(12) United States Patent (10) Patent No.: US 8,013,862 B2 Mathe (45) Date of Patent: Sep

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,013,862 B2 Mathe (45) Date of Patent: Sep US0080 13862B2 (12) United States Patent (10) Patent No.: US 8,013,862 B2 Mathe (45) Date of Patent: Sep. 6, 2011 (54) TEXTURE CODEC 2004/O151372 A1* 8, 2004 Reshetov et al. ............. 382,166 2004/0227552 Al 11/2004 Markovic et al. 327/215 (75) Inventor: Zsolt Mathe, Issaquah, WA (US) 2005/0206784 A1* 9, 2005 Li et al. ......... ... 348/441 2006, OO17722 A1 1/2006 Hong et al. ... 345,419 2006/0092.169 A1 5, 2006 Wetzel ....... 345,582 (73) Assignee: Microsoft Corporation, Redmond, WA 2006/0268990 A1* 11, 2006 Lin et al. .... 375,240.24 (US) 2007/0070.083 A1* 3, 2007 Fouladi et al. ................ 345 604 2007, 0140554 A1* 6, 2007 Strom et al. .. ... 382,166 (*) Notice: Subject to any disclaimer, the term of this 2007/0172120 A1, 7/2007 Roimela et al... ... 382,166 patent is extended or adjusted under 35 2007/024208.6 A1* 10/2007 Tsujimoto et al. ............ 345,632 U.S.C. 154(b) by 890 days. OTHER PUBLICATIONS (21) Appl. No.: 11/941,337 DXTex Tool, (C) 2007. http://msdn.microsoft.com/archive, 3 pages, date unknown. (22) Filed: Nov. 16, 2007 van Waveren, J.M.P., “Real-Time DXT Compression'. May 20, 2006, http://cache-www.intel.com, 43 pages. (65) Prior Publication Data van Waveren, J.M.P., “Real-Time Texture Streaming & Decompres sion”, Nov. 11, 2006, http://softwarecommunity.intel.com, 57 pages. US 2009/O128576A1 May 21, 2009 * cited by examiner (51) Int. Cl. G09G 5/00 (2006.01) Primary Examiner — M Good Johnson (52) U.S. Cl. ........................................ 34ss82. 34.5/586 (74) Attorney, Agent, or Firm — Woodcock Washburn LLP (58) Field of Classification Search .................. 5. (57) ABSTRACT See application file for complete search history. Techniques for pre-processing image blocks containing tex ture are disclosed herein which reduce memory requirements (56) References Cited without degradation of quality. This is accomplished by deter mining the level of texture in each pixel block of the image U.S. PATENT DOCUMENTS and then performing a compression algorithm on such pixel 6,292,194 B1 9/2001 Powell, III .................... 345,430 block. Various methods are available to determine the texture 6,618,444 B1* 9/2003 Haskell et al. .. 375,24024 level, including identifying the luminescence variation or 6,819,793 B1 11/2004 Reshetov et al. ............ 382,166 difference within the pixel block. Depending on the amount $52, g R 1939: st al . ;:S of texture level contained within each pixel block, pre-pro 7,90284 B1 3/2007 Dye et al. .... ... 34.1751 cessing may involve assigning the pixel block a single color 7,239,743 B2 7/2007 Gardella et al. ... 382,166 or replacing the pixel block with an interpolated pixel block. 7,242.432 B2* 7/2007 Watanabe ... 348,333.11 Pre-processing on the pixel block may not be performed when 23.2 . R ck 3.392 SR et al 3.: the texture level therein is determined to beata predetermined 7,385,611- W B1* 6/2008 ToksvigUS et ea. al. ... ... 345,582 amount or level. Additional techniques are also disclosed 7,397.946 B2 * 7/2008 Reshetov et al. ... 382,166 herein which involve full processing of an image block. 7,636,471 B2* 12/2009 Strom et al. ... ... 382,166 2002/0171701 A1* 11/2002 Shinada et al. ................. 347/19 20 Claims, 4 Drawing Sheets STORE IMAGE IN A PLURALITY OF 1'2 PXEL, BLCKS s DETERMINE LEVEL OF TEXTURE IN 1 20 EACH PIXELBLOCK 220 Y ! ? 25 perforMPR- do Not perforM PROCESSING ON PXEL PRE-PROCESSING ON BCCK PXELBLOCK 23 l /1 24 PROVIPXL REPLACE PXE BLCKWHA BLOCKWITHAN SOLIDAWERAGE NTERPOLATE COLOR XELBLOCK sa. 28 PERFORM COMPRESSCNN PXELECK U.S. Patent Sep. 6, 2011 Sheet 2 of 4 US 8,013,862 B2 2OO STORE IMAGE IN A PLURALITY OF PXEL, BLOCKS 210 DETERMINE LEVEL OF TEXTURE IN EACH PIXEL BLOCK 220 250 PERFORMPRE DO NOT PERFORM PROCESSING ON PIXEL PRE-PROCESSING ON BLOCK PXEL, BLOCK 240 230 PROVIDE PIXEL REPLACE PIXEL BLOCKWTH A BLOCK WITH AN SOLID AVERAGE INTERPOLATED COLOR PXEL BLOCK 260 PERFORM COMPRESSION ON PXEL, BLOCK FIG. 2 U.S. Patent Sep. 6, 2011 Sheet 4 of 4 US 8,013,862 B2 STORE IMAGE IN A PLURALITY OF 400 PXEL, BLOCKS 410 CONVERT PIXEL, BLOCK 420 DETERMINE LEVEL OF TEXTURE IN EACH PIXEL BLOCK 460 t PERFORM PRE DO NOT PERFORM PROCESSING ON PIXEL PRE-PROCESSING ON BLOCK PXEL, BLOCK 450 440 PROVIDE PIXEL REPLACE PIXEL BLOCKWITH A BLOCK WITH AN SOLD AVERAGE INTERPOLATED COLOR PXEL, BLOCK PERFORM COMPRESSION ON 470 PXEL BLOCK 480 PERFORM DECOMPRESSION ON PXEL BLOCK 490 FILTER PIXEL, BLOCK 495 CONVERT PIXEL, BLOCK FIG. 4 US 8,013,862 B2 1. 