Exploration of the Medical Periodic Table: Towards New Targets Nicolas P

Total Page:16

File Type:pdf, Size:1020Kb

Exploration of the Medical Periodic Table: Towards New Targets Nicolas P Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 Exploration of the medical periodic table: towards new targets Nicolas P. E. Barry and Peter J. Sadler* Supporting Information Table S1. Some examples of uses of the elements in therapy and diagnosis. These entries have guided our colour-coding in Fig.1, which is illustrative only and not comprehensive. Z Symbol Element Some medically-relevant uses Essential element; pH tightly controlled but variable: blood ~7.4, lysomes 4–5, tumour tissue 6–7, 1 H Hydrogen endosomes (transferrin) 5.5; duodenum 6–6.5, large intestine 5.5–7, stomach 1–3; 2H for kinetic control of organic drugs; 3H as radiotracer. He-O ; for treatment of chronic obstructive 2 He Helium 2 pulmonary disease; hyperpolarised 3He for MRI. 3 Li Lithium Li2CO3: drug for treatment of bipolar disorders. Compounds can provoke severe immune response 4 Be Beryllium (chronic beryllium disease). Boromycin: bacteriocidal polyether-macrolide antibiotic. Boronophenylalanine-based Boron 5 B Boron Neutron Capture Therapy in combination with Cetuximab in clinical Phase I trials for head and neck cancer treatments. Essential element; body produces 3-6 mL CO per 6 C Carbon day- suppresses organ rejection, ‘neurotransmitter’; 11C, 14C used in radiopharmaceuticals. Essential element; NO is a muscle relaxant, 7 N Nitrogen vasodilator, hypotensive, ‘neurotransmitter’; 13N used in radiopharmaceuticals. Essential element; Reactive oxygen species (ROS), 8 O Oxygen 1 - - e.g. O2, O2 , H2O2, O3, ONO2 . Essential element; Toughens tooth enamel as 9 F Fluorine component of (fluoro)apatite; 18F labelling, positron emission, radioimaging, PET scans. 10 Ne Neon Essential element; ca. 0.14 M in blood; excessive 11 Na Sodium NaCl intake increases arterial hypertension. Essential element; MgII is a laxative (sulphate, 12 Mg Magnesium Epsom Salts); Mg(OH)2 (milk of magnesia) antacid; II Mg (aspartate)2 dietary supplement. Added to some vaccines as an adjuvant; 13 Al Aluminium Al(OH)3 antacid. 14 Si Silicon Essential element; Role in connective tissue? Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 Silicates essential to prevent Al toxicity? Silicon phthalocyanine 4 photosensitizer for photodynamic therapy. Essential element; Polyphosphate abundant in all cells; oral sodium phosphate for bowel cleansing; 15 P Phosphorus phytate (inositol hexaphosphate) in plants can modulate metal uptake (e.g. Zn2+). Essential element; H S as signalling molecule 16 S Sulfur 2 (vasodilator and regulator of blood pressure). Essential element; Defect in membrane Cl- transport 17 Cl Chlorine in cystic fibrosis (CFTR gene); HOCl/OCl-, generated by myeloperoxidase in neutrophils. Ionized argon gas (plasma) - coagulation to control 18 Ar Argon bleeding from lesions in gastrointestinal tract. Essential element; natural radioisotope 40K 0.012% 19 K Potassium 9 emitter, t1/2 1.3 × 10 y. Essential element; CaCO antacid; Ca 20 Ca Calcium 3 oxalate/phosphate/carbonate kidney stones. 21 Sc Scandium 44Sc, positron emitter, potential for PET imaging. Budotitane and Cp2TiCl2 clinical anticancer trials 22 Ti Titanium abandoned; new Cp derivatives in development; Utilisation as inert material for implants. Essential element; Insulin-enhancing drugs, VIV 23 V Vanadium bis(2-ethyl-3-hydroxy-4-pyronato) in clinical trials for type-2 diabetes. CrIII tris(picolinate) sold as nutritional supplement; 24 Cr Chromium essentiality of Cr unclear. Essential element; SOD mimetics (e.g. MnIII salen chloride), MnII macrocyles for treatment of pain, 25 Mn Manganese