Pipelined Instruction Executionhazards, Stages

Total Page:16

File Type:pdf, Size:1020Kb

Pipelined Instruction Executionhazards, Stages Computer Architectures Pipelined Instruction Execution Hazards, Stages Balancing, Super-scalar Systems Pavel Píša, Richard Šusta Michal Štepanovský, Miroslav Šnorek Main source of inspiration: Patterson and Hennessy Czech Technical University in Prague, Faculty of Electrical Engineering English version partially supported by: European Social Fund Prague & EU: We invests in your future. B35APO Computer Architectures Ver.1.10 1 Motivation – AMD Bulldozer 15h (FX, Opteron) - 2011 B35APO Computer Architectures 2 Motivation – Intel Nehalem (Core i7) - 2008 B35APO Computer Architectures 3 The Goal of Today Lecture ● Convert/extend CPU presented in the lecture 2 to the pipelined CPU design. ● The following instructions are considered for our CPU design: add, sub, and, or, slt, addi, lw, sw and beq Typ 31… 0 R opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 rd(5), 15:11 shamt(5) funct(6), 5:0 I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0 J opcode(6), 31:26 address(26), 25:0 B35APO Computer Architectures 4 Single Cycle CPU Together with Memories MemToReg Control MemWrite Unit Branch 31:26 ALUControl 2:0 Opcode ALUScr RegDest 5:0 Funct RegWrite WE3 0 PC’ PC Instr 25:21 SrcA Zero WE A RD A1 RD1 ALU 0 Result 1 A RD 1 20:16 Instr. A2 RD2 0 SrcB AluOut Data ReadData Memory 1 Memory A3 Reg. WD3 File WriteData WD 20:16 Rt 0 WriteReg 1 15:11 Rd + 4 15:0 <<2 Sign Ext SignImm PCBranch + PCPlus4 B35APO Computer Architectures 5 From lecture 2 Single Cycle CPU – Performance: IPS = IC / T = IPCavg.fCLK ● What is the maximal possible frequency of this CPU? ● It is given by latency on the critical path – it is lw in our case: Tc = tPC + tMem + tRFread + tALU + tMem + tMux + tRFsetup WE3 SrcA 0 PC’ PC Instr 25:21 Zero WE A RD A1 RD1 ALU 0 Result 1 A RD 1 20:16 Instr. A2 RD2 0 SrcB AluOut Data ReadData Memory 1 Memory A3 Reg. WD3 File WriteData WD 20:16 Rt 0 WriteReg 1 15:11 Rd + 4 15:0 <<2 Sign Ext SignImm PCBranch + PCPlus4 B35APO Computer Architectures 6 From lecture 2 Single Cycle CPU – Throughput: IPS = IC / T = IPCavg.fCLK ● Tc = tPC + tMem + tRFread + tALU + tMem + tMux + tRFsetup ● Consider following parameters tPC = 30 ns tMem= 300 ns tRFread = 150 ns tALU = 200 ns tMux = 20 ns tRFsetup = 20 ns Then Tc = 1020 ns --> fCLK max = 980 kHz, IPS = 1 • 980e3 = 980 000 instructions per second B35APO Computer Architectures 7 From lecture 2 Separate Instruction Fetch and Execution Even non-pipelined processors separate instruction execution into stages : Instruction Fetch Execution 1. Instruction Fetch – setup PC for memory and fetch pointed instruction. Update PC = PC+4 2. The actual execution of the instruction B35APO Computer Architectures 8 Non-Pielined Execution with Instructions Prefetching WE3 SrcA 0 PC’ PC Instr 25:21 Zero WE A RD A1 RD1 ALU 0 Result 1 A RD 1 20:16 Instr. A2 RD2 0 SrcB AluOut Data ReadData Memory 1 Memory A3 Reg. WD3 File WriteData WD 20:16 Rt 0 WriteReg 1 15:11 Rd + 4 15:0 <<2 Sign Ext SignImm PCBranch + PCPlus4 in the figure, it indicates the clock input responding to the rising edge B35APO Computer Architectures 9 Single Cycle CPU – Throughput: IPS = IC / T = IPCstr⋅fCLK Consider following parameters: tPC = 30 ns tMem = 300 ns tRFread = 50 ns tALU = 200 ns tMux = 20 ns tRFsetup = 20 ns If Tcfetch is executed paralel with Tcproc, then Tcfetch < Tcproc, and Tcp = 50+200+300+20+20 = 590 ns = 1.69 MHz -> IPS = 1 690 000 B35APO Computer Architectures 10 Delay Slot ● Prefetched instruction is executed unconditionally even when the proceeding instruction is a taken branch label: . ● Branch takes place after the next instruction add $2,$3,$4 beq $1,$0,label ● MIPS architecture defines execution of