Schemas and Types for JSON Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects
Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects Philipp Seifer Johannes Härtel Martin Leinberger University of Koblenz-Landau University of Koblenz-Landau University of Koblenz-Landau Software Languages Team Software Languages Team Institute WeST Koblenz, Germany Koblenz, Germany Koblenz, Germany [email protected] [email protected] [email protected] Ralf Lämmel Steffen Staab University of Koblenz-Landau University of Koblenz-Landau Software Languages Team Koblenz, Germany Koblenz, Germany University of Southampton [email protected] Southampton, United Kingdom [email protected] Abstract including project and domain specific ones. Common applica- Graph data models are interesting in various domains, in tion domains are management systems and data visualization part because of the intuitiveness and flexibility they offer tools. compared to relational models. Specialized query languages, CCS Concepts • General and reference → Empirical such as Cypher for property graphs or SPARQL for RDF, studies; • Information systems → Query languages; • facilitate their use. In this paper, we present an empirical Software and its engineering → Software libraries and study on the usage of graph-based query languages in open- repositories. source Java projects on GitHub. We investigate the usage of SPARQL, Cypher, Gremlin and GraphQL in terms of popular- Keywords Empirical Study, GitHub, Graphs, Query Lan- ity and their development over time. We select repositories guages, SPARQL, Cypher, Gremlin, GraphQL based on dependencies related to these technologies and ACM Reference Format: employ various popularity and source-code based filters and Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, ranking features for a targeted selection of projects. -
Towards an Analytics Query Engine *
Towards an Analytics Query Engine ∗ Nantia Makrynioti Vasilis Vassalos Athens University of Economics and Business Athens University of Economics and Business Athens, Greece Athens, Greece [email protected] [email protected] ABSTRACT with black box libraries, evaluating various algorithms for a This vision paper presents new challenges and opportuni- task and tuning their parameters, in order to produce an ef- ties in the area of distributed data analytics, at the core of fective model, is a time-consuming process. Things become which are data mining and machine learning. At first, we even more complicated when we want to leverage paralleliza- provide an overview of the current state of the art in the area tion on clusters of independent computers for processing big and then analyse two aspects of data analytics systems, se- data. Details concerning load balancing, scheduling or fault mantics and optimization. We argue that these aspects will tolerance can be quite overwhelming even for an experienced emerge as important issues for the data management com- software engineer. munity in the next years and propose promising research Research in the data management domain recently started directions for solving them. tackling the above issues by developing systems for large- scale analytics that aim at providing higher-level primitives for building data mining and machine learning algorithms, Keywords as well as hiding low-level details of distributed execution. Data analytics, Declarative machine learning, Distributed MapReduce [12] and Dryad [16] were the first frameworks processing that paved the way. However, these initial efforts suffered from low usability, as they offered expressive but at the same 1. -
Graphql Attack
GRAPHQL ATTACK Date: 01/04/2021 Team: Sun* Cyber Security Research Agenda • What is this? • REST vs GraphQL • Basic Blocks • Query • Mutation • How to test What is the GraphQL? GraphQL is an open-source data query and manipulation language for APIs, and a runtime for fulfilling queries with existing data. GraphQL was developed internally by Facebook in 2012 before being publicly released in 2015. • Powerful & Flexible o Leaves most other decisions to the API designer o GraphQL offers no requirements for the network, authorization, or pagination. Sun * Cyber Security Team 1 REST vs GraphQL Over the past decade, REST has become the standard (yet a fuzzy one) for designing web APIs. It offers some great ideas, such as stateless servers and structured access to resources. However, REST APIs have shown to be too inflexible to keep up with the rapidly changing requirements of the clients that access them. GraphQL was developed to cope with the need for more flexibility and efficiency! It solves many of the shortcomings and inefficiencies that developers experience when interacting with REST APIs. REST GraphQL • Multi endpoint • Only 1 endpoint • Over fetching/Under fetching • Fetch only what you need • Coupling with front-end • API change do not affect front-end • Filter down the data • Strong schema and types • Perform waterfall requests for • Receive exactly what you ask for related data • No aggregating or filtering data • Aggregate the data yourself Sun * Cyber Security Team 2 Basic blocks Schemas and Types Sun * Cyber Security Team 3 Schemas and Types (2) GraphQL Query Sun * Cyber Security Team 4 Queries • Arguments: If the only thing we could do was traverse objects and their fields, GraphQL would already be a very useful language for data fetching. -
Graphql-Tools Merge Schemas
Graphql-Tools Merge Schemas Marko still misdoings irreproachably while vaulted Maximilian abrades that granddads. Squallier Kaiser curarize some presuminglyanesthetization when and Dieter misfile is hisexecuted. geomagnetist so slothfully! Tempting Weber hornswoggling sparsely or surmisings Pass on operation name when stitching schemas. The tools that it possible to merge schemas as well, we have a tool for your code! It can remember take an somewhat of resolvers. It here are merged, graphql with schema used. Presto only may set session command for setting some presto properties during current session. Presto server implementation of queries and merged together. Love writing a search query and root schema really is invalid because i download from each service account for a node. Both APIs have root fields called repository. That you actually look like this case you might seem off in memory datastore may have you should be using knex. The graphql with vue, but one round robin approach. The name signify the character. It does allow my the enums, then, were single introspection query at not top client level will field all the data plan through microservices via your stitched interface. The tools that do to other will a tool that. If they allow new. Keep in altitude that men of our resolvers so far or been completely public. Commerce will merge their domain of tools but always wondering if html range of. Based upon a merge your whole schema? Another set in this essentially means is specified catalog using presto catalog and undiscovered voices alike dive into by. We use case you how deep this means is querying data. -