neuroprotection; MnII dipyridoxyl diphosphate (MnDPDP) clinical MRI contrast agent. Essential element; FeII compounds for Fe deficiency (succinate, fumarate), also FeIII with Eo < –324 mV at pH 7 (dextran, dextrin); ferroquine in clinical 26 Fe Iron Phase II trials as antimalarial agent; superparamagnetic iron oxide MRI contrast agent; II Na2[Fe (CN)5NO] hypotensive. Essential element; Coenzyme Vitamin B12 essential (2-3 µg/day); treatment of pernicious anaemia; CTC- 96 CoIII bis(2-methylimidazole) acacen derivative 27 Co Cobalt (Doxovir) has completed clinical Phase I trials for ophthalmic herpetic keratitis and adenoviral conjunctivitis and clinical Phase II trials for herpes labialis. Essential element; Potential allergen (ear rings); used 28 Ni Nickel in trace mineral supplements; role in body poorly understood. Essential element; CuII bis(histidine) for Menke’s 29 Cu Copper disease; 64Cu PET/CT scans in clinical Phase II trials Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 for cervical cancer imaging; Cu-Algesic approved as anti-inflammatory agent for horses and dogs. II Essential element; Zn (gluconate)2 dietary 30 Zn Zinc supplement; ZnO skin ointment; ZnII citrate antiplaque (toothpastes). 67Ga γ-ray radioimaging; 66/68Ga PET; III [Ga (malolate)3] and [Ga(hydroxyquinolinate)3] NKP-2235 in Phase I clinical trials; 68Ga- 31 Ga Gallium DOTATATE PET/CT scans in clinical development (NCT01524016) for imaging in mesenchymal tumours, and oncogenic osteomalacia, and in clinical Phase I trials for neuroendocrine cancer imaging. 32 Ge Germanium Possible use of Ge nanoparticles as radiosensitizers. As2O3 approved drug for treatment of leukaemia and in clinical Phase II trials for lung cancers; arsenobetaine in marine organisms; Roxarsone (3- nitro-4-hydroxyphenyl arsenic acid) growth promoter in poultry. Darinaparsin approved drug for 33 As Arsenic peripheral T-cell lymphoma treatment, and in clinical Phase I clinical trials for solid tumours treatments. GSAO in clinical Phase I trials for advanced solid tumours that have not responded to therapy. Essential element; Human selenoproteome consists of 25 selenoproteins; selenocysteine tRNA; SeIV 34 Se Selenium sulfide active ingredient in some anti-dandruff shampoos (antifungal). Daily dietary intake of bromide ca 2 - 8 mg (fish, grains and nuts). Concentration in blood 10 – 100 35 Br Bromine µM; substrate for eosinophil peroxidase Br/H2O2 → HOBr. Potential for hyperpolarised 83Kr in MR imaging of 36 Kr Krypton airways 82Rb, positron emitter, PET e.g. in cardiac 37 Rb Rubidium sarcoidosis. SrCl in toothpastes (for sensitive teeth); 89Sr, β 38 Sr Strontium 2 emitter, therapeutic radionuclide. 90Y, β emitter, therapeutic radionuclide; 86Y, 39 Y Yttrium positron emitter, PET. 89Zr, positron emitter, PET imaging; ‘Aluminium zirconium tetrachlorohydrex gly’ 40 Zr Zirconium (Zr4+/Al3+ OH/Cl/glycine complexes) used in antiperspirants; zirconia (ZrO2) ceramics for orthopaedic surgery Heteropolyniobates [SiNb O ]16- can immobilise 41 Nb Niobium 12 40 viruses. 2- Essential element; MoO4 transport pathways; Tetrathiomolybdate [MoS ]2-: copper chelator for 42 Mo Molybdenum 4 overload (e.g. Wilson’s) diseases and in clinical Phase II trials for both breast cancer and esophageal Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 carcinoma treatments. 99mTc γ-ray radioimaging-ATSM in clinical Phase II trials for cervical cancer treatment; Cardiolite (99mTc-sestamibi) and Neurite (99mTc-disicate) approved for folate-receptor positive tumours 43 Tc Technetium imaging; Etarfolatide (EC20-99mTc) in clinical Phase III trials for folate-receptor positive tumours imaging; 99mTc-MIP-1404 in clinical Phase II trials for prostate cancer imaging. Trials of 94mTc (positron emitter) for PET. Two tetrachloride bis(N-heterocycle) RuIII 44 Ru Ruthenium complexes in clinical trials as anticancer and antimetastatic agents. 