2 TEXTURE CODEC is not intended to limit the scope of this patent. Rather, it is contemplated that the claimed Subject matter might also be BACKGROUND embodied in other ways, to include different steps or combi nations of steps similar to the ones described in this docu Currently there is great need for texture compression to ment, in conjunction with other present or future technologies enable high-definition content to be accessed on various FIG. 1 illustrates an example of a suitable computing sys entertainment devices. On many of these entertainment devices, disc space limitations and the need for streaming tem environment 100 in which the subject matter described performance is contributing to this requirement. Further above may be implemented. The computing system environ more, decompression time also needs to be very fast to ensure ment 100 is only one example of a suitable computing envi a smooth accessibility of the content. Thus, there is a need for 10 ronment and is not intended to suggest any limitation as to the improved texture codec that can be used in combination with scope of use or functionality of the subject matter described conventional lossless codecs to reduce the storage space above. Neither should the computing environment 100 be required for content while still enabling compression and interpreted as having any dependency or requirement relating decompression to be performed quickly. It is further desired to any one or combination of components illustrated in the that this improved codec can be integrated into an asset build 15 exemplary operating environment 100. pipeline and can be used in combination with hardware com With reference to FIG. 1, computing system environment pression and decompression. 100 includes a general purpose computing device in the form of a computer 110. Components of computer 110 may SUMMARY include, but are not limited to, a processing unit 120, a system memory 130, and a system bus 121 that couples various Techniques for pre-processing image blocks containing system components including the system memory to the pro texture are disclosed herein which reduce memory require cessing unit 120. The system bus 121 may be any of several ments without degradation of quality. This is accomplished types of bus structures including a memory bus or memory by determining the level of texture in each pixel block of the controller, a peripheral bus, and a local bus using any of a image and then performing a compression algorithm on Such 25 variety of bus architectures. By way of example, and not pixel block. It will be appreciated that various methods are limitation, such architectures include Industry Standard available to determine the texture level, including identifying Architecture (ISA) bus, Micro Channel Architecture (MCA) the luminescence variation or difference within the pixel bus, Enhanced ISA (EISA) bus, Video Electronics Standards block. Depending on the amount of texture level contained Association (VESA) local bus, and Peripheral Component within each pixel block, pre-processing may involve assign 30 Interconnect (PCI) bus (also known as Mezzanine bus). ing the pixel block a single color or replacing the pixel block Computer 110 typically includes a variety of computer with an interpolated pixel block. Ofcourse, pre-processing on readable media. Computer readable media can be any avail the pixel block may not be performed when the texture level able media that can be accessed by computer 110 and includes therein is determined to be at a predetermined amount or both volatile and nonvolatile media, removable and non-re level. 35 movable media. By way of example, and not limitation, com Additional techniques are also disclosed herein which puter readable media may comprise computer storage media involve full processing of an image block. This essentially and communication media. Computer storage media include involves the conversion of the pixel block from a standard both volatile and nonvolatile, removable and non-removable configuration (4x4) to a larger configuration (8x8) prior to media implemented in any method or technology for storage pre-processing and then a conversion back to the standard 40 of information Such as computer readable instructions, data configuration after decompression. structures, program modules or other data. Computer storage This Summary is provided to introduce a selection of con media include, but are not limited to, RAM, ROM, EEPROM, cepts in a simplified form that are further described below in flash memory or other memory technology, CDROM, digital the Detailed Description. This summary is not intended to Versatile disks (DVD) or other optical disk