one delay slot Delay Slot ● Compiler fills the branch delay slot ● By selecting an independent instruction label: from the sequence before the branch . ● It has to be to execute instruction in the beq $1,$0,label delay slot whether branch is taken or not add $2,$3,$4 ● If no suitable instruction is found ● then the compiler fills delay slot with a NOP B35APO Computer Architectures 11 Delay Slot The task of the compiler is therefore to ensure that the following instructions in the branch delay slot are valid and useful. Three alternatives illustrating how the delay slot can be filled are depicted in the figures below. The easiest way (at the same time the least efficient) is to fill the delay slot with a blank instruction - nop. B35APO Computer Architectures 12 Pipelined Instructions Execution Suppose that instruction execution can be divided into 5 stages: IF ID EX MEM WB IF – Instruction Fetch, ID – Instruction decode (and Operands Fetch), EX – Execute, MEM – Memory Access, WB – Write Back k and = max { i } i=1, where i is time required for signal propagation (propagation delay) through i-th stage. IF – setup PC for memory and fetch pointed instruction. Update PC = PC+4 ID – decode the opcode and read registers specified by instruction, check for equality (for possible beq instruction), sign extend offset, compute branch target address for branch case (this is means to extend offset and add PC) EX – execute function/pass register values through ALU MEM – read/write main memory for load/store instruction case WB – write result into RF for instructions of register-register class or instruction load (result source is ALU or memory) B35APO Computer Architectures 13 Instruction-level Parallelism - Pipelining IF I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 ID I1 I2 I3 I4 I5 I6 I7 I8 I9 EX I1 I2 I3 I4 I5 I6 I7 I8 MEM I1 I2 I3 I4 I5 I6 I7 ST I1 I2 I3 I4 I5 I6 5 čas 1 2 3 4 5 6 7 8 9 10 ● The time to execute n instructions in the k-stage pipeline: Tk = k. + (n – 1) T1 nk τ ● Speedup: Sk= = lim Sk=k Tk kτ +(n−1)τ n→∞ Prerequisite: pipeline is optimally balanced, circuit can arbitrarily divided B35APO Computer Architectures 14 Pipeline Loads Example B35APO Computer Architectures 15 source: Gedare Bloom and Mary Jane Irwin Instruction-level Parallelism - Pipelining ● Does not reduce the execution time of individual instructions, effect is just the opposite... ● Hazards: ● structural (resolved by duplication), ● data (result of data dependencies: RAW, WAR, WAW) ● control (caused by instructions which change PC)... ● Hazard prevention can result in pipeline stall or pipeline flush ● Remark : Deeper pipeline (more stages) results in shorter sequences of gates in each stage which enables to increase the operating frequency of the processor…, but more stages means higher overhead (demand to arrange better instructions into pipeline and result in more significant lag in the case of stall or pipeline flush) B35APO Computer Architectures 16 Instruction-level Parallelism – Semantics Violations Data hazard: Add writes new value to R1 ADD R1,R2,R3 IF ID EX MEM WB SUB R4,R1,R3 IF ID EX MEM WB flow of instructions SUB reads incorrect value from R1 and expected effect Condition and new PC evaluation Control hazard: PC set to branch target BEQZ R3, M1 IF ID EX MEM WB ADD R6,R1,R2 IF ID EX MEM WB instruction 3 IF ID EX MEM WB instruction 4 IF ID EX MEM WB M1: ADD R4,R6,R7 IF ID EX MEM WB Should be these instructions fetched (and executed then)? B35APO Computer Architectures 17 Non-pipelined Execution WE3 SrcA 0 PC’ PC Instr 25:21 Zero WE A RD A1 RD1 ALU 0 Result 1 A RD 1 20:16 Instr. A2 RD2 0 SrcB AluOut Data ReadData Memory 1 Memory A3 Reg. WD3 File WriteData WD 20:16 Rt 0 WriteReg 1 15:11 Rd + 4 15:0 <<2 Sign Ext SignImm PCBranch + PCPlus4 B35APO Computer