105Rh, β emitter, therapeutic radionuclide; dinuclear 45 Rh Rhodium RhII anticancer; photochemotherapeutic complexes. 103Pd, electron capture, radiotherapy; Palladium bacteriopherophorbide photosensitizer TOOKAD in 46 Pd Palladium Phase III clinical trials for localised prostate cancer treatment, and in Phase I/II for predetermined small renal tumour targets treatment. Antimicrobial; treatment of burnwounds; sulfadiazine, carbene complexes, nanoparticles; 47 Ag Silver Acticoat absorbant™ silver eluting dressing in clinical Phase IV trials for prevention of lower extremity revascularization wound complications. Induces metallothionein synthesis (detoxification); 48 Cd Cadmium cadmium carbonic anhydrase active in marine diatoms. 49 In Indium 111In γ-ray radioimaging. Essential element; Little known about biochemistry as essential element; SnIV ethyl etiopurpurin 50 Sn Tin (Purlytin) photosensitizer for photodynamic therapy of psoriasis and restenosis (Phase II). Antileishmanial SbV drugs: meglumine antimoniate 51 Sb Antimony (Glucantime) and sodium stibogluconate (Pentostam). Ammonium trichloro (dioxoethylene-O,O') tellurate 52 Te Tellurium is an immunomodulator Essential element; Thyroid hormones; iodo-organics 53 I Iodine as X-ray contrast agents; 123I, 125I radioimaging; 131I radiotherapy. Anaesthetic; hyperpolarised 129Xe as MRI contrast 54 Xe Xenon agent. 55 Cs Cesium 131Cs, electron capture, prostate brachytherapy. BaSO (barium sulphate meal) for radiographs of 56 Ba Barium 4 oesophagus, stomach and duodenum. La CO approved drug Oct 2004 (Fosrenol) for 57 La Lanthanum 2 3 hyperphosphatemia. 58 Ce Cerium Flammacerium (cerium(III) nitrate-silver Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 sulphadiazine) for treatment of burn wounds; CeIV
Recommended publications
  • Pembrolizumab with Pemetrexed and Platinum Chemotherapy for Untreated Metastatic Non-Squamous Non-Small-Cell Lung Cancer [ID1173]
    Pembrolizumab with pemetrexed and platinum chemotherapy for untreated metastatic non-squamous non-small-cell lung cancer [ID1173] A Single Technology Appraisal Produced by Peninsula Technology Assessment Group (PenTAG) University of Exeter Medical School, South Cloisters, St Luke’s Campus, Heavitree Road, Exeter EX1 2LU Authors Mr Ed Griffin, Research Fellow1 Dr Caroline Farmer, Research Fellow1 Mr David Packman, Postdoctoral Research Associate 1 Dr Elham Nikram, Postdoctoral Research Associate 1 Mr Justin Matthews, Research Fellow 2 Dr Max Barnish, Postdoctoral Research Associate1 Mr Simon Briscoe, Information Specialist1 Dr Nicole Dorey, Consultant Clinical Oncologist3 Dr Adam Dangoor, Consultant Medical Oncologist4 Dr Ruben Mujica Mota, Senior Lecturer1 1 Peninsula Technology Assessment Group (PenTAG), Exeter, UK 2 Health Statistics, PenCLAHRC, University of Exeter Medical School, Exeter, UK 3 Royal Devon and Exeter NHS Foundation Trust, Exeter, UK 4 University Hospitals Bristol NHS Foundation Trust, Bristol, UK Correspondence to E A Griffin, PenTAG, South Cloisters, St Luke's Campus, Heavitree Road, Exeter EX1 2LU. [email protected] 1 Copyright 2018 Queen's Printer and Controller of HMSO. All rights reserved. Date completed 11/09/2018 Source of funding This report was commissioned by the NIHR Systematic Reviews Programme as project number 17/46/14. JM was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula). Declared competing Dr Nicole Dorey has received educational grants from Amgen, interests of the authors Boehringer Ingelheim, Lilley, Roche, and Teva. Dr Adam Dangoor has received honoraria from Roche and Amgen.
