LOOK BEFORE YOU LEAP INTO the DATA LAKE by Rash Gandhi, Sanjay Verma, Elias Baltassis, and Nic Gordon

Total Page:16

File Type:pdf, Size:1020Kb

LOOK BEFORE YOU LEAP INTO the DATA LAKE by Rash Gandhi, Sanjay Verma, Elias Baltassis, and Nic Gordon LOOK BEFORE YOU LEAP INTO THE DATA LAKE By Rash Gandhi, Sanjay Verma, Elias Baltassis, and Nic Gordon o fully capture the tremendous Enter the “data lake,” a term that refers to Tvalue of using big data, organizations a large repository of data in a “natural,” need nimble and flexible data architectures unprocessed state. Data lakes’ flexibility able to liberate data that could otherwise and size allow for substantially easier stor- remain locked within legacy technologies age of raw data streams that today include and organizational processes. a multitude of data types. Data can be col- lected and later sampled for ideas, tapped Rapid advances in technology and analyti- for real-time analytics, and even potential- cal processing have enabled companies to ly treated for analysis in traditional struc- harness and mine an explosion of data gen- tured systems. But before organizations erated by smartphone apps, website click dive into the data lake, it’s important to un- trails, customer support audio feeds, social derstand what makes this new architecture media messages, customer transactions, unique, the challenges organizations can and more. Traditional enterprise data face during implementation, and ways to warehouse and business intelligence tools address those challenges. excel at organizing the structured data that businesses capture—but they stumble bad- ly when it comes to storing and analyzing What Exactly Is a Data Lake? data of the variety and quantity captured Historically, organizations have invested today and doing so at the speed now re- heavily in building data warehouses. Signif- quired. Companies need data architectures icant up-front time, effort, and cost go into that can handle the diversity of data avail- identifying all the source data required for able now (semistructured data, unstruc- analysis and reporting, defining the data tured data, log files, documents, videos, model and the database structure, and de- and audio, for example) and yield even veloping the programs. The process often more accurate predictive modeling and follows a sequence of steps known as ETL: customer insight at a highly detailed level. extract source data, transform it, and load For more on this topic, go to bcgperspectives.com Exhibit 1 | How a Data Lake Works SOURCE DATA LAKE SYSTEMS INGEST MANAGE MODEL RESULTS Source data Data repository Reporting Raw Fuzzy Internal Structured and unstructured Metadata Data is discovered data enters the (business, Visualization repository operational, and modeled technical) is captured Transform/Improve Clean External Accurate Analytics Source: BCG analysis. it into the data warehouse. Making changes processing power and data capacity. These to an existing data warehouse requires siz- systems are typically configured with data able additional investment to redesign the redundancy to ensure high resilience and programs that extract, transform, and load availability. Much of the big data software data—we estimate that 60% to 75% of de- is open source, which drives down costs. velopment costs come in the ETL layer. The total cost of establishing and running a data lake can be five to ten times lower Moreover, data warehouse solutions typical- than the cost of using traditional SQL- ly provide historical, or backward-looking, based systems. views. And here is where the challenge aris- es: organizations today are demanding that A company’s data lake can be built on any data tell them not just what happened in of multiple technology ecosystems (for ex- the past but also what is likely to happen in ample, Hadoop, Drill, and Cassandra), the the future. They seek predictive and action- most notable of which is the well-estab- able insights, gleaned from a variety of data lished Hadoop. Both upstarts (including accessed through both batch and real-time Cloudera, MapR, and Hortonworks) and processing to inform their strategies. traditional IT players (such as IBM, HP, Mi- crosoft, and Intel) have used Hadoop in Traditional data warehouses are not ideal constructing their data lakes. solutions to this challenge. They are slow to change and costly to operate, and they Data lakes are highly flexible, and they en- can’t be scaled cost-efficiently to process able a responsive “fail fast” approach to the growing volume of data. Data lakes can analytics that can drive significant value. In fill the void. their simplest form, data lakes have three core functions (see Exhibit 1): Given companies’ storage requirements (to house vast amounts of data at low cost) • To ingest structured and unstructured and computing requirements (to process data from multiple sources into a data and run analytics on this volume of data), repository data lakes typically use low-cost, commodi- ty servers, in a scale-out architecture. Serv- • To manage data by cleaning, describing, ers can