Architectures 18 From lecture 2 Pipelined Execution AluOutW WE3 SrcA 0 PC’ PC Instr 25:21 Zero WE A RD A1 RD1 ALU 0 Result 1 A RD 1 20:16 Instr. A2 RD2 0 SrcB AluOutM Data ReadData Memory 1 Memory A3 Reg. WD3 File WriteDataE WriteDataM WD 20:16 Rt 0 WriteRegE WriteRegM WriteRegW 1 15:11 Rd + 4 15:0 <<2 Sign Ext SignImm PCBranch + PCPlus4F PCPlus4D PCPlus4E Fetch Decode Execute Memory WriteBack B35APO Computer Architectures 19 Pipelined Execution MemToReg Control MemWrite Unit Branch 31:26 ALUControl 2:0 Opcode ALUScr 5:0 RegDest Funct AluOutW RegWrite WE3 SrcA 0 PC’ PC Instr 25:21 Zero WE A RD A1 RD1 ALU 0 Result 1 A RD 1 20:16 Instr. A2 RD2 0 SrcB AluOutM Data ReadData Memory 1 Memory A3 Reg. WD3 File WriteDataE WriteDataM WD 20:16 Rt 0 WriteRegE WriteRegM WriteRegW 1 15:11 Rd + 4 15:0 <<2 Sign Ext SignImm PCBranch + PCPlus4F PCPlus4D PCPlus4E Fetch Decode Execute Memory WriteBack B35APO Computer Architectures 20 The Same Design but Drawn Scaled Down… RegWriteD RegWriteE RegWriteM RegWriteW Control unit MemToRegD MemToRegE MemToRegM MemWriteD MemWriteE MemWriteM MemTo ALUControlE 31:26 ALUControlD RegW Op ALUSrcD ALUSrcE RegDstD RegDstE 5:0 Funct BranchD BranchD BranchE PCSrcM Zero 0 PC´ PC InstrD 25:21 WE3 SrcAE WE A RD A1 RD1 ALUOutM ReadDataW 1 20:16 A RD Instruction A2 RD2 0 SrcBE ALU Data Memory A3 Reg. 1 Memory WriteDataE WriteDataM WD3 File WD 1 ALUOutW 0 20:16 RtD RtE 0 WriteRegE 4:0 WriteRegM 4:0 WriteRegW 4:0 15:11 RdE RdD 1 15:0 SignImmD + Sign SignImmE 4 Ext <<2 PCPlus4F PCPlus4D + PCBranchD ResultW B35APO Computer Architectures 21 Cause of the Data Hazards ● Register File – access from two pipeline stages (Decode, WriteBack) – actual write occurs at the first half of the clock cycle, the read in the second half ⇒ there is no hazard for sub $s0 input operand ● RAW (Read After Write) hazard – and (or) requires $s0 in 3 (4) ● How can such hazard be prevented without pipeline throughput degradation? B35APO Computer Architectures 22 QtMips – Resolve Data Hazard by Stall OR $t2, $s0, $s5 AND $t0, $s0, $s1 NOP ADD $s0, $s2, $s3 OR $9, $20, $16 AND $8, $16, $17 NOP ADD $16, $18, $19 ORI $21,
Recommended publications
  • Pipelining and Vector Processing
    Chapter 8 Pipelining and Vector Processing 8–1 If the pipeline stages are heterogeneous, the slowest stage determines the flow rate of the entire pipeline. This leads to other stages idling. 8–2 Pipeline stalls can be caused by three types of hazards: resource, data, and control hazards. Re- source hazards result when two or more instructions in the pipeline want to use the same resource. Such resource conflicts can result in serialized execution, reducing the scope for overlapped exe- cution. Data hazards are caused by data dependencies among the instructions in the pipeline. As a simple example, suppose that the result produced by instruction I1 is needed as an input to instruction I2. We have to stall the pipeline until I1 has written the result so that I2 reads the correct input. If the pipeline is not designed properly, data hazards can produce wrong results by using incorrect operands. Therefore, we have to worry about the correctness first. Control hazards are caused by control dependencies. As an example, consider the flow control altered by a branch instruction. If the branch is not taken, we can proceed with the instructions in the pipeline. But, if the branch is taken, we have to throw away all the instructions that are in the pipeline and fill the pipeline with instructions at the branch target. 8–3 Prefetching is a technique used to handle resource conflicts. Pipelining typically uses just-in- time mechanism so that only a simple buffer is needed between the stages. We can minimize the performance impact if we relax this constraint by allowing a queue instead of a single buffer.