    [Show full text]
  • Cisplatin-Resistant Prostate Cancer Model: Differences in Antioxidant System, Apoptosis and Cell Cycle
    INTERNATIONAL JOURNAL OF ONCOLOGY 44: 923-933, 2014 Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle JAROMIR GUMULEC1,4, JAN BALVAN1, MARKETA SZTALMACHOVA1,2, MARTINA RAU�ENSKA1,4, VERONIKA �VORAKOVA1, LUCIA KNOPFOVA3, HANA POLANSKA1, KRISTYNA HU�COVA1, BRANISLAV RUTTKAY-NE�ECKY2,4, PETR BABULA5, VOJTECH A�AM2,4, RENE KIZEK2,4, MARIE STIBOROVA6 ��� MICHAL MASARIK1,4 1���������� �� P����l�g���l P�����l�g�, F��ul�� �� M�������, M�����k U��v������, CZ-625 00 B���; 2���������� �� C�������� ��� B�����������, M����l U��v������ �� B���, CZ-613 00 B���; 3���������� �� E����������l B��l�g�, F��ul�� �� S������, M�����k U��v������, CZ-625 00 B���; 4C�����l Eu������ I�����u�� �� T�����l�g�, B��� U��v������ �� T�����l�g�, CZ-616 00 B���; 5���������� �� N��u��l ��ug�, F��ul�� �� P�������, U��v������ �� V��������� ��� P�������u����l S�������, CZ-612 42 B���; 6���������� �� B�����������, F��ul�� �� S������, C���l�� U��v������, CZ-128 40 P��gu� 2, Cz��� R��ubl�� Received Septemb�� 24, 2013; Accepted N�vemb�� 11, 2013 �OI: 10.3892/�j�.2013.2223 Abstract. �����������Differences in�� the��� antioxidant����������� system������, ���������apoptotic ����mech- findings, together with significantly elevated MT, decreased p53 anism and in cell cycl� between prostatic cell lines coul� partiall� and Bax indicate PC-3 to b� cisplatin-resistant. The differences �lucidate the dev�lopment of cisplatin resistance. The aim of this in the antioxidant system and apoptotic mechanisms in PC-3 study was to identify the most characteristic parameter for � cell� may �lucidate the dev�lopment of cisplatin resistance and particular cell line and/or � particular cisplatin treatment using indicate that this cell line may b� �urther studied as � model of � general regression model and to assess whether it is possibl� cytostatic resistance.
    [Show full text]
  • Universidad Autónoma De Nuevo León Facultad De Ciencias Biológicas
    UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS “EVALUACIÓN DE LA ACTIVIDAD ANTICÁNCER DE Thevetia peruviana” POR JOSÉ ALBERTO RAMOS SILVA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ORIENTACIÓN EN BIOTECNOLOGÍA JULIO, 2018 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS INSTITUTO DE BIOTECNOLOGÍA “Evaluación de la actividad anticáncer de Thevetia peruviana” Por José Alberto Ramos Silva Como requisito parcial para obtener el grado de Doctor en Ciencias con Orientación en Biotecnología Julio, 2018 “Evaluación de la actividad anticáncer de Thevetia peruviana”. Comité de tesis ___________________________________________________________ Presidente: Dr. Hamlet Avilés Arnaut ___________________________________________________________ Secretaria: Dra. Susana de la Torre Zavala ___________________________________________________________ Vocal 1: Dra. Katiushka Arévalo Niño ___________________________________________________________ Vocal 2: Dr. Benito Pereyra Alférez ___________________________________________________________ Vocal 3: Dra. Aida Rodríguez García I “Evaluación de la actividad anticáncer de Thevetia peruviana” Dirección de tesis ___________________________________________________________ Director: Dr. Hamlet Avilés Arnaut II AGRADECIMIENTOS Agradezco al Dr. Hamlet Avilés Arnaut por permite formar parte de su equipo de investigación, así como, por su apoyo, consejo y asesoría por lo cual fue posible llevar acabo este trabajo de investigación. A mis compañeros en general del laboratorio 9 del instituto de biotecnología por todo el apoyo que me han dado y el agradable ambiente de trabajo que se tiene en el laboratorio. A Cristal por ayudarme y enseñarme a iniciar mis experimentos en células. A Faviola por aconsejarme mucho acerca del doctorado y la vida como investigador, ayudarme con múltiples experimentos y la escritura del artículo. A la Dra. Mariana Elizondo y a Álvaro Colin del departamento de microbiología de la Facultad de Medicina por permitirnos utilizar su microscopio de fluorescencia.
