Why Should Mitochondria Define Species?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Diversity of Bacterial Endosymbionts in the Gutless Marine Oligochete Olaviusloisae (Annelida)
MARINE ECOLOGY PROGRESS SERIES Vol. 178: 271-280.1999 Published March 17 Mar Ecol Prog Ser l Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida) Nicole ~ubilier'~*,Rudolf ~mann',Christer Erseus2, Gerard Muyzer l, SueYong park3, Olav Giere4, Colleen M. cavanaugh3 'Molecular Ecology Group, Max Planck Institute of Marine Microbiology, Celsiusstr. 1. D-28359 Bremen, Germany 'Department of Invertebrate Zoology. Swedish Museum of Natural History. S-104 05 Stockholm. Sweden 3~epartmentof Organismic and Evolutionary Biology, Harvard University, The Biological Laboratories, Cambridge, Massachusetts 02138, USA 4Zoologisches Institut und Zoologisches Museum. University of Hamburg, D-20146 Hamburg, Germany ABSTRACT: Endosymbiotic associations with more than 1 bacterial phylotype are rare anlong chemoautotrophic hosts. In gutless marine oligochetes 2 morphotypes of bacterial endosymbionts occur just below the cuticle between extensions of the epidermal cells. Using phylogenetic analysis, in situ hybridization, and denaturing gradient gel electrophoresis based on 16s ribosomal RNA genes, it is shown that in the gutless oligochete Olavius Ioisae, the 2 bacterial morphotypes correspond to 2 species of diverse phylogenetic origin. The larger symbiont belongs to the gamma subclass of the Proteobac- tend and clusters with other previously described chemoautotrophic endosymbionts. The smaller syrnbiont represents a novel phylotype within the alpha subclass of the Proteobacteria. This is distinctly cllfferent from all other chemoautotropl-uc hosts with symbiotic bacteria which belong to either the gamma or epsilon Proteobacteria. In addition, a third bacterial morphotype as well as a third unique phylotype belonging to the spirochetes was discovered in these hosts. Such a phylogenetically diverse assemblage of endosymbiotic bacteria is not known from other marine invertebrates. -
PARASITES PREDATORS and SYMBIONTS a Thesis Submitted To
PARASITES PREDATORS AND SYMBIONTS A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Fine Arts By Jody L. Vankeuren May 2021 Thesis written by Jody L. Vankeuren B.F.A., Edinboro University of Pennsylvania, 2018 M.F.A., Kent State University, 2021 Approved by Andrew Kuebeck, M.F.A., Advisor Marie Buukowski, M.F.A., Director, School of Art John R. Crawford- Spinelli, Ed.D., Dean, College of the Arts TABLE OF CONTENTS Page LIST OF FIGURES ......................................................................................................................................................... IV AKNOWLEDGEMENTS ............................................................................................................................................. V CHAPTER 1. INTRODUCTION .................................................................................................................................................. 1 2. RESEARCH ............................................................................................................................................................. 1 3. PARASITES PREDATORS AND SYMBIONTS- INDIVIDUAL WORKS ............................................. 4 4. INSTALATION ...................................................................................................................................................... 8 5. CONCLUSION ....................................................................................................................................................... -
Numerical and Structural Chromosome Aberrations in Cauliflower (Brassica Oleracea Var
Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana Xianwen Ji Thesis committee Promotor Prof. Dr J.H.S.G.M. de Jong Personal chair at the Laboratory of Genetics Wageningen University Co-promotor Dr E. Wijnker Researcher at the University of Hamburg, Germany Other members Prof. Dr G.C. Angenent, Wageningen University Dr G.F. Sanchez Perez, Wageningen University Dr A.B. Bonnema, Wageningen University Dr K. van Dun, Rijk Zwaan Breeding Company, Fijnaart, the Netherlands This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana Xianwen Ji Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 1.30 p.m. in the Aula Xianwen Ji Numerical and structural chromosome aberrations in cauliflower Brassica( oleracea var. botrytis) and Arabidopsis thaliana 137 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in English, Dutch and Chinese ISBN 978-94-6257-160-0 Contents Chapter 1 General Introduction 7 Chapter 2 FISH painting with repetitive DNA sequences for chromosome identification in aneuploid cauliflower (Brassica oleracea L. var. botrytis) 29 Chapter 3 Cross-species chromosome painting with Arabidopsis BACs on cauliflower (Brassica oleracea L. var. botrytis for karyotype analysis and chromosome identification 47 Chapter 4 Meiotic aberrations leading to aneuploidy in Cauliflower (Brassica oleracea L. -