be added as needed to increase and improving it | Look Before You Leap into the Data Lake 2 • To model data to produce insights that of data and create innovative business in- can be visualized or integrated into sights dynamically. The schema-on-read at- operating systems tribute of a data lake can be one of its ma- jor strengths, especially when the properties of the data are correctly described and What Is Different About Data when data quality is fully understood. Fail- Lakes? ure to adequately govern those properties, A data lake brings new approaches to data however, can quickly undermine the data management on several fronts. lake’s business value. When data is not properly described, for example, it can’t be Content Variety. A data lake is designed to understood and searched; when its quality store and process content in a wide variety isn’t measured, it can’t be trusted. of states (including multistructured, un- structured, and structured content), unlike Timeliness of Data. Information can be traditional data warehouses, which can streamed directly into a data lake, provid- meaningfully store and process only struc- ing an almost real-time view of the data. tured content. As an example of the power This can be important when business of data lakes, an analysis of unstructured decisions rely on real-time analytics, such data such as e-mails or voice calls linked to as making credit decisions. With traditional customer transactions can help identify SQL data architectures, a delay typically fraudulent trading activity. A data ware- occurs as source data is cleaned and then house is limited to storing only structured loaded into a data warehouse, in hourly, data, making such analyses difficult and daily, or weekly batches. Furthermore, time-consuming. traditional SQL systems use heavy controls to insert (that is, to store) data, which slows Data Structure. Traditional data architec- down data throughput. Users of data tures mandate a database structure that warehouses may, therefore, not have the is defined up front. Data architects pre- most up-to-date information, which is a scriptively model and define the physical shortcoming that can undermine the database prior to transforming and load- quality of the insights derived through data ing data into it, a process referred to as analytics. “schema on write.” Data Quality and Validation. Because raw But companies increasingly need an archi- data gets loaded into a data lake, its quality tecture in which users are free to access and trustworthiness is tested at the time it and structure data dynamically on the fly; is accessed for analysis. Traditional SQL- that process is sometimes referred to as based data warehouse programs, on the “schema on read” or “late-binding execu- other hand, undergo extensive testing of tion.” Instead of using the sequence com- the programs used to extract, transform, mon to data warehouses—extract, trans- and load data, which can help ensure the form, load (ETL)—it employs the ELT high quality of the data moved into them. approach, swapping the load and transform steps so that the raw loaded data is cleaned Access and Security. Tools to capture basic and transformed in the data lake. That of- technical metadata for the data ingested in a fers an advantage when the accuracy of the data lake are available, but that information data is imperative, such as for regulatory still must be enriched with business and reporting. Because data quality validation operational metadata that enables users to happens as needed in the data lake, you access and fully exploit data. The rich meta- don’t need to create a big IT project to data and associated security policies en- clean all the data, thus saving time and forced in a traditional data warehouse cost. enable construction of complex user-access models. Fine-grained security policies and The flexibility of a schema-on-read model role-based access privileges grant effective enables users to experiment with a variety control of user access to content. | Look Before You Leap into the Data Lake 3 Effort and Cost. Data lakes are significantly Companies simply won’t be able to model easier and less expensive to implement data in the ways they need to in the future than traditional SQL-based data ware- without the flexible architecture that build- houses, owing to the commoditized nature ing a data lake creates. But to get the great- of the platform, the lower cost of open- est value from these efforts, we recom- source technologies, and the deferment of mend the following steps. data modeling until the user needs to analyze the data. In contrast, the cost of a Identify the highest-value opportunities. data warehouse solution can reach millions The shift toward big data architectures has of dollars for large companies as a result of forced many senior executives to take a the need for up-front data modeling, the fresh look at the major components of a long period of time to design and build, the data architecture strategy and the game- requirement for data integration, and the changing capabilities they enable.