    [Show full text]
  • Cisplatin Induced Hearing Loss in Paediatric Malignancies
    CISPLATIN INDUCED HEARING LOSS IN PAEDIATRIC MALIGNANCIES 1 CISPLATIN INDUCED HEARING LOSS IN PAEDIATRIC MALIGNANCIES A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF M.S BRANCH IV OTORHINOLARYNGOLOGY EXAMINATION OF THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY TO BE HELD IN APRIL 2016 2 DEPARTMENT OF OTORHINOLARYNGOLOGY CHRISTIAN MEDICAL COLLEGE VELLORE DECLARATION I declare that this dissertation entitled “Cisplatin induced hearing loss in Paediatric malignancies’’ submitted towards fulfilment of the requirements of the Tamil Nadu Dr. M.G.R. Medical University for the MS Branch IV, Otorhinolaryngology examination to be conducted in April 2016, is the bonafide work of Dr. Susana Mathew, postgraduate student in the Department of Otorhinolaryngology, Christian Medical College, Vellore Dr. Susana Mathew Postgraduate Student (M S Otorhinolaryngology ) Register Number: 221314355 Department of Otorhinolaryngology Christian Medical College Vellore. 3 DEPARTMENT OF OTORHINOLARYNGOLOGY CHRISTIAN MEDICAL COLLEGE VELLORE CERTIFICATE This is to certify that the dissertation entitled “Cisplatin induced hearing loss in paediatric malignancies’’ is a bonafide original work of Dr. Susana Mathew, submitted in partial fulfilment of the rules and regulations for the M S Branch IV, Otorhinolaryngology examination of The Tamil Nadu Dr. M.G.R. Medical University to be held in April 2016. Principal Head Of Department Dr. Alfred Job Daniel Dr. John Mathew Christian Medical College Professor and Head, Vellore- 632002 Department of Otorhinolaryngology, India. Christian Medical College, Vellore. 4 DEPARTMENT OF OTORHINOLARYNGOLOGY CHRISTIAN MEDICAL COLLEGE VELLORE CERTIFICATE This is to certify that the dissertation entitled “Cisplatin induced hearing loss in paediatric malignancies’’ is a bonafide original work of Dr. Susana Mathew, submitted in partial fulfilment of the rules and regulations for the M S Branch IV, Otorhinolaryngology examination of The Tamil Nadu Dr.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • West Virginia Resident Is First American To
    CLINICAL ONCOLOGY AND RESEARCH | ISSN 2613-4942 Available online at www.sciencerepository.org Science Repository Case Report West Virginia Resident is First American to Receive Dicycloplatin Chemotherapy: A WVU Urologic Oncology Case Report Mohamad Salkini1, Chad Morley1, Chad Crigger1, Shunchang Jiao2 and Jing Jie Yu3* 1Department of Urology, School of Medicine, WVU, Morgantown, WV, U.S.A 2Oncology Department of Internal Medicine, PLA Hospital, Beijing, China 3WVU Cancer Institute, School of Medicine, and School of Pharmacy, West Virginia University, Morgantown, WV, U.S.A A R T I C L E I N F O A B S T R A C T Article history: A 65-year-old Caucasian male presented with increasing hematuria over four months in 2016. Work up and Received 24 June, 2018 scans revealed a 1.5 cm bladder mass, with a subsequent pathologic diagnosis of non-invasive high-grade Accepted 6 July, 2018 papillary urothelial carcinoma. The patient declined BCG Immunotherapy and traveled to China soon after Published 16 July 2018 diagnosis and transurethral resection for Dicycloplatin (DCP) chemotherapy. DCP is approved by the Keywords: Chinese FDA but only available at present in military hospitals. It is similar in molecular structure to Platinum Chemotherapy platinum-based chemotherapy drugs used in the West, its side effects reported to be more tolerable. The Dicycloplatin patient received 8 weeks of IV DCP chemotherapy – he only experienced mild nausea, myralgia, a relative Tolerable Side Effects leukopenia and thrombocytopenia (though within normal limits) and, importantly, no alopecia – then Bladder Cancer returned to WV for quarterly surveillance. No recurrence of tumor has been observed to date; the most recent cystoscopy was on April 24, 2018, 22 months after diagnosis and resection.
