Understanding the Role of Natural Moisturizing Factor in Skin Hydration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amino Acid Metabolism: Amino Acid Degradation & Synthesis
Amino Acid Metabolism: Amino Acid Degradation & Synthesis Dr. Diala Abu-Hassan, DDS, PhD All images are taken from Lippincott’s Biochemistry textbook except where noted CATABOLISM OF THE CARBON SKELETONS OF AMINO ACIDS The pathways by which AAs are catabolized are organized according to which one (or more) of the seven intermediates is produced from a particular amino acid. GLUCOGENIC AND KETOGENIC AMINO ACIDS The classification is based on which of the seven intermediates are produced during their catabolism (oxaloacetate, pyruvate, α-ketoglutarate, fumarate, succinyl coenzyme A (CoA), acetyl CoA, and acetoacetate). Glucogenic amino acids catabolism yields pyruvate or one of the TCA cycle intermediates that can be used as substrates for gluconeogenesis in the liver and kidney. Ketogenic amino acids catabolism yields either acetoacetate (a type of ketone bodies) or one of its precursors (acetyl CoA or acetoacetyl CoA). Other ketone bodies are 3-hydroxybutyrate and acetone Amino acids that form oxaloacetate Hydrolysis Transamination Amino acids that form α-ketoglutarate via glutamate 1. Glutamine is converted to glutamate and ammonia by the enzyme glutaminase. Glutamate is converted to α-ketoglutarate by transamination, or through oxidative deamination by glutamate dehydrogenase. 2. Proline is oxidized to glutamate. 3. Arginine is cleaved by arginase to produce Ornithine (in the liver as part of the urea cycle). Ornithine is subsequently converted to α-ketoglutarate. Amino acids that form α-ketoglutarate via glutamate 4. Histidine is oxidatively deaminated by histidase to urocanic acid, which then forms N-formimino glutamate (FIGlu). Individuals deficient in folic acid excrete high amounts of FIGlu in the urine FIGlu excretion test has been used in diagnosing a deficiency of folic acid. -
Pyrrolidone Carboxylic Acid Synthesis in Guinea Pig Epidermis
0022-202X/ 83/ 8102-0122$02.00/0 THE JOURNAL OF INVESTIGATIVE DERMATOLOGY, 81:122-124, 1983 Vol. 81, No.2 Copyright © 1983 by The Williams & Wilkins Co. Printed in U.S.A. Pyrrolidone Carboxylic Acid Synthesis in Guinea Pig Epidermis JoHN G. BARRETT, B.Sc. AND IAN R ScoTT, M.A., PH.D. Environmental Safety Laboratory, Unilever Research, Sharnbrook, Bedford, U. K. To establish the in vivo mechanism of synthesis and MATERIALS AND METHODS accumulation of epidermal pyrrolidone carboxylic acid (PCA), enzymes potentially capable of PCA synthesis Enzyme Assays and Separation of Viable Cells and Stratum have been quantified and located within the guinea pig Corneum epidermis. Intermediates in the synthesis of eHJPCA from a pulse of [3H]glutamine have been identified and All enzyme assays were essentially as described previously [8] except quantified to determine which of the several possible for two modifications. Firstly, the sensitivity of the assays for enzymic PCA formation from glutamine and glutamic acid was increased by metabolic routes occurs in vivo. PCA appears to be syn 3 1 thesized from substrate derived from the breakdown using [G- H] substrate (40-90 JLCi mmol- , Radiochemical Centre, Amersham). PCA was separated from glutamic acid and glutamine on within the stratum corneum of protein synthesized sev a small column (2.0 ml bed volume) of Ag50W-X8 ion-exchange resin eral days earlier. The predominant route is probably via (200-400 mesh; Bio-Rad). Secondly, epidermal homogenates were pre the nonenzymic cyclization of free glutamine liberated pared in 0.5 M Tris-HCl buffer, pH 7.0, then microcentrifuge desalted from this protein. -
Electronic Nicotine Delivery Device (ENDS)"
Qeios, CC-BY 4.0 · Review, March 4, 2020 Review of "Electronic Nicotine Delivery Device (ENDS)" Clive Bates Overall. T he definition provided is helpful but there are a few remaining ambiguities, most notably with respect to the inclusion or exclsuion of heated tobacco products within this definition. I think the set of definitions in this field should be looked at together for coherence, and speculate whether they could be built from a set of elemental variables. Device? Strictly, ENDS are not devices, but device-liquid combinations. It is possible to put a non-nicotine liquid in a refillable vaping device that is also designed for nicotine (i.e a flavoured e-liquid with no nicotine). So a device only becomes an ENDS when paired with liquid or class of liquids that contain nicotine. T he same hardware is not an ENDS if not using a nicotine liquid. Not all devices are hand-held: there are electronic hookah pipes using nicotine liquids, for example, that stand on a table or the floor. H umectant? T he function of the propylene glycol or glycerol in the e-liquid is not primarily as a humectant but as: (1) a diluent (to create a chosen nicotine concentration) and, (2) an excipient (a inert carrier for the active ingredients - flavours and nicotine). While these agents can also be humectants, that is not their primary function in ENDS. Clarity over excipient names. T here is great confusion about the names of excipients and an opportunity for clarity here: "...one or more excipients, which may include propylene glycol (PG), glycerol or other excipients. -