Recommended publications
  • Amazon Connect Data Lake Best Practices AWS Whitepaper Amazon Connect Data Lake Best Practices AWS Whitepaper
    Amazon Connect Data Lake Best Practices AWS Whitepaper Amazon Connect Data Lake Best Practices AWS Whitepaper Amazon Connect Data Lake Best Practices : AWS Whitepaper Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Amazon Connect Data Lake Best Practices AWS Whitepaper Table of Contents Abstract and introduction .................................................................................................................... i Abstract .................................................................................................................................... 1 Are you Well-Architected? ........................................................................................................... 1 Introduction .............................................................................................................................. 1 Amazon Connect ................................................................................................................................ 4 Data lake design principles .................................................................................................................
    [Show full text]
  • Building Big Data Storage Solutions (Data Lakes) for Maximum Flexibility
    Building Big Data Storage Solutions (Data Lakes) for Maximum Flexibility July 2017 © 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. Contents Introduction 1 Amazon S3 as the Data Lake Storage Platform 2 Data Ingestion Methods 3 Amazon Kinesis Firehose 4 AWS Snowball 5 AWS Storage Gateway 5 Data Cataloging 6 Comprehensive Data Catalog 6 HCatalog with AWS Glue 7 Securing, Protecting, and Managing Data 8 Access Policy Options and AWS IAM 9 Data Encryption with Amazon S3 and AWS KMS 10 Protecting Data with Amazon S3 11 Managing Data with Object Tagging 12 Monitoring and Optimizing the Data Lake Environment 13 Data Lake Monitoring 13 Data Lake Optimization 15 Transforming Data Assets 18 In-Place Querying 19 Amazon Athena 20 Amazon Redshift Spectrum 20 The Broader Analytics Portfolio 21 Amazon EMR 21 Amazon Machine Learning 22 Amazon QuickSight 22 Amazon Rekognition 23 Future Proofing the Data Lake 23 Contributors 24 Document Revisions 24 Abstract Organizations are collecting and analyzing increasing amounts of data making it difficult for traditional on-premises solutions for data storage, data management, and analytics to keep pace.
    [Show full text]
  • Cost Modeling Data Lakes for Beginners How to Start Your Journey Into Data Analytics
    Cost Modeling Data Lakes for Beginners How to start your journey into data analytics November 2020 Notices Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. © 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved. Contents Introduction .......................................................................................................................... 1 What should the business team focus on?...................................................................... 2 Defining the approach to cost modeling data lakes ........................................................... 2 Measuring business value ................................................................................................... 4 Establishing an agile delivery process ................................................................................ 5 Building data lakes .............................................................................................................
    [Show full text]
  • A Comprehensive Study of Recent Metadata Models for Data Lake
    DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics A Comprehensive Study of Recent Metadata Models for Data Lake Redha Benaissa∗yz, Omar Boussaidy, Aicha Mokhtariz, and Farid Benhammadix ∗x DBE Laboratory, Ecole Militaire Polytechnique, Bordj el Bahri, Algiers, Algeria y ERIC, Universite de Lyon, Lyon 2, France z RIIMA Laboratory, USTHB University, Algiers, Algeria Email: ∗[email protected], [email protected], [email protected], [email protected] Data Source Abstract—In the era of Big Data, an un amount of 1 precedented Data Discovery Data Source heterogeneous and unstructured data is generated every day, 2 which needs to be stored, managed, and processed to create new services and applications. This has brought new concepts in data Data Source n Construction of Data Storage management such as Data Lakes (DL) where the raw data is Catalog stored without any transformation. Successful DL systems deploy efficient metadata techniques in order to organize the DL. This paper presents a comprehensive study of recent metadata models for Data Lake that points out their rationales, strengths, and Query Tools weaknesses. More precisely, we provide a layered taxonomy of recent metadata models and their specifications. This is followed Figure 1. Data management process in a Data Lake. by a survey of recent works dealing with metadata management in DL, which can be categorized into level, typology, and content extraction of the right metadata to build the catalog remains a metadata. Based on such a study, an in-depth analysis of key challenging issue. features, strengths, and missing points is conducted. This, in turn, allowed to find the gap in the literature and identify open research This paper presents a comprehensive study of recent meta- issues that require the attention of the community.