    [Show full text]
  • Review Article Toxicity Comparisons of Eight Chemotherapy Regimens in the Treatment of Metastatic/Advanced Non-Small-Cell Lung Cancer: a Network Meta-Analysis
    Int J Clin Exp Med 2017;10(6):8709-8719 www.ijcem.com /ISSN:1940-5901/IJCEM0053945 Review Article Toxicity comparisons of eight chemotherapy regimens in the treatment of metastatic/advanced non-small-cell lung cancer: a network meta-analysis Ziming Cheng, Shizhen Hou, Yi Sun, Yubing Wu, Bing Liu, Maoxi Yuan, Xiangdong Wang Department of Thoracic Surgery, Central Hospital of Linyi, Linyi 276400, P. R. China Received March 27, 2017; Accepted May 10, 2017; Epub June 15, 2017; Published June 30, 2017 Abstract: To compare the toxicity of different first-line chemotherapy regimens in the treatment of stage III/IV non-small-cell lung cancer (NSCLC) by network meta-analysis. The PubMed, Cochrane Library and EMBASE were searched. Randomized controlled trials (RCTs) concerning different first-line chemotherapy regimens for stage III/IV NSCLC from the day of databases establishment to August, 2016 were included into the study. Direct and indirect comparisons were combined by using network meta-analysis to evaluate the combined odds ratio (OR) and draw the surface under the cumulative ranking (SUCRA) curve of toxicity of different first-line chemotherapy regimens. A total of 12 qualified RCTs about ten first-line chemotherapy regimens (Gemcitabine, Cisplatin + Gemcitabine, Pa- clitaxel + Gemcitabine, Carboplatin + Gemcitabine, Carboplatin + Paclitaxel, Vinorelbine + Gemcitabine, Cisplatin + Gemcitabine + Vinorelbine, Vinorelbine + Carboplatin, Docetaxel + Gemcitabine, Dicycloplatin + Paclitaxel) were included into the study. According to network meta-analysis, the hematologic toxicity of Gemcitabine, Paclitaxel + Gemcitabine and Docetaxel + Gemcitabine regimens was lower, while that of Carboplatin + Paclitaxel and Cisplatin + Gemcitabine + Vinorelbine regimens was higher. The incidence of hematologic toxicity of Paclitaxel + Gemcitabine and Docetaxel + Gemcitabine regimens was lower, while Carboplatin + Paclitaxel and Cisplatin + Gemcitabine + Vinorelbine regimens had higher incidence of hematologic toxicity.
    [Show full text]
  • WO 2014/209957 Al 31 December 2014 (31.12.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/209957 Al 31 December 2014 (31.12.2014) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/282 (2006.01) A61P 35/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/28 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US20 14/043802 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 24 June 2014 (24.06.2014) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/838,560 24 June 2013 (24.06.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: DUKE UNIVERSITY [US/US]; 2812 Erwin EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Road, Suite 306, Durham, NC 27705 (US).
