Number 3 March 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Total Page:16

File Type:pdf, Size:1020Kb

Number 3 March 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology Volume 1 - Number 1 May - September 1997 Volume 20 - Number 3 March 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematologyis a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It is made for and by: clinicians and researchers in cytogenetics, molecular biology, oncology, haematology, and pathology. One main scope of the Atlas is to conjugate the scientific information provided by cytogenetics/molecular genetics to the clinical setting (diagnostics, prognostics and therapeutic design), another is to provide an encyclopedic knowledge in cancer genetics. The Atlas deals with cancer research and genomics. It is at the crossroads of research, virtual medical university (university and post-university e-learning), and telemedicine. It contributes to "meta-medicine", this mediation, using information technology, between the increasing amount of knowledge and the individual, having to use the information. Towards a personalized medicine of cancer. It presents structured review articles ("cards") on: 1- Genes, 2- Leukemias, 3- Solid tumors, 4- Cancer-prone diseases, and also 5- "Deep insights": more traditional review articles on the above subjects and on surrounding topics. It also present 6- Case reports in hematology and 7- Educational items in the various related topics for students in Medicine and in Sciences. The Atlas of Genetics and Cytogenetics in Oncology and Haematology does not publish research articles. See also: http://documents.irevues.inist.fr/bitstream/handle/2042/56067/Scope.pdf Editorial correspondance Jean-Loup Huret, MD, PhD, Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France phone +33 5 49 44 45 46 [email protected] or [email protected] . Editor, Editorial Board and Publisher See:http://documents.irevues.inist.fr/bitstream/handle/2042/48485/Editor-editorial-board-and-publisher.pdf The Atlas of Genetics and Cytogenetics in Oncology and Haematology is published 12 times a year by ARMGHM, a non profit organisation, and by the INstitute for Scientific and Technical Information of the French National Center for Scientific Research (INIST-CNRS) since 2008. The Atlas is hosted by INIST-CNRS (http://www.inist.fr) Staff: Vanessa Le Berre Philippe Dessen is the Database Directorof the on-line version (Gustave Roussy Institute – Villejuif – France). Publisher Contact:INIST-CNRS Mailing Address:Catherine Morel, 2,Allée du Parc de Brabois, CS 10130, 54519 Vandoeuvre-lès-Nancy France. Email Address:[email protected] Articles of the ATLAS are free in PDF format, and metadata are available on the web in Dublin Core XML format and freely harvestable.A Digital object identifier (DOI®), recorded at the International Agency CrossRefhttp://www.crossref.org/ is assigned to each article. http://AtlasGeneticsOncology.org © ATLAS - ISSN 1768-3262 The PDF version of the Atlas of Genetics and Cytogenetics in Oncology and Haematology is a reissue of the original articles published in collaboration with the Institute for Scientific and Technical Information (INstitut de l’Information Scientifique et Technique - INIST) of the French National Center for Scientific Research (CNRS) on its electronic publishing platform I-Revues. Online and PDF versions of the Atlas of Genetics and Cytogenetics in Oncology and Haematology are hosted by INIST-CNRS. Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Editor-in-Chief Jean-Loup Huret (Poitiers, France) Board Members Sreeparna Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; [email protected] Banerjee Alessandro Department of Health Sciences, University of Milan, Italy; [email protected] Beghini Judith Bovée 2300 RC Leiden, The Netherlands; [email protected] Dipartimento di ScienzeMediche, Sezione di Ematologia e Reumatologia Via Aldo Moro 8, 44124 - Ferrara, Italy; Antonio Cuneo [email protected] Department of Pathology, Brigham, Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Paola Dal Cin [email protected] François IRBA, Departement Effets Biologiques des Rayonnements, Laboratoire de Dosimetrie Biologique des Irradiations, Desangles Dewoitine C212, 91223 Bretigny-sur-Orge, France; [email protected] Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, Roosevelt Dr. Oxford, Enric Domingo OX37BN, UK [email protected] Ayse Elif Erson- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; [email protected] Bensan Ad Geurts van Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Kessel 6500 HB Nijmegen, The Netherlands; [email protected] Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Oskar A. Haas Children's Cancer Research Institute Vienna, Vienna, Austria. [email protected] Center for Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium; Anne Hagemeijer [email protected] Department of Pathology, The Ohio State University, 129 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, Nyla