite. The coefficients are binomial coefficients m(m − 1) ···(m − n + 1) m = . n! n If m is not a positive integer, the series is infinite and con- vergent for |x| < 1. This expansion often provides a simpli- fication of otherwise complicated expressions. 382 A Mathematical Appendix A few examples for most commonly used binomial ex- pansions: examples 1 1 1 5 (1 ± x)1/2 = 1 ± x − x2 ± x3 − x4 ±··· , for binomial expansions 2 8 16 128 − 1 3 5 35 (1 ± x) 1/2 = 1 ∓ x + x2 ∓ x3 + x4 ∓··· , 2 8 16 128 − (1 ± x) 1 = 1 ∓ x + x2 ∓ x3 + x4 ∓··· , (1 ± x)4 = 1 ± 4x + 6x2 ± 4x3 + x4 finite .
    [Show full text]
  • A Measurement of Omega from the North American Test Flight Of
    A Preprint typeset using L TEX style emulateapj v. 04/03/99 A MEASUREMENT OF Ω FROM THE NORTH AMERICAN TEST FLIGHT OF Boomerang A. Melchiorri1,2,9, P.A.R. Ade3, P. de Bernardis1, J.J. Bock4,5, J. Borrill6,7, A. Boscaleri8, B.P. Crill4, G. De Troia1, P. Farese10, P. G. Ferreira9,11,12, K. Ganga4,13, G. de Gasperis2, M. Giacometti1, V.V. Hristov4, A. H. Jaffe6, A.E. Lange4, S. Masi1, P.D. Mauskopf14, L. Miglio1,15, C.B. Netterfield15, E. Pascale8, F. Piacentini1, G. Romeo16, J.E. Ruhl10 and N. Vittorio2 1 Dipartimento di Fisica, Universita’ La Sapienza, Roma, Italy 2 Dipartimento di Fisica, Universita’ Tor Vergata, Roma, Italy 3 Queen Mary and Westfield College, London, UK 4 California Institute of Technology, Pasadena, CA, USA 5 Jet Propulsion Laboratory, Pasadena, CA, USA 6 Center for Particle Astrophysics, University of California, Berkeley, CA, USA 7 National Energy Research Scientific Computing Center, LBNL, Berkeley, CA, USA 8 IROE-CNR, Firenze, Italy 9 Dept. de Physique Theorique, Universite de Geneve, Switzerland 10 Dept. of Physics, Univ. of California, Santa Barbara, CA, USA 11 CENTRA, IST, Lisbon, Portugal 12 Theory Division, CERN, Geneva, Switzerland 13 Physique Corpusculaire et Cosmologie, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France 14 Dept. of Physics and Astronomy, University of Massachussets, Amherst, MA, USA 15 Depts. of Physics and Astronomy, University of Toronto, Canada 16 Istituto Nazionale di Geofisica, Roma, Italy ABSTRACT We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the Boomerang experiment, to constrain the geometry of the universe.