Propylene Glycol
PROPYLENEGLYCOL ____________________Name ____________________________________________DateDate alsocalled…methylethylglycol , propane-1,2-diol , 1,2-propanediol ,2-hydroxypropanol , 1,2-dihydroxypropane , isopropyleneglycol ,and E1520 . Whatisit? Propyleneglycolisusedasasofteningagent,solvent,moisturizer,preservativeor vehicleinmanypersonalproducts,medications,andindustry. Wheremightitbefound? Heattransferfluid Householdcleaningproducts Moisturizinglotion,cream Hydraulicpressfluid Make-up(foundation,concealer, Industrialsolvents lipstick,lipliner,lipbalm, Insecttrapcontents gloss,mascara,eyeliner) Paint,enamel,stain,deckcoat,varnish Hairproducts(shampoo,gel, Paintballingredient conditioner,color,minoxidil) Petshampoo,spray,deodorizer Soap,cleanser,bodywash Photographicchemical Bubblebath,showergel Pitfalltrapforgroundbeetles Handsanitizer,handcleaner Plasticizer,polyesterandalkydresins Moisttowelettes,babywipes Polyurethanecushions Toothpaste,toothwhiteners Printingfountaininksolution,rollerwash Mouthwash,coldsoreremedy Tiresealant Shavingcream,aftershavegel Tobaccohumectant,cigarhumidor Antiperspirant,deodorant Transcutaneous-nervestimulatorgel Cuticleremover Ultraviolettattooink Salinesolution Wallpaperstripper,drywallprimer Personallubricant Waterproofing,cracksealant Sunscreen,massageoil Treatmentforathletesfoot,itch, PGisinmanyprescriptions : acne,yeast,earache Most cortisone creams,ointments,lotions,gels Clindamycingel,sol’nKeralytGel OtherPossibleExposures: Dovonexsolution Ketoconazolecr,foam Aircraftde-icingfluid Efudexcream,sol’nMetronidazolegel -
Evaluation of Honey and Rice Syrup As Replacements for Sorbitol in the Production of Restructured Duck Jerky
271 Open Access Asian Australas. J. Anim. Sci. Vol. 29, No. 2 : 271-279 February 2016 http://dx.doi.org/10.5713/ajas.15.0431 www.ajas.info pISSN 1011-2367 eISSN 1976-5517 Evaluation of Honey and Rice Syrup as Replacements for Sorbitol in the Production of Restructured Duck Jerky Endy Triyannanto and Keun Taik Lee* Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung 210-702, Korea ABSTRACT: The aim of this study was to evaluate the potential of natural humectants such as honey and rice syrup to replace sorbitol in the production of restructured duck jerky. Each humectant was mixed at 3%, 6%, and 10% (wt/wt) concentrations with the marinating solution. The values of water activity and the moisture-to-protein ratio of all of the samples were maintained below 0.75. Jerky samples treated with honey retained more moisture than those exposed to other treatments. Among all samples, those treated with 10% sorbitol produced the highest processing yield and the lowest shear force values. The highest L* value and the lowest b* value were observed for the sorbitol-treated sample, followed by the rice syrup- and honey-treated samples. Duck jerky samples treated with 10% honey showed the highest scores for the sensory parameters evaluated. The overall acceptability scores of samples treated with rice syrup were comparable with those of samples treated with sorbitol. Microscopic observation of restructured duck jerky samples treated with honey showed stable forms and smaller pores when compared with other treatments. (Key Words: Honey, Rice Syrup, Sorbitol, Restructured Duck Jerky) INTRODUCTION use of tenderloin for manufacturing a duck jerky could be valuable because tenderloin has been treated as a by- Meat jerky is a popular snack that is easily found in product and is cheaper than the other parts such as breasts retail shops worldwide. -
Microbial Cell Factories Biomed Central
Microbial Cell Factories BioMed Central Research Open Access Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation Michael Sauer1, Paola Branduardi2, Brigitte Gasser1, Minoska Valli1, Michael Maurer1, Danilo Porro2 and Diethard Mattanovich*1 Address: 1Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and 2Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, I-20126 Milan, Italy Email: Michael Sauer - [email protected]; Paola Branduardi - [email protected]; Brigitte Gasser - [email protected]; Minoska Valli - [email protected]; Michael Maurer - [email protected]; Danilo Porro - [email protected]; Diethard Mattanovich* - [email protected] * Corresponding author Published: 20 December 2004 Received: 26 November 2004 Accepted: 20 December 2004 Microbial Cell Factories 2004, 3:17 doi:10.1186/1475-2859-3-17 This article is available from: http://www.microbialcellfactories.com/content/3/1/17 © 2004 Sauer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Pichia pastoris is a well established yeast host for heterologous protein expression, however, the physiological and genetic information about this yeast remains scanty. The lack of a published genome sequence renders DNA arrays unavailable, thereby hampering more global investigations of P. pastoris from the beginning. -