Heerema USA; [email protected] Hartmann Institute and HUSLab, University of Helsinki, Department of Pathology, Helsinki, Finland; Sakari Knuutila [email protected] Lab Centro di Ricerche e TecnologieBiomedicheIRCCS-IstitutoAuxologico Italiano Milano, Italy; Lidia Larizza l.larizza@auxologico Roderick Mc Department of Human, Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms, Cell Leod Cultures, Braunschweig, Germany; [email protected] Hematology University of Perugia, University Hospital S.Mariadella Misericordia, Perugia, Italy; Cristina Mecucci [email protected] Department of Clinical Genetics, University and Regional Laboratories, Lund University, SE-221 85 Lund, Sweden; Fredrik Mertens [email protected] Institute of Human Genetics, Hannover Medical School, 30623 Hannover, Germany; miller.konstantin@mh- Konstantin Miller hannover.de Department of Clinical Genetics, University and Regional Laboratories, Lund University, SE-221 85 Lund, Sweden; Felix Mitelman [email protected] Hossain Mossafa Laboratoire CERBA, 95066 Cergy-Pontoise cedex 9, France; [email protected] Department of Human, Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms, Cell Stefan Nagel Cultures, Braunschweig, Germany; [email protected] Florence Laboratory of Solid Tumors Genetics, Nice University Hospital, CNRSUMR 7284/INSERMU1081, France; Pedeutour [email protected] Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 250, Susana Raimondi Memphis, Tennessee 38105-3678, USA; [email protected] Clelia Tiziana Department of Biology, University of Bari, Bari, Italy; [email protected] Storlazzi CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschunge.V., Vienna, Austria; Sabine Strehl [email protected] Nancy Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, Clermont-Ferrand, France; Uhrhammer [email protected] Dan L. Van Dyke Mayo Clinic Cytogenetics Laboratory, 200 First St SW, Rochester MN 55905, USA; [email protected] Universita di Cagliari, Dipartimento di ScienzeBiomediche(DiSB), CittadellaUniversitaria, 09042 Monserrato (CA) - Roberta Vanni Italy; [email protected] Service d'Histologie-Embryologie-Cytogénétique, Unité de Cytogénétique Onco-Hématologique, Hôpital Franck Viguié Universitaire Necker-Enfants Malades, 75015 Paris, France; [email protected] The PDF version of the Atlas of Genetics and Cytogenetics in Oncology and Haematology is a reissue of the original articles published in collaboration with the Institute for Scientific and Technical Information (INstitut de l’InformationScientifique et Technique - INIST) of the French National Center for Scientific Research (CNRS) on its electronic publishing platform I-Revues. Online and PDF versions of the Atlas of Genetics and Cytogenetics in Oncology and Haematology are hosted by INIST-CNRS. Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Volume 20, Number 3, March 2016 Table of contents Gene Section ANKHD1 (ankyrin repeat and KH domain containing 1) 98 Joao Agostinho Machado-Neto, Fabiola Traina CASP8AP2 (caspase 8 associated protein 2) 102 Rocío Juárez-Velázquez, Patricia Pérez-Vera TRIB1 (tribbles pseudokinase 1) 106 Jessica Johnston, Endre Kiss-Toth DOCK1 (Dedicator of cytokinesis 1) 115 Ping Li, Fung Zhao, Annie N. Cheung NR3C1 (nuclear receptor subfamily 3, group C, member 1/glucocorticoid receptor) 121 Thomas D. Siamatras, Constantine A. Stratakis CCND1 (B-cell leukemia/lymphoma 1) 130 Leukaemia Section Classification of myelodysplastic syndromes 2015 155 Virginie Eclache t(11;19)(q13;p13) FSTL3/CCND1 162 Jean-Loup Huret Case Report Section The t(2;12)(p12;p13), leading to the juxtaposition of the cyclin D2 CCND2 gene with the immunoglobulin kappa locus (IGK), defines a small subset of mantle cell lymphomas lacking cyclin D1 expression. 163 Nicolas Duployez, Laurent Pascal, Judith Bruge, Marie Fatoux, Catherine Roche-Lestienne Atlas Genet Cytogenet Oncol Haematol. 1998;
Recommended publications
  • Mouse Shcbp1 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Shcbp1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Shcbp1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Shcbp1 gene (NCBI Reference Sequence: NM_011369 ; Ensembl: ENSMUSG00000022322 ) is located on Mouse chromosome 8. 13 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 13 (Transcript: ENSMUST00000022945). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Shcbp1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-78D8 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit normal viability, fertility and T cell development but show decreased susceptibility to experimental autoimmune encephalomyelitis. Exon 4 starts from about 19.36% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 2817 bp, and the size of intron 4 for 3'-loxP site insertion: 10568 bp. The size of effective cKO region: ~709 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 13 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Shcbp1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Identify Key Genes and Pathways in Pancreatic Ductal Adenocarcinoma Via Bioinformatics Analysis