    [Show full text]
  • Evidence for a Flat Universe from the North American Flight Of
    Evidence for a Flat Universe from the North American Flight of BOOMERANG 2 3 1;4 5;6 7 8 B.P. Crill1 , P.A.R. Ade , P. de Bernardis , J.J. Bock , J. Borrill , A. Boscaleri , G. de Gasperis ,G.de 9 10;11 12;13 3 14 1 Troia3 , P. Farese , P.G. Ferreira , K. Ganga , M. Giacometti , S. Hanany , E.F. Hivon , V.V. 3 5 1 15 3 16;17 Hristov 1 , A. Iacoangeli , A.H. Jaffe , A.E. Lange , A.T. Lee , S. Masi , P. D. Mauskopf ,A. ;8;18 3 3 9 19 7 3 Melchiorri3 , F. Melchiorri , L. Miglio , T. Montroy , C.B. Netterfield , E. Pascale , F. Piacentini , 20 9 15 21 15 P.L. Richards15 , G. Romeo , J.E. Ruhl , E. Scannapieco , F. Scaramuzzi , R. Stompor , and N. Vittorio 8 1 California Institute of Technology, Pasadena, CA, USA 2 Queen Mary and Westfield College, London, UK 3 Dipartmento di Fisica, Universita’ di Roma “La Sapienza”, Roma, Italy 4 Jet Propulsion Laboratory, Pasadena, CA, USA 5 Center for Particle Astrophysics, University of California, Berkeley, CA, USA 6 National Energy Research Scientific Computing Center, LBNL, Berkeley, CA, USA 7 IROE-CNR, Firenze, Italy 8 Dipartmento di Fisica, Secundo Universita’ di Roma “Tor Vergata”, Roma, Italy 9 Department of Physics, University of California, Santa Barbara, CA, USA 10 CENTRA, IST, Lisbon, Portugal 11 Theory Division, CERN, Geneva, Switzerland 12 Physique Corpusculaire et Cosmologie, College de France, Paris, France 13 IPAC, Pasadena, CA, USA 14 Department of Physics, University of Minnesota, Minneapolis, MN, USA 15 Department of Physics, University of California, Berkeley, CA, USA 16 Deptarment of Physics and Astronomy, University of Massachussets, Amherst, MA, USA 17 Department of Physics and Astronomy, University of Wales, Cardiff, UK 18 Departement de Physique Theorique, Univeriste de Geneve, Switzerland 19 Departments of Physics and Astronomy, University of Toronto, Toronto, Canada 20 Instituto Nazionale di Geofisica, Roma, Italy 21 ENEA, Frascati, Italy Abstract BOOMERANG is a millimeter- and submillimeter-wave telescope designed to observe the Cosmic Microwave Background from a stratospheric balloon above Antarctica.
    [Show full text]
  • Space Spectroscopy of the Cosmic Microwave
    ^-space spectroscop Cosmie th f yo c Microwave Background wit BOOMERane hth G experiment P. de Bernardis1, RA.R. Ade2, JJ. Bock3, J.R. Bond4, J. Borrill5, A. Boscaleri6, K. Coble7, C.R. Contaldi4, B.R GrillGasperise D . Troia8e ,G D . 9Farese. ,G 1 ,P 7, K. Ganga Giacometti. 10,M Hivon. 1,E 10, V.V. Hristov lacoangel. 8,A i l A.H. Jaffe11, W.C. Jones8, A.E. Lange Martinis. 8,L 12Masi. ,S Mason. 1,P 8, P.O. Mauskopf Melchiorri. 13A , 14Natoli. ,P Montroy. 9,T 7, C.B. Netterfield15, E. Pascale6, E Piacentini1, D. Pogosyan4, G. Polenta1, E Pongetti16, S. Prunet4, G. Romeo16, I.E. Ruhl 7Scaramuzzi,E Vittorio. 12,N 14 1 Dipartimento Fisica,di Universitd Sapienza,La Roma, P.le Mow,A. 00185,2, Italy. 2 Queen Maryand Westfield College, London, UK. 3 Jet Propulsion Laboratory, Pasadena, CA, USA.4 C.I.T.A., University of Toronto, Canada.5 N.E.R.S.C., LBNL, Berkeley, CA, USA. 6IROE-CNR, Firenze, Italy.1 Dept. of Physics, Univ. of California, Santa Barbara, CA, USA. 8 California Institute of Technology, Pasadena, CA, USA. 9 Department of Physics, Second University of Rome, Italy. 10IPAC, Caltech, Pasadena, CA, USA. u Department of Astronomy, Space Sciences Centerand Particlefor Lab Astrophysics, University ofCA, Berkeley, 94720CA USA. u ENEA, Frascati, Italy. ° Dept. of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, Wales, UK. 14 Nuclear and Astrophysics Laboratory, University of Oxford, Keble Road, Oxford, OX3RH, UK.15 Depts. of Physics and Astronomy, University of Toronto, Canada.16 Istituto Nazionale di Geofisica, Roma, Italy.
