Eigenfunctions and Eigenoperators of Cyclic Integral Transforms with Application to Gaussian Beam Propagation

Total Page:16

File Type:pdf, Size:1020Kb

Eigenfunctions and Eigenoperators of Cyclic Integral Transforms with Application to Gaussian Beam Propagation NORTHWESTERN UNIVERSITY Eigenfunctions and Eigenoperators of Cyclic Integral Transforms with Application to Gaussian Beam Propagation A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree DOCTOR OF PHILOSOPHY Field of Applied Mathematics By Matthew S. McCallum EVANSTON, ILLINOIS December 2008 2 c Copyright by Matthew S. McCallum 2008 All Rights Reserved 3 ABSTRACT Eigenfunctions and Eigenoperators of Cyclic Integral Transforms with Application to Gaussian Beam Propagation Matthew S. McCallum An integral transform which reproduces a transformable input function after a finite number N of successive applications is known as a cyclic transform. Of course, such a transform will reproduce an arbitrary transformable input after N applications, but it also admits eigenfunction inputs which will be reproduced after a single application of the transform. These transforms and their eigenfunctions appear in various applications, and the systematic determination of eigenfunctions of cyclic integral transforms has been a problem of interest to mathematicians since at least the early twentieth century. In this work we review the various approaches to this problem, providing generalizations of published expressions from previous approaches. We then develop a new formalism, differential eigenoperators, that reduces the eigenfunction problem for a cyclic transform to an eigenfunction problem for a corresponding ordinary differential equation. In this way we are able to relate eigenfunctions of integral equations to boundary-value problems, 4 which are typically easier to analyze. We give extensive examples and discussion via the specific case of the Fourier transform. We also relate this approach to two formalisms that have been of interest to the math- ematical physics community – hyperdifferential operators and linear canonical transforms. We show how this new approach reproduces known results of Fourier optics regarding free-space diffractive propagation of Gaussian beams in both one and two dimensions. Finally we discuss the group-theoretical aspects of the formalism and describe an iso- morphism between roots of the identity transform and complex roots of unity. In the appendix we derive several technical results related to integrability and transformability of solutions in the Fourier transform case, and we prove two theorems – one of them new – on polynomial roots. We conclude that the formalism offers a new and equally valuable perspective on an interesting eigenfunction problem with both pure and applied aspects; we also conclude that this approach offers specific advantages over previous approaches to the problem. 5 Acknowledgements I would like to thank my mother Carol and my wife Hilary for their constant love and support over the years. I would also like to thank my son Max for arriving a month early and making the completion of this work very interesting, to say the least. I would also like to thank Theodoros Horikis for much fruitful discussion and collaboration in the early phases of this work. I would finally like to thank my advisor, William L. Kath, for his patient assistance, support, and encouragement over the course of my general graduate studies as well as this specific project. 6 Table of Contents ABSTRACT 3 Acknowledgements 5 Chapter 1. Introduction 9 Chapter 2. Differential Eigenoperators 16 Chapter 3. General Theory – Eigenfunctions 19 Chapter 4. General Theory – Eigenoperators 27 Chapter 5. Fourier Eigenoperators Lmn – Additional Comments & Examples 39 Chapter 6. Lmn – Composition and sech mapping 49 Chapter 7. Lmn – Beyond whole-number (m, n) 52 Chapter 8. Decomposition into Eigenobjects 59 Chapter 9. Summary of One-Dimensional Results 63 Chapter 10. Hyperdifferential Operators 65 Chapter 11. Transition to Two Dimensions 70 Chapter 12. Linear Canonical Transforms in One and Two Dimensions 75 7 Chapter 13. Standard Fourier Transform 83 Chapter 14. Fresnel Transform 85 Chapter 15. Fractional Fourier Transform – Definition and Basic Properties 94 Chapter 16. Fractional Fourier Transform – Application to Diffraction 104 Chapter 17. Standard Hankel Transform 120 Chapter 18. Fresnel-Hankel Transform 124 Chapter 19. Fractional Hankel Transform – Definition and Basic Properties 126 Chapter 20. Fractional Hankel Transform – Application to Diffraction 130 Chapter 21. Comments on Self-Adjoint Operators 138 Chapter 22. Group-theoretical Comments 141 Chapter 23. Conclusion 148 References 152 Appendix . Further Results on Fourier Eigenoperators 155 1. Singularities 156 2. Regular/Frobenius forms 168 3. More on Equidimensional Cases 178 4. Irregular/Normal forms 184 8 CHAPTER 1 Introduction The determination of the eigenfunctions of an integral transform is a problem of some importance in multiple areas of applied mathematics. Indeed one could argue that the “eigenproblem” is fundamental from a purely mathematical perspective, regardless of the specific context in which it arises. Given a process or transformation which maps one set of objects to another, it is natural and intriguing to pose the question whether a subset of the objects in the domain of the transformation remains invariant in some way under the action of that transformation. Such objects would be mapped to themselves, with possible attendant minor modifications in such things as scale, proportionality factors, etc. The transformation itself can be represented by any number of various mathematical struc- tures, depending on the nature of the transformation and the objects upon which it acts. Examples from different contexts include similarity transformations acting on members of a discrete or continuous group, which