Non-Invasive Sampling in Itatiaia National Park, Brazil: Wild Mammal Parasite Detection
Dib et al. BMC Veterinary Research (2020) 16:295 https://doi.org/10.1186/s12917-020-02490-5 RESEARCH ARTICLE Open Access Non-invasive sampling in Itatiaia National Park, Brazil: wild mammal parasite detection Laís Verdan Dib1, João Pedro Siqueira Palmer1, Camila de Souza Carvalho Class1, Jessica Lima Pinheiro1, Raissa Cristina Ferreira Ramos1, Claudijane Ramos dos Santos1, Ana Beatriz Monteiro Fonseca2, Karen Gisele Rodríguez-Castro3, Camila Francisco Gonçalves3, Pedro Manoel Galetti Jr.3, Otilio Machado Pereira Bastos1, Claudia Maria Antunes Uchôa1, Laís Lisboa Corrêa1, Augusto Cezar Machado Pereira Bastos1, Maria Regina Reis Amendoeira4 and Alynne da Silva Barbosa1,4* Abstract Background: Non-invasive sampling through faecal collection is one of the most cost-effective alternatives for monitoring of free-living wild mammals, as it provides information on animal taxonomy as well as the dynamics of the gastrointestinal parasites that potentially infect these animals. In this context, this study aimed to perform an epidemiological survey of gastrointestinal parasites using non-invasive faecal samples from carnivores and artiodactyls identified by stool macroscopy, guard hair morphology and DNA sequencing in Itatiaia National Park. Between 2017 and 2018, faeces from carnivores and artiodactyls were collected along trails in the park. The host species were identified through macroscopic and trichological examinations and molecular biology. To investigate the parasites, the Faust, Lutz and modified Ritchie and Sheather techniques and enzyme immunoassays to detect Cryptosporidium sp. antigens were used. Results: A total of 244 stool samples were collected. The species identified were Chrysocyon brachyurus, Leopardus guttulus, Canis familiaris, Cerdocyon thous, Puma yagouaroundi, Leopardus pardalis, Puma concolor and Sus scrofa.Therewere81.1% samples that were positive for parasites distributed mainly in the high part of the park. -
Human Evolution
Note added by authors December 4, 2018: This study is grounded in and strongly supports Darwinian evolution, including the understanding that all life has evolved from a common biological origin over several billion years. This work follows mainstream views of human evolution. We do not propose there was a single "Adam" or "Eve". We do not propose any catastrophic events. HUMAN EVOLUTION Vol. 33 - n. 1-2 (1-30) - 2018 Stoeckle M.Y. Why should mitochondria define species? Program for the Human Environment The Rockefeller University 1230 York AVE More than a decade of DNA barcoding encompassing New York, NY 10065 about five million specimens covering 100,000 animal USA species supports the generalization that mitochondrial Email: [email protected] DNA clusters largely overlap with species as defined by domain experts. Most barcode clustering reflects synony- Thaler D.S. mous substitutions. What evolutionary mechanisms ac- Biozentrum, University of Basel count for synonymous clusters being largely coincident Klingelbergstrasse 50/70 with species? The answer depends on whether variants CH - 4056 Basel Switzerland are phenotypically neutral. To the degree that variants are Email: [email protected] selectable, purifying selection limits variation within spe- [email protected] cies and neighboring species may have distinct adaptive peaks. Phenotypically neutral variants are only subject to demographic processes—drift, lineage sorting, genetic DOI: 10.14673/HE2018121037 hitchhiking, and bottlenecks. The evolution of modern humans has been studied from several disciplines with detail unique among animal species. Mitochondrial bar- codes provide a commensurable way to compare modern humans to other animal species. Barcode variation in the modern human population is quantitatively similar to that within other animal species. -