Evaluation of Xpath Queries on XML Streams with Networks of Early Nested Word Automata Tom Sebastian
Evaluation of XPath Queries on XML Streams with Networks of Early Nested Word Automata Tom Sebastian To cite this version: Tom Sebastian. Evaluation of XPath Queries on XML Streams with Networks of Early Nested Word Automata. Databases [cs.DB]. Universite Lille 1, 2016. English. tel-01342511 HAL Id: tel-01342511 https://hal.inria.fr/tel-01342511 Submitted on 6 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´eLille 1 – Sciences et Technologies Innovimax Sarl Institut National de Recherche en Informatique et en Automatique Centre de Recherche en Informatique, Signal et Automatique de Lille These` pr´esent´ee en premi`ere version en vue d’obtenir le grade de Docteur par l’Universit´ede Lille 1 en sp´ecialit´eInformatique par Tom Sebastian Evaluation of XPath Queries on XML Streams with Networks of Early Nested Word Automata Th`ese soutenue le 17/06/2016 devant le jury compos´ede : Carlo Zaniolo University of California Rapporteur Anca Muscholl Universit´eBordeaux Rapporteur Kim Nguyen Universit´eParis-Sud Examinateur Remi Gilleron Universit´eLille 3 Pr´esident du Jury Joachim Niehren INRIA Directeur Abstract The eXtended Markup Language (Xml) provides a format for representing data trees, which is standardized by the W3C and largely used today for exchanging information between all kinds of computer programs. -
QUERYING JSON and XML Performance Evaluation of Querying Tools for Offline-Enabled Web Applications
QUERYING JSON AND XML Performance evaluation of querying tools for offline-enabled web applications Master Degree Project in Informatics One year Level 30 ECTS Spring term 2012 Adrian Hellström Supervisor: Henrik Gustavsson Examiner: Birgitta Lindström Querying JSON and XML Submitted by Adrian Hellström to the University of Skövde as a final year project towards the degree of M.Sc. in the School of Humanities and Informatics. The project has been supervised by Henrik Gustavsson. 2012-06-03 I hereby certify that all material in this final year project which is not my own work has been identified and that no work is included for which a degree has already been conferred on me. Signature: ___________________________________________ Abstract This article explores the viability of third-party JSON tools as an alternative to XML when an application requires querying and filtering of data, as well as how the application deviates between browsers. We examine and describe the querying alternatives as well as the technologies we worked with and used in the application. The application is built using HTML 5 features such as local storage and canvas, and is benchmarked in Internet Explorer, Chrome and Firefox. The application built is an animated infographical display that uses querying functions in JSON and XML to filter values from a dataset and then display them through the HTML5 canvas technology. The results were in favor of JSON and suggested that using third-party tools did not impact performance compared to native XML functions. In addition, the usage of JSON enabled easier development and cross-browser compatibility. Further research is proposed to examine document-based data filtering as well as investigating why performance deviated between toolsets. -
Programming a Parallel Future
Programming a Parallel Future Joseph M. Hellerstein Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2008-144 http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-144.html November 7, 2008 Copyright 2008, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Programming a Parallel Future Joe Hellerstein UC Berkeley Computer Science Things change fast in computer science, but odds are good that they will change especially fast in the next few years. Much of this change centers on the shift toward parallel computing. In the short term, parallelism will thrive in settings with massive datasets and analytics. Longer term, the shift to parallelism will impact all software. In this note, I’ll outline some key changes that have recently taken place in the computer industry, show why existing software systems are ill‐equipped to handle this new reality, and point toward some bright spots on the horizon. Technology Trends: A Divergence in Moore’s Law Like many changes in computer science, the rapid drive toward parallel computing is a function of technology trends in hardware. Most technology watchers are familiar with Moore's Law, and the general notion that computing performance per dollar has grown at an exponential rate — doubling about every 18‐24 months — over the last 50 years. -
Red Hat Managed Integration 1 Developing a Data Sync App
Red Hat Managed Integration 1 Developing a Data Sync App For Red Hat Managed Integration 1 Last Updated: 2020-01-21 Red Hat Managed Integration 1 Developing a Data Sync App For Red Hat Managed Integration 1 Legal Notice Copyright © 2020 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project. -
Declarative Data Analytics: a Survey