    [Show full text]
  • Harness the Power of Your Data
    Harness the power of your data: Why Financial Services institutions are building data lakes on AWS What is a data lake? A data lake is a centralized repository that allows you to store all structured and unstructured data at scale and run flexible analytics Financial institutions are collecting such as dashboards, visualizations, big data processing, real-time analytics, and machine learning, to guide better decisions. and storing massive amounts of data Machine The Financial Services industry has relied on traditional data infrastructures Learning Analytics for decades, but traditional data solutions can’t keep up with the volumes and variety of data financial institutions are collecting today. A cloud-based data lake helps financial institutions store all of their data in one central repository, making it easy to support compliance priorities, realize cost efficiencies, perform forecasts, execute risk assessments, better understand customer behavior, and drive innovation. AWS delivers an integrated suite of services that provides the capabilities needed to quickly build and manage a secure data lake that is ready for analysis and the application of machine learning. In this overview, learn how financial institutions are unlocking the value of their data by building data lakes on AWS. On-Premises Real-Time Data Movement Data Movement © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. | 2 There are many benefits to building adata lake on AWS Compliance & Security Scalability Agility Innovation Cost effective Encrypt highly sensitive Amazon S3 data lakes allow any Perform ad-hoc and Aggregated and normalized Pay-as-you-go pricing data and enable controls type of data to be stored at any cost-effective analytics on a data sets provide a foundation for compute, storage, for data access, auditability, scale, making it easy to meet per-query basis without moving for advanced analytics and and analytics.
    [Show full text]
  • Lake Data Warehouse Architecture for Big Data Solutions
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 8, 2020 Lake Data Warehouse Architecture for Big Data Solutions Emad Saddad1 Hoda M. O. Mokhtar3 Climate Change Information Center and Renewable Energy Faculty of Computers and Artificial Intelligence and Expert System‎ Cairo University ‎ Agricultural Research Center (ARC)‎ Giza, Egypt Giza, Egypt 4 2 Maryam Hazman Ali El-Bastawissy Climate Change Information Center and Renewable Energy Faculty of Computer Science and Expert System MSA University Agricultural Research Center (ARC), Giza, Egypt Giza, Egypt Abstract—Traditional Data Warehouse is a multidimensional [2], [3]. To achieve this, we propose a new DW architecture repository. It is nonvolatile, ‎subject-oriented, integrated, time- called Lake Data Warehouse Architecture. Lake Data variant, and non-‎operational data. It is gathered from Warehouse Architecture is a hybrid system that preserves the multiple ‎heterogeneous data ‎sources. We need to adapt traditional DW features. It adds additional features and traditional Data Warehouse architecture to deal with the capabilities that facilitate working with big data technologies new ‎challenges imposed by the abundance of data and the and tools (Hadoop, Data Lake, Delta Lake, and Apache Spark) current big data characteristics, containing ‎volume, value, in a complementary way to support and enhance existing variety, validity, volatility, visualization, variability, and venue. architecture. The new ‎architecture also needs to handle existing drawbacks, including availability, scalability, and ‎consequently query Our proposed contribution solve several issues that face performance. This paper introduces a novel Data Warehouse integrating data from big data repositories such as: architecture, named Lake ‎Data Warehouse Architecture, to provide the traditional Data Warehouse with the capabilities Integrating traditional DW technique, Hadoop to ‎overcome the challenges.
    [Show full text]
  • Building a Data Lake for the Enterprise
    Arcadia PAGE 20 HOW TO GET MORE VALUE FROM YOUR DATA LAKE AND EXTEND ACCESS TO MORE USERS HPE Data Security PAGE 22 SOLVING FOR BUILDING A DATA SECURITY AND PRIVACY IN IoT Cask DATA LAKE FOR PAGE 24 5 KEY INGREDIENTS OF A SUCCESSFUL THE ENTERPRISE DATA LAKE Informatica PAGE 26 BUILDING AN ENTERPRISE DATA LAKE WITH BRAINS, NOT BRAWN IBM PAGE 27 HARNESSING A LOGICAL DATA WAREHOUSE AND DATA RESERVOIR FOR BIG DATA SUCCESS Franz PAGE 28 TRANSFORMING DATA LAKES INTO KNOWLEDGEABLE PLATFORMS Cambridge PAGE 29 SMART DATA LAKES: REVOLUTIONIZING ENTERPRISE ANALYTICS Best Practices Series BUILDING A DATA LAKE FOR THE ENTERPRISE Best Practices Series Data lakes are forming as a response to today’s big data to launch a data lake initiative and another 15% had already sub- challenges, offering a cost-effective way to maintain and manage mitted a budget for adoption. On top of that, 35% were research- immense data resources that hold both current and future ing and considering a data lake approach. In addition, the Uni- potential to the enterprise. However, enterprises need to build sphere survey found clear early use cases exist for the data lake. these environments with great care and consideration, as these However, governance and security are still top of mind as key potentially critical business resources could quickly lose their way challenges and success factors for the data lake. with loose governance, insecure protocols, and redundant data. Besides the mechanical considerations of data storage, there In their book, BI and Analytics on a Data Lake: The Definitive is a need to integrate complex datasets to build more intelligent Guide, Sameer Nori and Jim Scott identify the role of a data lake, analytic frameworks for more targeted and intelligent decisions.