    Identify key genes and pathways in pancreatic ductal adenocarcinoma via bioinformatics analysis Huatian Luo Fujian Medical University https://orcid.org/0000-0002-6505-825X Da-qiu Chen Fujian Medical University Jing-jing Pan Fujian Medical University Zhang-wei Wu Fujian Medical University Can Yang Fujian Medical University Hao-jie Xu Fujian Medical University Shang-hua Xu Fujian Medical University Hong-da Cai Fujian Medical University Shi Chen ( [email protected] ) Fujian Provincial Hospital Yao-dong Wang ( [email protected] ) Fujian Medical University Research article Keywords: Bioinformatical analysis, Microarray, Pancreatic cancer, Differentially expressed gene Posted Date: April 7th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-19826/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract Background: Pancreatic cancer has many pathologic types, among which pancreatic ductal adenocarcinoma (PDAC) is the most common one. Bioinformatics has become a very common tool for the selection of potentially pathogenic genes. Methods: Three data sets containing the gene expression proles of PDAC were downloaded from the gene expression omnibus (GEO) database. The limma package of R language was utilized to explore the differentially expressed genes (DEGs). To analyze functions and signaling pathways, the Database Visualization and Integrated Discovery (DAVID) was used. To visualize the protein-protein interaction (PPI) of the DEGs ,Cytoscape was performed under the utilization of Search Tool for the Retrieval of Interacting Genes (STRING). With the usage of the plug-in cytoHubba in cytoscape software, the hub genes were found out. To verify the expression levels of hub genes, Gene Expression Proling Interactive Analysis (GEPIA) was performed.
    [Show full text]
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • The Splicing Factor XAB2 Interacts with ERCC1-XPF and XPG for RNA-Loop Processing During Mammalian Development
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Splicing Factor XAB2 interacts with ERCC1-XPF and XPG for RNA-loop processing during mammalian development Evi Goulielmaki1*, Maria Tsekrekou1,2*, Nikos Batsiotos1,2, Mariana Ascensão-Ferreira3, Eleftheria Ledaki1, Kalliopi Stratigi1, Georgia Chatzinikolaou1, Pantelis Topalis1, Theodore Kosteas1, Janine Altmüller4, Jeroen A. Demmers5, Nuno L. Barbosa-Morais3, George A. Garinis1,2* 1. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology- Hellas, GR70013, Heraklion, Crete, Greece, 2. Department of Biology, University of Crete, Heraklion, Crete, Greece, 3. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal, 4. Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany, 5. Proteomics Center, Netherlands Proteomics Center, and Department of Biochemistry, Erasmus University Medical Center, the Netherlands. Corresponding author: George A. Garinis ([email protected]) *: equally contributing authors bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers.
    [Show full text]
  • Visual Exploration Across Biomedical Databases
    1 Visual Exploration Across Biomedical Databases Michael D. Lieberman∗†‡ Sima Taheri∗ Huimin Guo∗ Fatemeh Mir-Rashed∗ [email protected] [email protected] [email protected] [email protected] Inbal Yahav§ Aleks Aris∗ Ben Shneiderman∗† [email protected] [email protected] [email protected] Abstract—Though biomedical research often draws on knowl- mentioned in d. d may also have associations with other edge from a wide variety of fields, few visualization methods PubMed documents that cite d as a reference, as well as for biomedical data incorporate meaningful cross-database ex- associations to the PubMed documents that d itself cites. ploration. A new approach is offered for visualizing and explor- ∈ ing a query-based subset of multiple heterogeneous biomedical Furthermore, each gene g G could have associations with databases. Databases are modeled as an entity-relation graph the proteins for which g codes, or the DNA sequences in containing nodes (database records) and links (relationships which g’s code appears. Usually, the various types of records between records). Users specify a keyword search string to in these databases also have many attributes associated with retrieve an initial set of nodes, and then explore intra- and inter- them. For example, PubMed documents might be annotated database links. Results are visualized with user-defined semantic substrates to take advantage of the rich set of attributes usually with the date of publication, authors, and general topics, while present in biomedical data. Comments from domain experts gene records could be annotated with the relevant species, indicate that this visualization method is potentially advantageous location on chromosome, or function.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
    1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function.