storage, magnetic identify key features or essential features of the claimed sub 45 cassettes, magnetic tape, magnetic disk storage or other mag ject matter, nor is it intended to be used as an aid in determin netic storage devices, or any other medium which can be used ing the scope of the claimed Subject matter. to store the desired information and which can be accessed by computer 110. Communication media typically embody BRIEF DESCRIPTION OF THE DRAWINGS computer readable instructions, data structures, program 50 modules or other data in a modulated data signal Such as a The illustrative embodiments will be better understood carrier wave or other transport mechanism and include any after reading the following detailed description with refer information delivery media.
Recommended publications
  • Data Compression: Dictionary-Based Coding 2 / 37 Dictionary-Based Coding Dictionary-Based Coding
    Dictionary-based Coding already coded not yet coded search buffer look-ahead buffer cursor (N symbols) (L symbols) We know the past but cannot control it. We control the future but... Last Lecture Last Lecture: Predictive Lossless Coding Predictive Lossless Coding Simple and effective way to exploit dependencies between neighboring symbols / samples Optimal predictor: Conditional mean (requires storage of large tables) Affine and Linear Prediction Simple structure, low-complex implementation possible Optimal prediction parameters are given by solution of Yule-Walker equations Works very well for real signals (e.g., audio, images, ...) Efficient Lossless Coding for Real-World Signals Affine/linear prediction (often: block-adaptive choice of prediction parameters) Entropy coding of prediction errors (e.g., arithmetic coding) Using marginal pmf often already yields good results Can be improved by using conditional pmfs (with simple conditions) Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 2 / 37 Dictionary-based Coding Dictionary-Based Coding Coding of Text Files Very high amount of dependencies Affine prediction does not work (requires linear dependencies) Higher-order conditional coding should work well, but is way to complex (memory) Alternative: Do not code single characters, but words or phrases Example: English Texts Oxford English Dictionary lists less than 230 000 words (including obsolete words) On average, a word contains about 6 characters Average codeword length per character would be limited by 1
    [Show full text]
  • Melinda's Marks Merit Main Mantle SYDNEY STRIDERS
    SYDNEY STRIDERS ROAD RUNNERS’ CLUB AUSTRALIA EDITION No 108 MAY - AUGUST 2009 Melinda’s marks merit main mantle This is proving a “best-so- she attained through far” year for Melinda. To swimming conflicted with date she has the fastest her transition to running. time in Australia over 3000m. With a smart 2nd Like all top runners she at the State Open 5000m does well over 100k a champs, followed by a week in training, win at the State Open 10k consisting of a variety of Road Champs, another sessions: steady pace, win at the Herald Half medium pace, long slow which doubles as the runs, track work, fartlek, State Half Champs and a hills, gym work and win at the State Cross swimming! country Champs, our Melinda is looking like Springs under her shoes give hot property. Melinda extra lift Melinda began her sports Continued Page 3 career as a swimmer. By 9 years of age she was representing her club at State level. She held numerous records for INSIDE BLISTER 108 Breaststroke and Lisa facing racing pacing Butterfly. Her switch to running came after the McKinney makes most of death of her favourite marvellous mud moment Coach and because she Weather woe means Mo wasn’t growing as big as can’t crow though not slow! her fellow competitors. She managed some pretty fast times at inter-schools Brent takes tumble at Trevi champs and Cross Country before making an impression in the Open category where she has Champion Charles cheered steadily improved. by chance & chase challenge N’Lotsa Uthastuff Melinda credits her swimming background for endurance
    [Show full text]
  • Video Codec Requirements and Evaluation Methodology