    [Show full text]
  • Solution Brief Data-Driven Transformation on AWS: a Blueprint
    Solution Brief Data-Driven Transformation on AWS: A Blueprint for Success Key Benefits Modernize Cloud Analytics Quickly and Cost-Effectively With Intelligent, • Accelerate data warehouse and Automated Cloud Lakehouse Data Management From Informatica data lake modernization with a metadata-driven, AI-powered integration platform as a service The challenge for today’s enterprises is to unleash the power of their data, while getting more out • Successfully deploy a new of their IT investment. In order to do so, companies are moving their analytics workloads to the data warehouse, data lake, cloud and modernizing their applications, with the goal of increasing efficiency, productivity, and or data lakehouse on AWS with cost savings. Given that over 50% of data often comes from sources outside the company, many high-performance data integration organizations struggle with a lack of control over data format and data quality. In addition, legacy that connects to all data, and seamlessly integrates high on-premises systems are often hobbled by inefficient processes and lack the agility to quickly volumes of data for any deliver the time-sensitive data insights required to keep companies competitive. analytics workload • Reduce the cost of data To overcome these hurdles, organizations are investing in cloud data warehouses, data lakes, and warehouse and data lake data lakehouses. But without the capability to automatically discover, cleanse, integrate, manage, consolidation and modernization by leveraging the flexibility govern, and secure data across your environment, these initiatives may fail. One-off solutions and scalability of AWS such as hand coding increase manual processes, consume resources needed by the business, • Ensure better business outcomes and can erode trust.
    [Show full text]
  • A Big Data Lake for Multilevel Streaming Analytics
    A Big Data Lake for Multilevel Streaming Analytics Ruoran Liu Haruna Isah Farhana Zulkernine School of Computing School of Computing School of Computing Queen’s University Queen’s University Queen’s University Kingston, Canada Kingston, Canada Kingston, Canada [email protected] [email protected] [email protected] Abstract—Large organizations are seeking to create new security, or authorization [3]. It is a large storage repository that architectures and scalable platforms to effectively handle data holds a vast amount of raw data in its native format until it is management challenges due to the explosive nature of data rarely needed. This is in contrast to the traditional data warehouse seen in the past. These data management challenges are largely approach, also known as schema on write, which requires more posed by the availability of streaming data at high velocity from upfront design and assumptions about how the data will be used. various sources in multiple formats. The changes in data paradigm In a data warehouse, adding data to a database requires data to have led to the emergence of new data analytics and management be transformed into a pre-determined schema before it can be architecture. This paper focuses on storing high volume, velocity loaded. This step often consumes a lot of time, effort, and and variety data in the raw formats in a data storage architecture expense before the data can be used for downstream applications called a data lake. First, we present our study on the limitations of [4]. A data lake is meant to complement and not replace a data traditional data warehouses in handling recent changes in data paradigms.
