Ergodic Properties of Markov Processes Luc Rey-Bellet Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA e-mail:
[email protected] 1 Introduction .................................................. 1 2 Stochastic Processes ........................................... 2 3 Markov Processes and Ergodic Theory ........................... 4 3.1 Transition probabilities and generators . ...................... 4 3.2 Stationary Markov processes and Ergodic Theory . ........... 7 4 Brownian Motion .............................................. 12 5 Stochastic Differential Equations ................................ 14 6 Control Theory and Irreducibility ............................... 24 7 Hypoellipticity and Strong-Feller Property ....................... 26 8 Liapunov Functions and Ergodic Properties ...................... 28 References ......................................................... 39 1 Introduction In these notes we discuss Markov processes, in particular stochastic differential equa- tions (SDE) and develop some tools to analyze their long-time behavior. There are several ways to analyze such properties, and our point of view will be to use system- atically Liapunov functions which allow a nice characterization of the ergodic prop- erties. In this we follow, at least in spirit, the excellent book of Meyn and Tweedie [7]. In general a Liapunov function W is a positive function which grows at infinity and satisfies an inequality involving the generator of the Markov process L: roughly speaking we have the implications (α and β are positive constants) 1. LW ≤ α + βW implies existence of solutions for all times. 2. LW ≤−α implies the existence of an invariant measure. 3. LW ≤ α − βW implies exponential convergence to the invariant. measure 2 Luc Rey-Bellet For (2) and (3), one should assume in addition, for example smoothness of the tran- sition probabilities (i.e the semigroup etL is smoothing) and irreducibility of the process (ergodicity of the motion).