    [Show full text]
  • MEIS2 Promotes Cell Migration and Invasion in Colorectal Cancer
    ONCOLOGY REPORTS 42: 213-223, 2019 MEIS2 promotes cell migration and invasion in colorectal cancer ZIANG WAN1*, RUI CHAI1*, HANG YUAN1*, BINGCHEN CHEN1, QUANJIN DONG1, BOAN ZHENG1, XIAOZHOU MOU2, WENSHENG PAN3, YIFENG TU4, QING YANG5, SHILIANG TU1 and XINYE HU1 1Department of Colorectal Surgery, 2Clinical Research Institute and 3Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014; 4Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034; 5Department of Academy of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China Received October 9, 2018; Accepted March 18, 2019 DOI: 10.3892/or.2019.7161 Abstract. Colorectal cancer (CRC) is one of the most common 5-year survival rate of metastatic CRC is as low as ~10%. In types of malignancy worldwide. Distant metastasis is a key the past few decades, several regulators of CRC metastasis cause of CRC‑associated mortality. MEIS2 has been identified have been identified, including HNRNPLL and PGE2 (4,5). to be dysregulated in several types of human cancer. However, HNRNPLL has been revealed to modulate alternative splicing the mechanisms underlying the regulatory role of MEIS2 in of CD44 during the epithelial-mesenchymal transition (EMT), CRC metastasis remain largely unknown. For the first time, which leads to suppression of CRC metastasis (4). PGE2 the present study demonstrated that MEIS2 serves a role as a induced an expansion of CRC stem cells to promote liver promoter of metastasis in CRC. In vivo and in vitro experiments metastases in mice by activating NF-κB (5).
    [Show full text]
  • Manuscript Submission Manuscript Draft Manuscript Number: BMB-20-087 Title: Emerging Functions for ANKHD1 in Cance
    BMB Reports - Manuscript Submission Manuscript Draft Manuscript Number : BMB-20-087 Title : Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes Article Type : Mini Review Keywords : Ankyrin repeat and KH domain containing 1; ANKHD1; JAK/STAT; YAP1; Cancer Corresponding Author : João Agostinho Machado-Neto Auth ors : Bruna Oliveira de Almeida 1, João Agostinho Machado-Neto 1,* Institution : 1Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil, UNCORRECTED PROOF Mini Review Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes Bruna Oliveira de Almeida, João Agostinho Machado-Neto Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil Running title: ANKHD1, a multitask protein, in cancer cells Key words: Ankyrin repeat and KH domain containing 1; ANKHD1; JAK/STAT; YAP1; Cancer. Corresponding Author: João Agostinho Machado Neto, PhD Department of Pharmacology Institute of Biomedical Sciences of University of São Paulo Av. Prof. Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP Phone: 55-11- 3091-7218; Fax: 55-11-3091-7322 E-mail: [email protected] UNCORRECTED PROOF 1 Abstract ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein- protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported.
    [Show full text]
  • Genome-Wide DNA Methylation Profiles in Community Members Exposed to the World Trade Center Disaster
    International Journal of Environmental Research and Public Health Article Genome-Wide DNA Methylation Profiles in Community Members Exposed to the World Trade Center Disaster Alan A. Arslan 1,2,3,* , Stephanie Tuminello 2, Lei Yang 2, Yian Zhang 2, Nedim Durmus 4, Matija Snuderl 5, Adriana Heguy 5,6, Anne Zeleniuch-Jacquotte 2,3, Yongzhao Shao 2,3 and Joan Reibman 4 1 Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA 2 Department of Population Health, New York University Langone Health, New York, NY 10016, USA; [email protected] (S.T.); [email protected] (L.Y.); [email protected] (Y.Z.); [email protected] (A.Z.-J.); [email protected] (Y.S.) 3 NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA 4 Department of Medicine, New York University Langone Health, New York, NY 10016, USA; [email protected] (N.D.); [email protected] (J.R.) 5 Department of Pathology, New York University Langone Health, New York, NY 10016, USA; [email protected] (M.S.); [email protected] (A.H.) 6 NYU Langone’s Genome Technology Center, New York, NY 10016, USA * Correspondence: [email protected] Received: 30 June 2020; Accepted: 25 July 2020; Published: 30 July 2020 Abstract: The primary goal of this pilot study was to assess feasibility of studies among local community members to address the hypothesis that complex exposures to the World Trade Center (WTC) dust and fumes resulted in long-term epigenetic changes. We enrolled 18 WTC-exposed cancer-free women from the WTC Environmental Health Center (WTC EHC) who agreed to donate blood samples during their standard clinical visits.
    [Show full text]