    [Show full text]
  • Diploma Thesis
    Faculty of Computer Science Chair for Real Time Systems Diploma Thesis Timing Analysis in Software Development Author: Martin Däumler Supervisors: Jun.-Prof. Dr.-Ing. Robert Baumgartl Dr.-Ing. Andreas Zagler Date of Submission: March 31, 2008 Martin Däumler Timing Analysis in Software Development Diploma Thesis, Chemnitz University of Technology, 2008 Abstract Rapid development processes and higher customer requirements lead to increasing inte- gration of software solutions in the automotive industry’s products. Today, several elec- tronic control units communicate by bus systems like CAN and provide computation of complex algorithms. This increasingly requires a controlled timing behavior. The following diploma thesis investigates how the timing analysis tool SymTA/S can be used in the software development process of the ZF Friedrichshafen AG. Within the scope of several scenarios, the benefits of using it, the difficulties in using it and the questions that can not be answered by the timing analysis tool are examined. Contents List of Figures iv List of Tables vi 1 Introduction 1 2 Execution Time Analysis 3 2.1 Preface . 3 2.2 Dynamic WCET Analysis . 4 2.2.1 Methods . 4 2.2.2 Problems . 4 2.3 Static WCET Analysis . 6 2.3.1 Methods . 6 2.3.2 Problems . 7 2.4 Hybrid WCET Analysis . 9 2.5 Survey of Tools: State of the Art . 9 2.5.1 aiT . 9 2.5.2 Bound-T . 11 2.5.3 Chronos . 12 2.5.4 MTime . 13 2.5.5 Tessy . 14 2.5.6 Further Tools . 15 2.6 Examination of Methods . 16 2.6.1 Software Description .
    [Show full text]
  • How Data Hazards Can Be Removed Effectively
    International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 116 ISSN 2229-5518 How Data Hazards can be removed effectively Muhammad Zeeshan, Saadia Anayat, Rabia and Nabila Rehman Abstract—For fast Processing of instructions in computer architecture, the most frequently used technique is Pipelining technique, the Pipelining is consider an important implementation technique used in computer hardware for multi-processing of instructions. Although multiple instructions can be executed at the same time with the help of pipelining, but sometimes multi-processing create a critical situation that altered the normal CPU executions in expected way, sometime it may cause processing delay and produce incorrect computational results than expected. This situation is known as hazard. Pipelining processing increase the processing speed of the CPU but these Hazards that accrue due to multi-processing may sometime decrease the CPU processing. Hazards can be needed to handle properly at the beginning otherwise it causes serious damage to pipelining processing or overall performance of computation can be effected. Data hazard is one from three types of pipeline hazards. It may result in Race condition if we ignore a data hazard, so it is essential to resolve data hazards properly. In this paper, we tries to present some ideas to deal with data hazards are presented i.e. introduce idea how data hazards are harmful for processing and what is the cause of data hazards, why data hazard accord, how we remove data hazards effectively. While pipelining is very useful but there are several complications and serious issue that may occurred related to pipelining i.e.