    [Show full text]
  • Reexamining the Constraint on the Helium Abundance From
    astro-ph/0601099 January 2006 Reexamining the Constraint on the Helium Abundance from CMB Kazuhide Ichikawa and Tomo Takahashi Institute for Cosmic Ray Research, University of Tokyo Kashiwa 277-8582, Japan (June 18, 2018) Abstract We revisit the constraint on the primordial helium mass fraction Yp from obser- vations of cosmic microwave background (CMB) alone. By minimizing χ2 of recent CMB experiments over 6 other cosmological parameters, we obtained rather weak constraints as 0.17 ≤ Yp ≤ 0.52 at 1σ C.L. for a particular data set. We also study the future constraint on cosmological parameters when we take account of the pre- diction of the standard big bang nucleosynthesis (BBN) theory as a prior on the helium mass fraction where Yp can be fixed for a given energy density of baryon. We discuss the implications of the prediction of the standard BBN on the analysis of CMB. arXiv:astro-ph/0601099v2 5 Apr 2006 1 Introduction Recent precise cosmological observations such as WMAP [1] push us toward the era of so-called precision cosmology. In particular, the combination of the data from cosmic microwave background (CMB), large scale structure, type Ia supernovae and so on can severely constrain the cosmological parameters such as the energy density of baryon, cold dark matter and dark energy, the equation of state for dark energy, the Hubble parameter, the amplitude and the scale dependence of primordial fluctuation. Among the various cosmological parameters, the primordial helium mass fraction Yp is the one which has been mainly discussed in the context of big bang nucleosynthesis (BBN) but not that of CMB so far.
    [Show full text]
  • B1487(01)Quarks FM.I-Xvi
    Connecting Quarks with the Cosmos Eleven Science Questions for the New Century Committee on the Physics of the Universe Board on Physics and Astronomy Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Govern- ing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineer- ing, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported by Grant No. DE-FG02-00ER41141 between the Na- tional Academy of Sciences and the Department of Energy, Grant No. NAG5-9268 between the National Academy of Sciences and the National Aeronautics and Space Administration, and Grant No. PHY-0079915 between the National Academy of Sciences and the National Science Foundation. Any opinions, findings, and conclu- sions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that pro- vided support for the project. International Standard Book Number 0-309-07406-1 Library of Congress Control Number 2003100888 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu and Board on Physics and Astronomy, National Research Council, NA 922, 500 Fifth Street, N.W., Washington, DC 20001; Internet, http://www.national-academies.org/bpa.
    [Show full text]
  • Acoustic Peaks and Dips in the CMB Power Spectrum: Observational Data
    Acoustic peaks and dips in the CMB power spectrum: observational data and cosmological constraints R. Durrer1 School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 B. Novosyadlyj 2 and S. Apunevych Astronomical Observatory of Ivan Franko L’viv National University, Kyryla and Mephodia str.8, 79005, L’viv, Ukraine ABSTRACT The locations and amplitudes of three acoustic peaks and two dips in the Boomerang, MAXIMA and DASI measurements of the cosmic microwave background (CMB) anisotropy power spectra as well as their statistical confidence levels are deter- mined in a model-independent way. It is shown that the Boomerang-2001 data (Netterfield et al. 2001) fixes the location and amplitude of the first acoustic peak at more than 3σ confidence. The next two peaks and dips are determined at a con- fidence level above 1σ but below 2σ. The locations and amplitudes of the first three peaks and two dips are ℓ = 212 17, A = 5426 1218 µK2, ℓ = 413 50, p1 ± p1 ± d1 ± A = 1960 503 µK2, ℓ = 544 56, A = 2266 607 µK2, ℓ = 746 89, d1 ± p2 ± p2 ± d2 ± A = 1605 650 µK2, ℓ = 843 35, A = 2077 876 µK2 respectively (1σ errors d2 ± p3 ± p3 ± include statistical and systematic errors). The MAXIMA and DASI experiments give similar values for the extrema which they determine. For MAXIMA these are the 1st and 3rd peaks, for DASI the 1st and 2nd peaks and the 1st dip. Moreover, the locations and amplitudes of the extrema determined from the combined data of all experiments are quite close to the corresponding values extracted from the Boomerang data alone.
    [Show full text]