    Video Codec Requirements 47pt 30pt and Evaluation Methodology Color::white : LT Medium Font to be used by customers and : Arial www.huawei.com draft-filippov-netvc-requirements-01 Alexey Filippov, Huawei Technologies 35pt Contents Font to be used by customers and partners : • An overview of applications • Requirements 18pt • Evaluation methodology Font to be used by customers • Conclusions and partners : Slide 2 Page 2 35pt Applications Font to be used by customers and partners : • Internet Protocol Television (IPTV) • Video conferencing 18pt • Video sharing Font to be used by customers • Screencasting and partners : • Game streaming • Video monitoring / surveillance Slide 3 35pt Internet Protocol Television (IPTV) Font to be used by customers and partners : • Basic requirements: . Random access to pictures 18pt Random Access Period (RAP) should be kept small enough (approximately, 1-15 seconds); Font to be used by customers . Temporal (frame-rate) scalability; and partners : . Error robustness • Optional requirements: . resolution and quality (SNR) scalability Slide 4 35pt Internet Protocol Television (IPTV) Font to be used by customers and partners : Resolution Frame-rate, fps Picture access mode 2160p (4K),3840x2160 60 RA 18pt 1080p, 1920x1080 24, 50, 60 RA 1080i, 1920x1080 30 (60 fields per second) RA Font to be used by customers and partners : 720p, 1280x720 50, 60 RA 576p (EDTV), 720x576 25, 50 RA 576i (SDTV), 720x576 25, 30 RA 480p (EDTV), 720x480 50, 60 RA 480i (SDTV), 720x480 25, 30 RA Slide 5 35pt Video conferencing Font to be used by customers and partners : • Basic requirements: . Delay should be kept as low as possible 18pt The preferable and maximum delay values should be less than 100 ms and 350 ms, respectively Font to be used by customers .
    [Show full text]
  • The Basic Principles of Data Compression
    The Basic Principles of Data Compression Author: Conrad Chung, 2BrightSparks Introduction Internet users who download or upload files from/to the web, or use email to send or receive attachments will most likely have encountered files in compressed format. In this topic we will cover how compression works, the advantages and disadvantages of compression, as well as types of compression. What is Compression? Compression is the process of encoding data more efficiently to achieve a reduction in file size. One type of compression available is referred to as lossless compression. This means the compressed file will be restored exactly to its original state with no loss of data during the decompression process. This is essential to data compression as the file would be corrupted and unusable should data be lost. Another compression category which will not be covered in this article is “lossy” compression often used in multimedia files for music and images and where data is discarded. Lossless compression algorithms use statistic modeling techniques to reduce repetitive information in a file. Some of the methods may include removal of spacing characters, representing a string of repeated characters with a single character or replacing recurring characters with smaller bit sequences. Advantages/Disadvantages of Compression Compression of files offer many advantages. When compressed, the quantity of bits used to store the information is reduced. Files that are smaller in size will result in shorter transmission times when they are transferred on the Internet. Compressed files also take up less storage space. File compression can zip up several small files into a single file for more convenient email transmission.
    [Show full text]
  • (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • Image Compression Using Discrete Cosine Transform Method
    Qusay Kanaan Kadhim, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.9, September- 2016, pg. 186-192 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IMPACT FACTOR: 5.258 IJCSMC, Vol. 5, Issue. 9, September 2016, pg.186 – 192 Image Compression Using Discrete Cosine Transform Method Qusay Kanaan Kadhim Al-Yarmook University College / Computer Science Department, Iraq [email protected] ABSTRACT: The processing of digital images took a wide importance in the knowledge field in the last decades ago due to the rapid development in the communication techniques and the need to find and develop methods assist in enhancing and exploiting the image information. The field of digital images compression becomes an important field of digital images processing fields due to the need to exploit the available storage space as much as possible and reduce the time required to transmit the image. Baseline JPEG Standard technique is used in compression of images with 8-bit color depth. Basically, this scheme consists of seven operations which are the sampling, the partitioning, the transform, the quantization, the entropy coding and Huffman coding. First, the sampling process is used to reduce the size of the image and the number bits required to represent it. Next, the partitioning process is applied to the image to get (8×8) image block. Then, the discrete cosine transform is used to transform the image block data from spatial domain to frequency domain to make the data easy to process.