    [Show full text]
  • Study of the Role of Anti–Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs Or Tissues a Heidari
    Commentry iMedPub Journals Archives in Cancer Research 2016 http://www.imedpub.com/ Vol.4 No.2:83 ISSN 2254-6081 Study of the Role of Anti–Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues A Heidari Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA Corresponding author: A Heidari, Faculty of Chemistry, California South University (CSU), 14731 Comet St. Irvine, CA 92604, USA, Tel: 1-775-410-4974; E–mail: [email protected] Received: 09 June 2016; Accepted: 20 June 2016; Published: 23 June 2016 Citation: Heidari A. Study of the Role of Anti–Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues. Arch Can Res. 2016, 4: 2. Commentary The intermolecular forces between anti–cancer molecules such as Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, Dicycloplatin, Eleutherobin, Epothilone B, Discodermolide and Taxol (Figures 1 and 2) and tumor multiple organs or tissues are of great importance in many areas of science including medicine, chemotherapy, pharmacology, medicinal chemistry, pharmaceutical chemistry, biochemistry and so on [1–21]. As a result, these molecular systems have received a great significant of attention in both computational and theoretical aspects [22–32]. In this commentary, all calculations are carried out by Gaussian 09. Geometry optimization for each molecule are be fulfilled at HF, Figure 2 Molecular structures of Eleutherobin, Epothilone B, PM3, MM2, MM3, AM1, MP2, MP3, MP4, CCSD, CCSD(T), LDA, Discodermolide and Taxol anti–cancer molecules. BVWN, BLYP and B3LYP computational methods with 31G, 6– 31G*, 6–31+G*, 6–31G(3df, 3pd), 6–311G, 6–311G* and 6– On the other hand, chemical behavior of Cisplatin, 311+G* basis sets, respectively.
    [Show full text]
  • DNA Damage Repair and TP53 Gene in Platinum-Drug Resistance International Journal of Clinical Pharmacology & Pharmacotherapy
    Yu , Int J Clin Pharmacol Pharmacother 2016, 1: 121 https://doi.org/10.15344/2016/2456-3501/121 International Journal of Clinical Pharmacology & Pharmacotherapy Review Article Open Access DNA Damage Repair and TP53 Gene in Platinum-drug Resistance Jing Jie Yu WVU Cancer Institute and Molecular Medicine Core, Department of Biochemistry, School of Medicine and Department of Basic Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA Abstract Publication History: Tumor drug resistance remains a major obstacle in the treatment of cancers. Increased DNA repair Received: July 26, 2016 is a primary mechanism of acquired resistance to platinum chemotherapy. TP53, Chk2 and ERCC1 of Accepted: December 15, 2016 the DNA damage/repair pathway were activated after cells were exposed to cisplatin or dicycloplatin. Published: December 17, 2016 Overexpression of p53 in wt-p53 (but not p53-deficient) cells doubled Chk2 phosphorylation. p53 knockdown greatly reduced Chk2 phosphorylation, indicating that wild type p53, in response to Keywords: platinum-drugs, plays a role in the upstream regulation of the DNA-adduct repair pathway and mediates acquired platinum resistance. We strongly suggest that it is important to include p53 mutational status in Platinum Compound, DNA- any p53-involved studies due to the functional differentiation of wt-p53 and p53-mutant. adduct repair, ERCC1 SNP, TP53, Chemoresistance Introduction It appears to be the major mechanism for removal of platinum- induced DNA adducts, resulting in resistance to platinum drug Platinum compounds, the DNA-targeting drugs, are effective therapy. NER enzyme-complexes remove bulky, transcription- and have been widely used in clinical settings.