    [Show full text]
  • Pipelining: Basic Concepts and Approaches
    International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1197 ISSN 2229-5518 Pipelining: Basic Concepts and Approaches RICHA BAIJAL1 1Student,M.Tech,Computer Science And Engineering Career Point University,Alaniya,Jhalawar Road,Kota-325003 (Rajasthan) Abstract-This paper is concerned with the pipelining principles while designing a processor.The basics of instruction pipeline are discussed and an approach to minimize a pipeline stall is explained with the help of example.The main idea is to understand the working of a pipeline in a processor.Various hazards that cause pipeline degradation are explained and solutions to minimize them are discussed. Index Terms— Data dependency, Hazards in pipeline, Instruction dependency, parallelism, Pipelining, Processor, Stall. —————————— —————————— 1 INTRODUCTION does the paint. Still,2 rooms are idle. These rooms that I want to paint constitute my hardware.The painter and his skills are the objects and the way i am using them refers to the stag- O understand what pipelining is,let us consider the as- T es.Now,it is quite possible i limit my resources,i.e. I just have sembly line manufacturing of a car.If you have ever gone to a two buckets of paint at a time;therefore,i have to wait until machine work shop ; you might have seen the different as- these two stages give me an output.Although,these are inde- pendent tasks,but what i am limiting is the resources. semblies developed for developing its chasis,adding a part to I hope having this comcept in mind,now the reader
    [Show full text]
  • Powerpc 601 RISC Microprocessor Users Manual
    MPR601UM-01 MPC601UM/AD PowerPC™ 601 RISC Microprocessor User's Manual CONTENTS Paragraph Page Title Number Number About This Book Audience .............................................................................................................. xlii Organization......................................................................................................... xlii Additional Reading ............................................................................................. xliv Conventions ........................................................................................................ xliv Acronyms and Abbreviations ............................................................................. xliv Terminology Conventions ................................................................................. xlvii Chapter 1 Overview 1.1 PowerPC 601 Microprocessor Overview............................................................. 1-1 1.1.1 601 Features..................................................................................................... 1-2 1.1.2 Block Diagram................................................................................................. 1-3 1.1.3 Instruction Unit................................................................................................ 1-5 1.1.3.1 Instruction Queue......................................................................................... 1-5 1.1.4 Independent Execution Units..........................................................................
    [Show full text]
  • Improving UNIX Kernel Performance Using Profile Based Optimization
    Improving UNIX Kernel Performance using Profile Based Optimization Steven E. Speer (Hewlett-Packard) Rajiv Kumar (Hewlett-Packard) and Craig Partridge (Bolt Beranek and Newman/Stanford University) Abstract Several studies have shown that operating system performance has lagged behind improvements in applica- tion performance. In this paper we show how operating systems can be improved to make better use of RISC architectures, particularly in some of the networking code, using a compiling technique known as Profile Based Optimization (PBO). PBO uses profiles from the execution of a program to determine how to best organize the binary code to reduce the number of dynamically taken branches and reduce instruction cache misses. In the case of an operating system, PBO can use profiles produced by instrumented kernels to optimize a kernel image to reflect patterns of use on a particular system. Tests applying PBO to an HP-UX kernel running on an HP9000/720 show that certain parts of the system code (most notably the networking code) achieve substantial performance improvements of up to 35% on micro benchmarks. Overall system performance typically improves by about 5%. 1. Introduction Achieving good operating system performance on a given processor remains a challenge. Operating systems have not experienced the same improvement in transitioning from CISC to RISC processors that has been experi- enced by applications. It is becoming apparent that the differences between RISC and CISC processors have greater significance for operating systems than for applications. (This discovery should, in retrospect, probably not be very surprising. An operating system is far more closely linked to the hardware it runs on than is the average application).
    [Show full text]
  • Analysis of Body Bias Control Using Overhead Conditions for Real Time Systems: a Practical Approach∗
    IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018 1116 PAPER Analysis of Body Bias Control Using Overhead Conditions for Real Time Systems: A Practical Approach∗ Carlos Cesar CORTES TORRES†a), Nonmember, Hayate OKUHARA†, Student Member, Nobuyuki YAMASAKI†, Member, and Hideharu AMANO†, Fellow SUMMARY In the past decade, real-time systems (RTSs), which must in RTSs. These techniques can improve energy efficiency; maintain time constraints to avoid catastrophic consequences, have been however, they often require a large amount of power since widely introduced into various embedded systems and Internet of Things they must control the supply voltages of the systems. (IoTs). The RTSs are required to be energy efficient as they are used in embedded devices in which battery life is important. In this study, we in- Body bias (BB) control is another solution that can im- vestigated the RTS energy efficiency by analyzing the ability of body bias prove RTS energy efficiency as it can manage the tradeoff (BB) in providing a satisfying tradeoff between performance and energy. between power leakage and performance without affecting We propose a practical and realistic model that includes the BB energy and the power supply [4], [5].Itseffect is further endorsed when timing overhead in addition to idle region analysis. This study was con- ducted using accurate parameters extracted from a real chip using silicon systems are enabled with silicon on thin box (SOTB) tech- on thin box (SOTB) technology. By using the BB control based on the nology [6], which is a novel and advanced fully depleted sili- proposed model, about 34% energy reduction was achieved.