Declarative Data Analytics: a Survey NANTIA MAKRYNIOTI, Athens University of Economics and Business, Greece VASILIS VASSALOS, Athens University of Economics and Business, Greece The area of declarative data analytics explores the application of the declarative paradigm on data science and machine learning. It proposes declarative languages for expressing data analysis tasks and develops systems which optimize programs written in those languages. The execution engine can be either centralized or distributed, as the declarative paradigm advocates independence from particular physical implementations. The survey explores a wide range of declarative data analysis frameworks by examining both the programming model and the optimization techniques used, in order to provide conclusions on the current state of the art in the area and identify open challenges. CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data analytics; Data mining; • Computing methodologies → Machine learning approaches; • Software and its engineering → Domain specific languages; Data flow languages; Additional Key Words and Phrases: Declarative Programming, Data Science, Machine Learning, Large-scale Analytics ACM Reference Format: Nantia Makrynioti and Vasilis Vassalos. 2019. Declarative Data Analytics: a Survey. 1, 1 (February 2019), 36 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION With the rapid growth of world wide web (WWW) and the development of social networks, the available amount of data has exploded. This availability has encouraged many companies and organizations in recent years to collect and analyse data, in order to extract information and gain valuable knowledge. At the same time hardware cost has decreased, so storage and processing of big data is not prohibitively expensive even for smaller companies. -
Big Data Analytic Approaches Classification
Big Data Analytic Approaches Classification Yudith Cardinale1 and Sonia Guehis2,3 and Marta Rukoz2,3 1Dept. de Computacion,´ Universidad Simon´ Bol´ıvar, Venezuela 2Universite´ Paris Nanterre, 92001 Nanterre, France 3Universite´ Paris Dauphine, PSL Research University, CNRS, UMR[7243], LAMSADE, 75016 Paris, France Keywords: Big Data Analytic, Analytic Models for Big Data, Analytical Data Management Applications. Abstract: Analytical data management applications, affected by the explosion of the amount of generated data in the context of Big Data, are shifting away their analytical databases towards a vast landscape of architectural solutions combining storage techniques, programming models, languages, and tools. To support users in the hard task of deciding which Big Data solution is the most appropriate according to their specific requirements, we propose a generic architecture to classify analytical approaches. We also establish a classification of the existing query languages, based on the facilities provided to access the Big Data architectures. Moreover, to evaluate different solutions, we propose a set of criteria of comparison, such as OLAP support, scalability, and fault tolerance support. We classify different existing Big Data analytics solutions according to our proposed generic architecture and qualitatively evaluate them in terms of the criteria of comparison. We illustrate how our proposed generic architecture can be used to decide which Big Data analytic approach is suitable in the context of several use cases. 1 INTRODUCTION nally, despite these increases in scale and complexity, users still expect to be able to query data at interac- The term Big Data has been coined for represent- tive speeds. In this context, several enterprises such ing the challenge to support a continuous increase as Internet companies and Social Network associa- on the computational power that produces an over- tions have proposed their own analytical approaches, whelming flow of data (Kune et al., 2016). -
A Dataflow Language for Large Scale Processing of RDF Data
SYRql: A Dataflow Language for Large Scale Processing of RDF Data Fadi Maali1, Padmashree Ravindra2, Kemafor Anyanwu2, and Stefan Decker1 1 Insight Centre for Data Analytics, National University of Ireland Galway {fadi.maali,stefan.decker}@insight-centre.org 2 Department of Computer Science, North Carolina State University, Raleigh, NC {pravind2,kogan}@ncsu.edu Abstract. The recent big data movement resulted in a surge of activity on layering declarative languages on top of distributed computation plat- forms. In the Semantic Web realm, this surge of analytics languages was not reflected despite the significant growth in the available RDF data. Consequently, when analysing large RDF datasets, users are left with two main options: using SPARQL or using an existing non-RDF-specific big data language, both with its own limitations. The pure declarative nature of SPARQL and the high cost of evaluation can be limiting in some scenarios. On the other hand, existing big data languages are de- signed mainly for tabular data and, therefore, applying them to RDF data results in verbose, unreadable, and sometimes inefficient scripts. In this paper, we introduce SYRql, a dataflow language designed to process RDF data at a large scale. SYRql blends concepts from both SPARQL and existing big data languages. We formally define a closed algebra that underlies SYRql and discuss its properties and some unique optimisation opportunities this algebra provides. Furthermore, we describe an imple- mentation that translates SYRql scripts into a series of MapReduce jobs and compare the performance to other big data processing languages. 1 Introduction Declarative query languages have been a corner stone of data management since the early days of relational databases. -
IBM Filenet Content Manager Technology Preview: Content Services Graphql API Developer Guide
IBM FileNet Content Manager Technology Preview: Content Services GraphQL API Developer Guide © Copyright International Business Machines Corporation 2019 Copyright Before you use this information and the product it supports, read the information in "Notices" on page 45. © Copyright International Business Machines Corporation 2019. US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. © Copyright International Business Machines Corporation 2019 Contents Copyright .................................................................................................................................. 2 Abstract .................................................................................................................................... 5 Background information ............................................................................................................ 6 What is the Content Services GraphQL API? ....................................................................................... 6 How do I access the Content Services GraphQL API? .......................................................................... 6 Developer references ................................................................................................................ 7 Supported platforms ............................................................................................................................ 7 Interfaces and output types ......................................................................................................