Humectant and Cosmetics and External Preparations Containing the Same
Europäisches Patentamt *EP001417955A1* (19) European Patent Office Office européen des brevets (11) EP 1 417 955 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 7/48, A61K 7/00, 12.05.2004 Bulletin 2004/20 A61K 31/047, A61K 31/23, A61P 17/16 (21) Application number: 02760624.3 (86) International application number: (22) Date of filing: 13.08.2002 PCT/JP2002/008255 (87) International publication number: WO 2003/015741 (27.02.2003 Gazette 2003/09) (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • FUJINO, Jin IE IT LI LU MC NL PT SE SK TR Yokohama-shi, Kanagawa 235-0023 (JP) Designated Extension States: • OOYAMA, Keiichi AL LT LV MK RO SI Yokohama-shi, Kanagawa 235-0023 (JP) (30) Priority: 13.08.2001 JP 2001245282 (74) Representative: Vuillermoz, Bruno et al Cabinet Laurent & Charras (71) Applicant: The Nisshin OilliO, Ltd. B.P. 32 Tokyo 104-8285 (JP) 20, rue Louis Chirpaz 69131 Ecully Cédex (FR) (54) HUMECTANT AND COSMETICS AND EXTERNAL PREPARATIONS CONTAINING THE SAME (57) An object of the present invention is to provide basic acid having 16-28 carbons, more than half of the a humectant which is excellent in moisture retaining hydroxyl groups of at least one of the glycerin and the properties and stability at high temperature above 40°C, condensate of the same remaining as hydroxyl groups and a cosmetic and an external agent comprising the in the ester compound; a component B: a dihydric water same. -
Determination of Histidine A-Deaminase in Human Stratum Corneum and Its Absence in Histidinaemia
160 Biochem. J. (1963) 88, 160 Determination of Histidine a-Deaminase in Human Stratum Corneum and its Absence in Histidinaemia By V. G. ZANNONI AND B. N. LA DU National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, U.S. Public Health Service, Bethesda, Md., U.S.A. (Received 27 February 1963) In studies on the nature of the enzymic defect in Assays of histidine a-deaminase and urocanase. For patients with histidinaemia, an inborn error of homogenates ofguinea-pig tissues, the method described by histidine metabolism (La Du, Howell, Jacoby, Tabor & Mehler (1955) was used. The assay for histidine oc-deaminase is based on the accumulation urocanic acid Seegmiller & Zannoni, 1962), it was necessary to of at 277 m,u at pH 9-2. Urocanase does not interfere with the develop a sensitive assay procedure to measure assay for histidine a-deaminase at this pH. Urocanase histidine oc-deaminase (L-histidine ammonia-lyase, activity was measured spectrophotometrically at 277 m,u EC 4.3.1.3), the enzyme that converts histidine by observing the rate of disappearance of urocanic acid at into urocanic acid. The application of this method pH 7-5. has shown that the stratum corneum of normal Because of the turbidity of homogenates of human human skin is a rich source of histidine oc-deamin- stratum corneum, the direct spectrophotometric assay ase. However, this layer in two patients (sibs) could not be used. Control and experimental tubes were with histidinaemia did not contain any detectable incubated with 0 50 ml. of 0 1 M-sodium pyrophosphate buffer, pH 9-2, and 0 05 ml. -
Article the Bee Hemolymph Metabolome: a Window Into the Impact of Viruses on Bumble Bees
Article The Bee Hemolymph Metabolome: A Window into the Impact of Viruses on Bumble Bees Luoluo Wang 1,2, Lieven Van Meulebroek 3, Lynn Vanhaecke 3, Guy Smagghe 2 and Ivan Meeus 2,* 1 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China; [email protected] 2 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; [email protected], [email protected] 3 Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Vet- erinary Medicine, Ghent University, Merelbeke, Belgium; [email protected]; [email protected] * Correspondence: [email protected] Selection of the targeted biomarker set: In total we identified 76 metabolites, including 28 amino acids (37%), 11 carbohy- drates (14%), 11 carboxylic acids, 2 TCA intermediates, 4 polyamines, 4 nucleic acids, and 16 compounds from other chemical classes (Table S1). We selected biologically-relevant biomarker candidates based on a three step approach: (1) their expression profile in stand- ardized bees and its relation with viral presence, (2) pathways analysis on significant me- tabolites; and (3) a literature search to identify potential viral specific signatures. Step (1) and (2), pathways analysis on significant metabolites We performed two-way ANOVA with Tukey HSD tests for post-hoc comparisons and used significant metabolites for metabolic pathway analysis using the web-based Citation: Wang, L.L.; Van platform MetaboAnalyst (http://www.metaboanalyst.ca/) in order to get insights in the Meulebroek, L.; Vanhaecke. -
Metabolic Changes in Plants As Indicator for Pesticide Exposure