    [Show full text]
  • 등록특허공보(B1) (24) 등록일자 2019년03월28일
    등록특허 10-1965283 (19) 대한민국특허청(KR) (45) 공고일자 2019년04월03일 (11) 등록번호 10-1965283 (12) 등록특허공보(B1) (24) 등록일자 2019년03월28일 (51) 국제특허분류(Int. Cl.) (73) 특허권자 A61K 9/20 (2006.01) A61K 45/06 (2006.01) 트리아스텍 인코포레이티드 A61K 9/00 (2006.01) 중국 211111 지앙수 난징 피402 유 파크 이스트 (52) CPC특허분류 모져우 로드 12 A61K 9/2072 (2013.01) (72) 발명자 A61K 45/06 (2013.01) 리 샤오링 (21) 출원번호 10-2018-7035161 미국 캘리포니아 94568 더블린 발렌타노 드라이브 (22) 출원일자(국제) 2017년05월05일 2511 심사청구일자 2018년12월06일 (74) 대리인 (85) 번역문제출일자 2018년12월04일 석혜선, 김용인 (65) 공개번호 10-2018-0135975 (43) 공개일자 2018년12월21일 (86) 국제출원번호 PCT/US2017/031446 (87) 국제공개번호 WO 2017/193099 국제공개일자 2017년11월09일 (30) 우선권주장 62/332,018 2016년05월05일 미국(US) (56) 선행기술조사문헌 US19201356544 A1 US19995902605 A1 전체 청구항 수 : 총 16 항 심사관 : 김경미 (54) 발명의 명칭 제어 방출 제형 (57) 요 약 본 발명은 일반적으로 생물학적 활성제, 진단제, 시약, 화장품 및 농약/살충제의 약학적 제형 및 제어형 방출에 관한 것이다. 한 실시태양에서, 제형은 구획을 형성하는 기질을 포함하며, 기질은 적어도 제 1 조각 및 제 2 조 각을 포함하며, 제 1 조각은 제 2 조각에 작동 가능하게 연결된다. 제형은 구획 내에 적재되는 약물 내용물을 함 유한다. 제형은 또한 물 또는 체액과 접촉시 제 1 및 제 2 조각을 분리하여 구획을 개방하고 약물 내용물을 방출 할 수 있는 기질에 작동 가능하게 연결된 방출제를 포함한다. 대 표 도 - 도1b - 1 - 등록특허 10-1965283 (52) CPC특허분류 A61K 9/0095 (2013.01) A61K 9/2009 (2013.01) A61K 9/2027 (2013.01) A61K 9/2054 (2013.01) A61K 9/2095 (2013.01) - 2 - 등록특허 10-1965283 명 세 서 청구범위 청구항 1 구획을 형성하는 기질; 여기서 기질은 적어도 제 1 조각 및 제 2 조각을 포함하며, 제 1 조각은 제 2 조각에 작 동 가능하게 연결되며, 및 제 1 조각과 제 2 조각은 물과 체액을 투과하지 않으며, 구획 내에 적재되는 약물 내용물; 및 물 또는 체액과 접촉시 상기 제 1 및 제 2 조각을 분리하여 약물 내용물을 방출할 수 있는 기질에 작동 가능하 게 연결된 방출제; 를 포함하고, 여기서 구획은 방출제에 의해 밀봉되는 구멍을 가지는 것인 고체 약학적 제형.
    [Show full text]
  • Adverse Effects Profile of Dicycloplatin
    ANTICANCER RESEARCH 39 : 4455-4462 (2019) doi:10.21873/anticanres.13618 Adverse Effects Profile of Dicycloplatin (DCP) Offers Chemotherapeutic Advantage Over Cisplatin and Carboplatin JING JIE YU 1, THOMAS HOGAN 2, CHAD MORLEY 3, CHAD CRIGGER 3, SHUNCHANG JIAO 4, DORIAN J. WILLIAMS 5, MOHAMAD W. SALKINI 3, XUQING YANG 6, XIAOBING LIANG 1, BINGXUE YAN 1, COURTNEY CECIL 7, AVA C. WINN 8, JENNY ZHENG 1, YI GUO 1, BING-HUA JIANG 9 and IDA M. WASHINGTON 7 1Department of Biochemistry, School of Medicine, School of Pharmacy, WVU Cancer Institute, Morgantown, WV, U.S.A.; 2Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, U.S.A.; 3Department of Urology, School of Medicine, West Virginia University, Morgantown, WV, U.S.A.; 4Oncology Department of Internal Medicine, PLA General Hospital, Beijing, P.R. China; 5Department of Family Medicine, School of Medicine, West Virginia University, Morgantown, WV, U.S.A.; 6Department of Chemistry, Peking University and Beijing Xingda Scientific System Company, Beijing, P.R. China; 7Office of Laboratory Animal Resources, West Virginia University, Morgantown, WV, U.S.A.; 8Molecular Biology Core Facility, National Institute for Occupational Safety and Health, CDC, Morgantown, WV, U.S.A.; 9Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A. Abstract. Background/Aim: Platinum-based chemotherapy Platinum-based chemotherapy, primarily cisplatin and often fails due to its severe adverse effects. The aim of this study carboplatin, has been a front-line therapy for many years. was to examine the adverse effects profile and efficacy of The major international guidelines recommend platinum- dicycloplatin and compare them to those of cisplatin and based chemotherapy as the standard first-line therapy for carboplatin.
    [Show full text]