may or may not be a group of matrices; differential transformations acting on members of a continuous function space defined on a smooth manifold; and integral transformations or their discrete analog, matrix transformations, acting on suitably-behaved continuous functions or their discretizations. Of course the last two types can be closely developed in parallel via the Fredholm alternative theory. Here we take as our focus of interest a certain class of integral transforms as they are applied in the field of optics. In particular we are interested in transforms which are labeled cyclic or periodic; that is, after a finite number N of successive applications to a 9 particular input function in their respective domains, that input function is reproduced. Expressed in another way, the N-fold action of such an integral transform upon the input is equivalent to the identity transform. Of course, every function in the domain is an eigenfunction of the N-fold transform; we mean to consider here the eigenfunctions of a single action of the transform. The Fourier integral transform is probably the most well- known example of such a transform, but there are others. We shall see that a number of cyclic transforms have complex exponential kernels, which is suggestive of their periodic nature. The eigenfunctions of such transforms can be used to describe diverse phenomena of interest to researchers such as resonant laser modes, non-diffracting beams, and self- imaging intensity distributions within the field of optics, but their application is not limited exclusively to this field. Fundamental results in quantum mechanics and even in analytic number theory are related to eigenfunctions and so-called eigenoperators (to be defined below) of the Fourier transform. Eigenfunctions of the Mellin integral transform are also important in the latter area; although strictly speaking this transform is not cyclic on its face, a simple change of variables transforms it into the Fourier transform. The purpose of the present work is to develop a new formalism from first principles for finding and characterizing eigenfunctions of cyclic integral transforms. The theoret- ical groundwork for this approach to the problem was partially laid by K.B. Wolf from the standpoint of mathematical physics in a series of papers in the 1970’s[41, 42, 43]. In this work, Wolf showed how the eigenfunction problem for a certain class of integral transform operators with importance in quantum mechanics – the so-called linear canon- ical transforms, or LCT’s, which will be discussed in greater depth below – could be cast in terms of hyperdifferential operators. These are essentially differential operators 10 which can be exponentiated as though they were variables to give an equivalent form of the original integral transform. The crucial point is that via this exponentiation process, the eigenfunctions of the integral operator can be easily related to the eigenfunctions of the differential operator. Hence one can systematically determine eigenfunctions of the integral operator by examining eigenfunctions of the corresponding differential operator which is used to generate it. The eigenproblem for an integral transform – not an easy nut to crack in general – is thereby recast in the form of an ordinary differential equation, with all the vast and straightforward machinery of ODE theory now at one’s disposal for attacking the problem. Underlying this formalism is the machinery of Lie algebras and continuous transformation groups, which Wolf gives some discussion of; in the following pages we will make a few brief comments about these aspects of the problem when ap- propriate, but it is not the aim of this work to give a rigorous analysis of the theoretical underpinnings of this approach. Our approach provides extensions and generalizations of previous work in several ways. First,
Recommended publications
  • Ballistic Electron Transport in Graphene Nanodevices and Billiards
    Ballistic Electron Transport in Graphene Nanodevices and Billiards Dissertation (Cumulative Thesis) for the award of the degree Doctor rerum naturalium of the Georg-August-Universität Göttingen within the doctoral program Physics of Biological and Complex Systems of the Georg-August University School of Science submitted by George Datseris from Athens, Greece Göttingen 2019 Thesis advisory committee Prof. Dr. Theo Geisel Department of Nonlinear Dynamics Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Stephan Herminghaus Department of Dynamics of Complex Fluids Max Planck Institute for Dynamics and Self-Organization Dr. Michael Wilczek Turbulence, Complex Flows & Active Matter Max Planck Institute for Dynamics and Self-Organization Examination board Prof. Dr. Theo Geisel (Reviewer) Department of Nonlinear Dynamics Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Stephan Herminghaus (Second Reviewer) Department of Dynamics of Complex Fluids Max Planck Institute for Dynamics and Self-Organization Dr. Michael Wilczek Turbulence, Complex Flows & Active Matter Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Ulrich Parlitz Biomedical Physics Max Planck Institute for Dynamics and Self-Organization Prof. Dr. Stefan Kehrein Condensed Matter Theory, Physics Department Georg-August-Universität Göttingen Prof. Dr. Jörg Enderlein Biophysics / Complex Systems, Physics Department Georg-August-Universität Göttingen Date of the oral examination: September 13th, 2019 Contents Abstract 3 1 Introduction 5 1.1 Thesis synopsis and outline.............................. 10 2 Fundamental Concepts 13 2.1 Nonlinear dynamics of antidot superlattices..................... 13 2.2 Lyapunov exponents in billiards............................ 20 2.3 Fundamental properties of graphene......................... 22 2.4 Why quantum?..................................... 31 2.5 Transport simulations and scattering wavefunctions................