    [Show full text]
  • Lecture Topics RAW Hazards Stall Penalty
    Lecture Topics ECE 486/586 • Pipelining – Hazards and Stalls • Data Hazards Computer Architecture – Forwarding • Control Hazards Lecture # 11 Reference: • Appendix C: Section C.2 Spring 2015 Portland State University RAW Hazards Stall Penalty Time Clock Cycle 1 2 3 4 5 6 7 8 • If the dependent instruction follows right after the producer Add R2, R3, #100 IF ID EX MEM WB instruction, we need to stall the pipe for 2 cycles (Stall penalty = 2) • What happens if the producer and dependent instructions are Subtract R9, R2, #30 IF IDstall stall EX MEM WB separated by an intermediate instruction? • Subtract is stalled in decode stage for two additional cycles to delay reading Add R2, R3, #100 IF ID EX MEM WB R2 until the new value of R2 has been written by Add How is this pipeline stall implemented in hardware? Or R4, R5, R6 IF ID EX MEM WB • Control circuitry recognizes the data dependency when it decodes Subtract (comparing source register ids with dest. register ids of prior instructions) Subtract R9, R2, #30 IF ID stall EX MEM WB • During cycles 3 to 5: • Add proceeds through the pipe • In this case, stall penalty = 1 • Subtract is held in the ID stage • Stall penalty depends upon the distance between the producer • In cycle 5 and dependent instruction • Add writes R2 in the first half cycle, Subtract reads R2 in the second half cycle Impact of Data Hazards Operand Forwarding - Alleviating Data Hazards • Frequent stalls caused by data hazards can impact the • Stalls due to data dependencies can be mitigated by forwarding • Consider the two instructions discussed in the previous example performance significantly.
    [Show full text]
  • UM0434 E200z3 Powerpc Core Reference Manual
    UM0434 e200z3 PowerPC core Reference manual Introduction The primary objective of this user’s manual is to describe the functionality of the e200z3 embedded microprocessor core for software and hardware developers. This book is intended as a companion to the EREF: A Programmer's Reference Manual for Freescale Book E Processors (hereafter referred to as EREF). Book E is a PowerPC™ architecture definition for embedded processors that ensures binary compatibility with the user-instruction set architecture (UISA) portion of the PowerPC architecture as it was jointly developed by Apple, IBM, and Motorola (referred to as the AIM architecture). This document distinguishes among the three levels of the architectural and implementation definition, as follows: ● The Book E architecture—Book E defines a set of user-level instructions and registers that are drawn from the user instruction set architecture (UISA) portion of the AIM definition PowerPC architecture. Book E also includes numerous supervisor-level registers and instructions as they were defined in the AIM version of the PowerPC architecture for the virtual environment architecture (VEA) and the operating environment architecture (OEA). Because the operating system resources (such as the MMU and interrupts) defined by Book E differ greatly from those defined by the AIM architecture, Book E introduces many new registers and instructions. ● Freescale Book E implementation standards (EIS)—In many cases, the Book E architecture definition provides a general framework, leaving specific details up to the implementation. To ensure consistency among its Book E implementations, Freescale has defined implementation standards that provide an additional layer of architecture between Book E and the actual devices.