Genome-Wide Detection of Chromosomal Rearrangements, Indels, and Mutations in Circular Chromosomes by Short Read Sequencing
Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Method Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing Ole Skovgaard,1,3 Mads Bak,2 Anders Løbner-Olesen,1 and Niels Tommerup2 1Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark; 2Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark Whole-genome sequencing (WGS) with new short-read sequencing technologies has recently been applied for genome- wide identification of mutations. Genomic rearrangements have, however, often remained undetected by WGS, and additional analyses are required for their detection. Here, we have applied a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal inversion, and one was a large chromosomal duplication. -
Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID -
Chromosome Structure & Recombination
Chromosome Structure & Recombination (CHAPTER 8- Brooker Text) April 4 & 9, 2007 BIO 184 Dr. Tom Peavy • Genetic variation refers to differences between members of the same species or those of different species – Allelic variations are due to mutations in particular genes – Chromosomal aberrations are substantial changes in chromosome structure • These typically affect more than one gene • They are also called chromosomal mutations 1 • The banding pattern is useful in several ways: – 1. It distinguishes Individual chromosomes from each other – 2. It detects changes in chromosome structure – 3. It reveals evolutionary relationships among the chromosomes of closely-related species Structural Mutations of Chromosomes • Deficiency (or deletion) – The loss of a chromosomal segment • Duplication – The repetition of a chromosomal segment compared to the normal parent chromosome • Inversion – A change in the direction of the genetic material along a single chromosome • Translocation – A segment of one chromosome becomes attached to a different chromosome – Simple translocations • One way transfer – Reciprocal translocations • Two way transfer 2 Deficiencies • A chromosomal deficiency occurs when a chromosome breaks and a fragment is lost Figure 8.3 • Chromosomal deletions can be detected by a variety of experimental techniques – Cytological, Molecular (probes) & Genetic analysis Genetic • Deletions can be revealed by a phenomenon known as pseudodominance – One copy of a gene is deleted – So the recessive allele on the other chromosome is now -
Dghtm Imaging Products
dGH TM Imaging Products TRANSFORMATIONAL CHROMOSOME IMAGING TOOLS KromaTiD Directional Genomic Hybridization™ (dGH™) imaging technology forms the platform for a wide range of reagents, kits and services that enable the discovery, detection and diagnosis of genetic mutations and diagnostic targets. The KromaTiD dGH platform is the only technology capable of detecting cryptic inversions - an important class of disease causing mutations. Unlike other chromosome imaging technologies and whole genome approaches, dGH generates gene sequence, Internal Control Inversion location and orientation data in a single rapid assay. dGH Inversion Detection FLEXIBLE, HIGH-PERFORMANCE CHROMOSOME ASSAYS The foundation of the dGH platform is a library of proprietary short, synthetic, single- stranded DNA probes. Together with unique and optimized assay methods, the dGH platform provides researchers with: 10 kb Targets The Broadest Assay Range: In a single assay, KromaTiD products detect the broadest possible spectrum of chromosome rearrangements, including those assayable by standard FISH technologies (e.g. translocations between chromosomes) as well as intra-chromosomal rearrangements such as cryptic inversions. The KromaTiD platform enables orders of magnitude higher-resolution inversion detection than any competing technique. Chromosome and Chromatid Assay Formats: Using the same probes in different test Pinpoint FISH using dGH Probes conditions, KromaTiD assays are capable of targeting entire chromosomes (double- stranded applications like FISH) or individual chromatids (single-stranded applications) in interphase or metaphase cells. Visual Orientation Data: When used on metaphase chromosomes, dGH is the only imaging technology capable of providing sequence, location and orientation information in a single assay. Unique Specificity:Probes are designed to target unique genomic sequences, so KromaTiD assays require no blocking DNA (COT), exhibit no non-specific background, and demonstrate improved hybridization performance. -