    [Show full text]
  • Data Lakes Efficiently Consolidate Your Data
    Business Intelligence & Data Analytics / Data Integration / Data Lakes Data Integration Data Lakes Challenge Solution Ingesting data into a data warehouse can be slow, because A data lake, which complements your data warehouse, allows the data must fit the database’s schema. Also, before any you to store data in its native format. Data lakes also allow data analytics can be done, the data must first be extracted analytic tools to work with the data directly, rather than having to from the database. first extract it from the database. Data Lakes Efficiently Consolidate Your Data Data lakes, which complement rather than replacing data warehouses, provide a cost-effective way for large organizations to store, process, analyze, and efficiently utilize large amounts of data in many different shapes and levels of structure. A data lake is an architectural approach that allows users to store massive amounts of data in a central location, so it’s readily available to be categorized, processed, analyzed, and consumed by diverse groups within an organization. For instance, an organization can place internal data, external data, partner data, competitor data, business process data, social data, and people data in a data lake so that it is at the ready for analysis and integration for diverse use. Unlike a data warehouse, the data lake excels at utilizing the availability of large quantities of coherent data, along with deep learning algorithms to recognize items of interest that will power real-time decision analytics. To get data into the data warehouse, it is usually extracted, transformed, and then loaded (ETL) from the data source into the data warehouse, which has a highly-structured data model.
    [Show full text]
  • Sub-Second Analytics for User-Facing Applications with Apache Spark™ and Rockset Venkat Venkataramani CEO and Co-Founder, Rockset About Me
    Sub-Second Analytics for User-Facing Applications with Apache Spark™ and Rockset Venkat Venkataramani CEO and co-founder, Rockset About me 2016 - present 2007 - 2015 2002 - 2007 Venkat Venkataramani Co-Founder & CEO 2002 - 2007 Agenda ▪ Large-scale data applications ▪ Rockset: designed to serve data applications ▪ Reference architectures with Apache Spark and Rockset ▪ Conclusion Large-scale data applications Building apps on Apache Spark BI Machine Learning Data Pipelines Apache Spark Data Lake Building apps on Apache Spark BI Machine Learning Data Pipelines Data Apps low latency high concurrency Serving Tier Apache Spark (MySQL, Postgres) Data Lake What happens when we get to large scale? BI Machine Learning Data Pipelines Large-Scale Data Apps TBs of data low latency high concurrency Serving Tier Apache Spark (MySQL, Postgres) Data Lake BI and SQL Data Science and Data Engineering Analytics Machine Learning Real-Time Data Applications Apache Spark Rockset Data Lake Example: Investment decisions at Sequoia Capital • Data sets from multiple vendors loaded regularly into data lake • Run data enrichment in Apache Spark/Databricks • Entity 360: combine with internal data sources for complete view of potential investments • Investment team and data scientists use app to help make investment decisions Example: Personalized recommendations at Ritual • Health technology company selling multivitamins online • Customer data from Segment loaded into data warehouse and data lake • Machine learning modeling in Apache Spark/Databricks • Build personalized
    [Show full text]
  • Essential Guide to Data Lakes
    Essential Guide to Data Lakes DESIGNING DATA LAKES TO OPTIMIZE A N A LY TICS TABLE OF CONTENTS 2 Executive Summary 3 Introduction 4 What is a Data Lake? 7 How Does a Data Lake Add Value 9 Overcoming Data Lake Challenges 14 Data Lake vs. Data Warehouse 19 Building a Data Lake 28 Data Lake Best Practices 31 Key Takeaways 33 Conclusion 1 | Essential Guide to Data Lakes EXECUTIVE SUMMARY Businesses today generate large amounts of data, and desire to utilize it in order to gain business insights that will help drive competitive advantage. Data collected typically originates from diverse source systems and then needs to be transformed to better understand your core business, customers, and market dynamics. Due to the ever-increasing volumes of data, businesses need to continually find new and more efficient ways to consolidate and transform various data sources in order to make better, more informed decisions and in turn, gain competitive advantage. How can businesses consolidate all their data? Centralizing all data within a data warehouse can prove effective for a number of use cases. While this approach may work for some businesses, others may require advanced scalability, accessibility, and a need to better control costs. A data lake, which allows all data types in any volumes to be stored and made available without the need to transform it before being ready for analysis, can address these unique requirements by providing a cost-effective resource for scaling, storing and accessing large volumes of diverse data types. 2 | Essential Guide to Data Lakes INTRODUCTION The concept of a data lake has been around for a while, however, the term ‘data lake’ was first introduced by James Dixon, CTO at Pentaho in 2010.
    [Show full text]