    [Show full text]
  • Instruction Pipelining Review
    InstructionInstruction PipeliningPipelining ReviewReview • Instruction pipelining is CPU implementation technique where multiple operations on a number of instructions are overlapped. • An instruction execution pipeline involves a number of steps, where each step completes a part of an instruction. Each step is called a pipeline stage or a pipeline segment. • The stages or steps are connected in a linear fashion: one stage to the next to form the pipeline -- instructions enter at one end and progress through the stages and exit at the other end. • The time to move an instruction one step down the pipeline is is equal to the machine cycle and is determined by the stage with the longest processing delay. • Pipelining increases the CPU instruction throughput: The number of instructions completed per cycle. – Under ideal conditions (no stall cycles), instruction throughput is one instruction per machine cycle, or ideal CPI = 1 • Pipelining does not reduce the execution time of an individual instruction: The time needed to complete all processing steps of an instruction (also called instruction completion latency). – Minimum instruction latency = n cycles, where n is the number of pipeline stages EECC551 - Shaaban (In Appendix A) #1 Lec # 2 Spring 2004 3-10-2004 MIPS In-Order Single-Issue Integer Pipeline Ideal Operation Fill Cycles = number of stages -1 Clock Number Time in clock cycles ® Instruction Number 1 2 3 4 5 6 7 8 9 Instruction I IF ID EX MEM WB Instruction I+1 IF ID EX MEM WB Instruction I+2 IF ID EX MEM WB Instruction I+3 IF ID
    [Show full text]
  • ECE 361 Computer Architecture Lecture 13: Designing a Pipeline Processor
    ECE 361 Computer Architecture Lecture 13: Designing a Pipeline Processor 361 hazards.1 Review: A Pipelined Datapath Clk Ifetch Reg/Dec Exec Mem Wr RegWr ExtOp ALUOp Branch 1 0 P PC+4 P C PC+4 C + Imm16 4 M Imm16 E I I x e D F Rs / Zero Data busA m M / / A I E Ra / D e Mem W I x busB m U R R Exec r n Rb RA Do R e e R M 1 i g t Rt g Unit e WA e i i u RFile g s g s x t i t i s e Di e s t r t Rw r Di e Rt e r I 0 r 0 Rd 1 RegDst ALUSrc MemWr MemtoReg 361 hazards.2 1 Review: Pipeline Control “Data Stationary Control” ° The Main Control generates the control signals during Reg/Dec • Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later • Control signals for Mem (MemWr Branch) are used 2 cycles later • Control signals for Wr (MemtoReg MemWr) are used 3 cycles later Reg/Dec Exec Mem Wr ExtOp ExtOp ALUSrc ALUSrc E M x I I / e D F ALUOp ALUOp M m / / I E e / D Main W m RegDst x RegDst R R Control r R e R e e g MemWr g MemWr MemWr g e i i s g i s s t t i t e s Branch e Branch Branch e r t r r e MemtoReg MemtoReg MemtoReg r MemtoReg RegWr RegWr RegWr RegWr 361 hazards.3 Review: Pipeline Summary ° Pipeline Processor: • Natural enhancement of the multiple clock cycle processor • Each functional unit can only be used once per instruction • If a instruction is going to use a functional unit: - it must use it at the same stage as all other instructions • Pipeline Control: - Each stage’s control signal depends ONLY on the instruction that is currently in that stage 361 hazards.4 2 Outline of Today’s Lecture ° Recap and Introduction ° Introduction
    [Show full text]
  • Elastic Pipeline: Addressing GPU On-Chip Shared Memory Bank Conflicts
    Elastic Pipeline: Addressing GPU On-chip Shared Memory Bank Conflicts Chunyang Gou Georgi N. Gaydadjiev Computer Engineering Lab Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology, The Netherlands {C.Gou, G.N.Gaydadjiev}@tudelft.nl ABSTRACT off-chip memory resources. As a rule, the factors impacting the One of the major problems with the GPU on-chip shared mem- on-chip memory efficiency have quite different characteristics ory is bank conflicts. We observed that the throughput of the compared to the off-chip case. For example, on-chip memories GPU processor core is often constrained neither by the shared tend to be more sensitive to dynamically changing latencies, memory bandwidth, nor by the shared memory latency (as while bandwidth limitations are more severe for off-chip mem- long as it stays constant), but is rather due to the varied laten- ories. In the particular case of GPUs, the on-chip first level cies caused by memory bank conflicts. This results in conflicts memories, including both the software managed shared mem- at the writeback stage of the in-order pipeline and pipeline ory and the hardware cache, are heavily banked, in order to stalls, thus degrading system throughput. Based on this ob- provide high bandwidth for the parallel SIMD lanes. Even servation, we investigate and propose a novel elastic pipeline with adequate bandwidth provided by the parallel memory design that minimizes the negative impact of on-chip mem- banks, however, applications can still suffer drastic pipeline ory bank conflicts on system throughput, by decoupling bank stalls, resulting significant performance loss.
    [Show full text]