Climate Change Affects Key Nitrogen-Fixing Bacterial Populations on Coral Reefs
The ISME Journal (2014) 8, 2272–2279 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Climate change affects key nitrogen-fixing bacterial populations on coral reefs Henrique F Santos1,2, Fla´via L Carmo1, Gustavo Duarte3, Francisco Dini-Andreote2, Clovis B Castro3,4, Alexandre S Rosado1,4, Jan Dirk van Elsas2 and Raquel S Peixoto1,4 1LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Go´es, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; 2Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands; 3National Museum, UFRJ, Rio de Janeiro, Brazil and 4Coral Vivo Institute, Rio de Janeiro, Brazil Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean’s biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs. -
737155V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/737155; this version posted August 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Ancestral reconstruction of sunflower karyotypes reveals dramatic chromosomal evolution Kate L. Ostevik1,2, Kieran Samuk1, and Loren H. Rieseberg2 1. Department of Biology, Duke University, Durham, NC, 27701 2. Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4 Correspondence to: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/737155; this version posted August 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Abstract 2 3 Mapping the chromosomal rearrangements between species can inform our understanding of genome 4 evolution, reproductive isolation, and speciation. Here we present a systematic survey of chromosomal 5 rearrangements in the annual sunflowers, which is a group known for extreme karyotypic diversity. We 6 build high-density genetic maps for two subspecies of the prairie sunflower, Helianthus petiolaris ssp. 7 petiolaris and H. petiolaris ssp. fallax. Using a novel algorithm implemented in the accompanying R 8 package syntR, we identify blocks of synteny between these two subspecies and previously published 9 high-density genetic maps. We reconstruct ancestral karyotypes for annual sunflowers using those 10 synteny blocks and conservatively estimate that there have been 9.7 chromosomal rearrangements 11 per million years – a high rate of chromosomal evolution. -
Chromosomal Inversion Patterning and Population Differentiation in A
Proc. Nati. Acad. Sci. USA Vol. 86, pp. 4798-4802, June 1989 Population Biology Chromosomal inversion patterning and population differentiation in a young insular species, Drosophila silvestris (genetic polymorphism/hierarchical F statistics/Hawaiian Drosophila evolution/microgeographic variation) ELYSSE M. CRADDOCK* AND HAMPTON L. CARSONt *Division of Natural Sciences, State University of New York, Purchase, NY 10577; and tDepartment of Genetics, University of Hawaii, Honolulu, HI 96822 Contributed by Hampton L. Carson, March 31, 1989 ABSTRACT The recently evolved Hawaiian species Dro- genes into balanced coadapted complexes via such chromo- sophila silvestris has a subdivided population structure and somal arrangements may permit the evolution of genetic shows great spatial heterogeneity in chromosome inversion interaction systems and an enhancement of overall fitness. distributions and frequencies within its extremely limited geo- Such a process can be presumed to have taken place in D. graphic range. Pattern analysis of the 11 chromosomal poly- silvestris as each successive new inversion arose and became morphisms in the context of the recently discovered morpho- incorporated into a local population. logical and behavioral divergence within the species has eluci- Within the island, D. silvestris has been subdivided into dated the history of the chromosomal differentiation. We two regionally disjunct sets of populations that show behav- identify four chronological groups of inversions and their ioral and morphological differences (8). To the west and probable sites of origin. Spread of the derived "3-row" bristle south ("Kona side"), the populations give evidence of being morphotype on the Hilo side of the Island of Hawaii has been phylogenetically older than those of the "Hilo side" to the accompanied by the acquisition of six new inversion polymor- north and east (7, 9).