    [Show full text]
  • MC14SM5567 PCM Codec-Filter
    Product Preview Freescale Semiconductor, Inc. MC14SM5567/D Rev. 0, 4/2002 MC14SM5567 PCM Codec-Filter The MC14SM5567 is a per channel PCM Codec-Filter, designed to operate in both synchronous and asynchronous applications. This device 20 performs the voice digitization and reconstruction as well as the band 1 limiting and smoothing required for (A-Law) PCM systems. DW SUFFIX This device has an input operational amplifier whose output is the input SOG PACKAGE CASE 751D to the encoder section. The encoder section immediately low-pass filters the analog signal with an RC filter to eliminate very-high-frequency noise from being modulated down to the pass band by the switched capacitor filter. From the active R-C filter, the analog signal is converted to a differential signal. From this point, all analog signal processing is done differentially. This allows processing of an analog signal that is twice the amplitude allowed by a single-ended design, which reduces the significance of noise to both the inverted and non-inverted signal paths. Another advantage of this differential design is that noise injected via the power supplies is a common mode signal that is cancelled when the inverted and non-inverted signals are recombined. This dramatically improves the power supply rejection ratio. After the differential converter, a differential switched capacitor filter band passes the analog signal from 200 Hz to 3400 Hz before the signal is digitized by the differential compressing A/D converter. The decoder accepts PCM data and expands it using a differential D/A converter. The output of the D/A is low-pass filtered at 3400 Hz and sinX/X compensated by a differential switched capacitor filter.
    [Show full text]
  • Optimal Parsing for Dictionary Text Compression Alessio Langiu
    Optimal Parsing for dictionary text compression Alessio Langiu To cite this version: Alessio Langiu. Optimal Parsing for dictionary text compression. Other [cs.OH]. Université Paris-Est, 2012. English. NNT : 2012PEST1091. tel-00804215 HAL Id: tel-00804215 https://tel.archives-ouvertes.fr/tel-00804215 Submitted on 25 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UniversitadegliStudidiPalermo` Dipartimento di Matematica e Applicazioni Dottorato di Ricerca in Matematica e Informatica XXIII◦ Ciclo - S.S.D. Inf/01 UniversiteParis-Est´ Ecole´ doctorale MSTIC Th´ese de doctorat en Informatique Optimal Parsing for Dictionary Text Compression Author: LANGIU Alessio Ph.D. Thesis in Computer Science April 3, 2012 PhD Commission: Thesis Directors: Prof. CROCHEMORE Maxime University of Paris-Est Prof. RESTIVO Antonio University of Palermo Examiners: Prof. ILIOPOULOS Costas King’s College London Prof. LECROQ Thierry University of Rouen Prof. MIGNOSI Filippo University of L’Aquila Referees: Prof. GROSSI Roberto University of Pisa Prof. ILIOPOULOS Costas King’s College London Prof. LECROQ Thierry University of Rouen ii Summary Dictionary-based compression algorithms include a parsing strategy to transform the input text into a sequence of dictionary phrases. Given a text, such process usually is not unique and, for compression purposes, it makes sense to find one of the possible parsing that minimize the final compres- sion ratio.
    [Show full text]
  • Lossless Compression of Audio Data
    CHAPTER 12 Lossless Compression of Audio Data ROBERT C. MAHER OVERVIEW Lossless data compression of digital audio signals is useful when it is necessary to minimize the storage space or transmission bandwidth of audio data while still maintaining archival quality. Available techniques for lossless audio compression, or lossless audio packing, generally employ an adaptive waveform predictor with a variable-rate entropy coding of the residual, such as Huffman or Golomb-Rice coding. The amount of data compression can vary considerably from one audio waveform to another, but ratios of less than 3 are typical. Several freeware, shareware, and proprietary commercial lossless audio packing programs are available. 12.1 INTRODUCTION The Internet is increasingly being used as a means to deliver audio content to end-users for en­ tertainment, education, and commerce. It is clearly advantageous to minimize the time required to download an audio data file and the storage capacity required to hold it. Moreover, the expec­ tations of end-users with regard to signal quality, number of audio channels, meta-data such as song lyrics, and similar additional features provide incentives to compress the audio data. 12.1.1 Background In the past decade there have been significant breakthroughs in audio data compression using lossy perceptual coding [1]. These techniques lower the bit rate required to represent the signal by establishing perceptual error criteria, meaning that a model of human hearing perception is Copyright 2003. Elsevier Science (USA). 255 AU rights reserved. 256 PART III / APPLICATIONS used to guide the elimination of excess bits that can be either reconstructed (redundancy in the signal) orignored (inaudible components in the signal).