Metabolic changes in plants as indicator for pesticide exposure A pilot study Pesticide Research no. 146, 2013 Title: Authors & contributors: Metabolic changes in plants as indicator for Strandberg B., Mathiassen S. K., Viant M., Kirwan J., Ludwig C., pesticide exposure Sørensen J. G., Ravn H. W. Publisher: Miljøstyrelsen Strandgade 29 1401 København K www.mst.dk Year: ISBN no. 2013 978-87-92903-57-0 Disclaimer: The Danish Environmental Protection Agency will, when opportunity offers, publish reports and contributions relating to environmental research and development projects financed via the Danish EPA. Please note that publication does not signify that the contents of the reports necessarily reflect the views of the Danish EPA. The reports are, however, published because the Danish EPA finds that the studies represent a valuable contribution to the debate on environmental policy in Denmark. May be quoted provided the source is acknowledged. 2 Metabolic changes in plants as indicator for pesticide exposure Table of contents Preface ...................................................................................................................... 5 Sammenfatning ......................................................................................................... 7 Summary................................................................................................................... 9 1. Introduction ...................................................................................................... 11 1.1 Aim and hypotheses -
Nutritive Sweeteners from Corn Have Become America’S Premier Sweeteners
NutritiveNutritive SweetenersSweeteners FromFrom CornCorn CONTENTS Member Companies and Plant Locations ....................................... 2 Foreword .......................................................................................... 3 Historical Perspective ...................................................................... 4 Research and development orientation ....................................... 5 Technology aimed at needs .......................................................... 7 Growth, Development and Diversity ............................................. 7 CONTENTS Classification and Nutrition ............................................................ 9 Classification ................................................................................. 9 Corn sweeteners in nutrition ..................................................... 10 Technical Background ................................................................... 11 Corn starch ................................................................................. 11 Starch hydrolysis ........................................................................ 13 Crystalline dextrose .................................................................... 14 Dextrose isomerization .............................................................. 15 Manufacture ................................................................................... 17 Corn syrups ................................................................................ 17 Dried corn syrups ...................................................................... -
Chewy Confections
[Confections] Vol. 14 No. 9 September 2004 ww Chewy Confections By Peter Dea, Contributing Editor Gumdrops and lemon drops -- although both are candies, a gumdrop eats differently than a lemon drop. While you may chew on the former, you probably wouldn't the latter. Part of picking candy is based on how interactive you want it to be. That is -- at least for this discussion -- do you want to chew it? When it comes to satisfying our need for a bite-sized sweet treat that also fulfills our desire to chew, it's chewy confections that meet these requirements. Excluding chewing gums, the most common chewy confections include jellies, caramels and nougats, and taffies. Within these groups lie a wide variety of shapes, flavors, textures and sizes. In addition to their broad appeal as traditional confections, chewy treats also find popularity in additional segments as a delivery means for vitamins, minerals and other nutraceutical ingredients. And with the current trend of low-carb lifestyles, sugar-free chewy confections are enjoying new interest. The technology for producing these sweet treats has existed for a long time. But, to implement the knowledge for new applications, it's beneficial to have a good understanding of the basic formulae and processes for each type. Back to basics According to Henry Nonaka, senior technical sales support manager, Corn Products International, Bedford Park, IL: "Combinations of three sweeteners -- sucrose, 42 DE, and 63 DE corn syrups -- are the basis for about every cooked confectionery product. To a lesser extent, high-maltose and high-fructose corn syrups (HFCS) can be used." In combination with moisture content, confectioners vary the amounts of these ingredients to begin creating candies with different textures and eating characteristics.