    [Show full text]
  • The H.264 Advanced Video Coding (AVC) Standard
    Whitepaper: The H.264 Advanced Video Coding (AVC) Standard What It Means to Web Camera Performance Introduction A new generation of webcams is hitting the market that makes video conferencing a more lifelike experience for users, thanks to adoption of the breakthrough H.264 standard. This white paper explains some of the key benefits of H.264 encoding and why cameras with this technology should be on the shopping list of every business. The Need for Compression Today, Internet connection rates average in the range of a few megabits per second. While VGA video requires 147 megabits per second (Mbps) of data, full high definition (HD) 1080p video requires almost one gigabit per second of data, as illustrated in Table 1. Table 1. Display Resolution Format Comparison Format Horizontal Pixels Vertical Lines Pixels Megabits per second (Mbps) QVGA 320 240 76,800 37 VGA 640 480 307,200 147 720p 1280 720 921,600 442 1080p 1920 1080 2,073,600 995 Video Compression Techniques Digital video streams, especially at high definition (HD) resolution, represent huge amounts of data. In order to achieve real-time HD resolution over typical Internet connection bandwidths, video compression is required. The amount of compression required to transmit 1080p video over a three megabits per second link is 332:1! Video compression techniques use mathematical algorithms to reduce the amount of data needed to transmit or store video. Lossless Compression Lossless compression changes how data is stored without resulting in any loss of information. Zip files are losslessly compressed so that when they are unzipped, the original files are recovered.
    [Show full text]
  • Mutual Information, the Linear Prediction Model, and CELP Voice Codecs
    information Article Mutual Information, the Linear Prediction Model, and CELP Voice Codecs Jerry Gibson Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA; [email protected]; Tel.: +1-805-893-6187 Received: 14 April 2019; Accepted: 19 May 2019; Published: 22 May 2019 Abstract: We write the mutual information between an input speech utterance and its reconstruction by a code-excited linear prediction (CELP) codec in terms of the mutual information between the input speech and the contributions due to the short-term predictor, the adaptive codebook, and the fixed codebook. We then show that a recently introduced quantity, the log ratio of entropy powers, can be used to estimate these mutual informations in terms of bits/sample. A key result is that for many common distributions and for Gaussian autoregressive processes, the entropy powers in the ratio can be replaced by the corresponding minimum mean squared errors. We provide examples of estimating CELP codec performance using the new results and compare these to the performance of the adaptive multirate (AMR) codec and other CELP codecs. Similar to rate distortion theory, this method only needs the input source model and the appropriate distortion measure. Keywords: autoregressive models; entropy power; linear prediction model; CELP voice codecs; mutual information 1. Introduction Voice coding is a critical technology for digital cellular communications, voice over Internet protocol (VoIP), voice response applications, and videoconferencing systems [1,2]. Code-excited linear prediction (CELP) is the most widely deployed method for speech coding today, serving as the primary speech coding method in the adaptive multirate (AMR) codec [3] and in the more recent enhanced voice services (EVS) codec [4], both of which are used in cell phones and VoIP.
    [Show full text]
  • Acronis Revive 2019
    Acronis Revive 2019 Table of contents 1 Introduction to Acronis Revive 2019 .................................................................................3 1.1 Acronis Revive 2019 Features .................................................................................................... 3 1.2 System Requirements and Installation Notes ........................................................................... 4 1.3 Technical Support ...................................................................................................................... 5 2 Data Recovery Using Acronis Revive 2019 .........................................................................6 2.1 Recover Lost Files from Existing Logical Disks ........................................................................... 7 2.1.1 Searching for a File ........................................................................................................................................ 16 2.1.2 Finding Previous File Versions ...................................................................................................................... 18 2.1.3 File Masks....................................................................................................................................................... 19 2.1.4 Regular Expressions ...................................................................................................................................... 20 2.1.5 Previewing Files ............................................................................................................................................
    [Show full text]