    [Show full text]
  • Weierstrass Transform on Howell's Space-A New Theory
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 6 Ser. IV (Nov. – Dec. 2020), PP 57-62 www.iosrjournals.org Weierstrass Transform on Howell’s Space-A New Theory 1 2* 3 V. N. Mahalle , S.S. Mathurkar , R. D. Taywade 1(Associate Professor, Dept. of Mathematics, Bar. R.D.I.K.N.K.D. College, Badnera Railway (M.S), India.) 2*(Assistant Professor, Dept. of Mathematics, Govt. College of Engineering, Amravati, (M.S), India.) 3(Associate Professor, Dept. of Mathematics, Prof. Ram Meghe Institute of Technology & Research, Badnera, Amravati, (M.S), India.) Abstract: In this paper we have explained a new theory of Weierstrass transform defined on Howell’s space. The definition of the Weierstrass transform on this space of test functions is discussed. Some Fundamental theorems are proved and some results are developed. Weierstrass transform defined on Howell’s space is linear, continuous and one-one mapping from G to G c is also discussed. Key Word: Weierstrass transform, Howell’s Space, Fundamental theorem. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 10-12-2020 Date of Acceptance: 25-12-2020 --------------------------------------------------------------------------------------------------------------------------------------- I. Introduction A new theory of Fourier analysis developed by Howell, presented in an elegant series of papers [2-6] n supporting the Fourier transformation of the functions on R . This theory is similar to the theory for tempered distributions and to some extent, can be viewed as an extension of the Fourier theory. Bhosale [1] had extended Fractional Fourier transform on Howell’s space. Mahalle et. al. [7, 8] described a new theory of Mellin and Laplace transform defined on Howell’s space.
    [Show full text]
  • Memristor-Based Approximation of Gaussian Filter
    Memristor-based Approximation of Gaussian Filter Alex Pappachen James, Aidyn Zhambyl, Anju Nandakumar Electrical and Computer Engineering department Nazarbayev University School of Engineering Astana, Kazakhstan Email: [email protected], [email protected], [email protected] Abstract—Gaussian filter is a filter with impulse response of fourth section some mathematical analysis will be provided to Gaussian function. These filters are useful in image processing obtained results and finally the paper will be concluded by of 2D signals, as it removes unnecessary noise. Also, they could stating the result of the done work. be helpful for data transmission (e.g. GMSK modulation). In practice, the Gaussian filters could be approximately designed II. GAUSSIAN FILTER AND MEMRISTOR by several methods. One of these methods are to construct Gaussian-like filter with the help of memristors and RLC circuits. A. Gaussian Filter Therefore, the objective of this project is to find and design Gaussian filter is such filter which convolves the input signal appropriate model of Gaussian-like filter, by using mentioned devices. Finally, one possible model of Gaussian-like filter based with the impulse response of Gaussian function. In some on memristor designed and analysed in this paper. sources this process is also known as the Weierstrass transform [2]. The Gaussian function is given as in equation 1, where µ Index Terms—Gaussian filters, analog filter, memristor, func- is the time shift and σ is the scale. For input signal of x(t) tion approximation the output is the convolution of x(t) with Gaussian, as shown in equation 2.
    [Show full text]
  • A Unified Framework for the Fourier, Laplace, Mellin and Z Transforms
    The Generalized Fourier Transform: A Unified Framework for the Fourier, Laplace, Mellin and Z Transforms Pushpendra Singha,∗, Anubha Guptab, Shiv Dutt Joshic aDepartment of ECE, National Institute of Technology Hamirpur, Hamirpur, India. bSBILab, Department of ECE, Indraprastha Institute of Information Technology Delhi, Delhi, India cDepartment of EE, Indian Institute of Technology Delhi, Delhi, India Abstract This paper introduces Generalized Fourier transform (GFT) that is an extension or the generalization of the Fourier transform (FT). The Unilateral Laplace transform (LT) is observed to be the special case of GFT. GFT, as proposed in this work, contributes significantly to the scholarly literature. There are many salient contribution of this work. Firstly, GFT is applicable to a much larger class of signals, some of which cannot be analyzed with FT and LT. For example, we have shown the applicability of GFT on the polynomially decaying functions and super exponentials. Secondly, we demonstrate the efficacy of GFT in solving the initial value problems (IVPs). Thirdly, the generalization presented for FT is extended for other integral transforms with examples shown for wavelet transform and cosine transform. Likewise, generalized Gamma function is also presented. One interesting application of GFT is the computation of generalized moments, for the otherwise non-finite moments, of any random variable such as the Cauchy random variable. Fourthly, we introduce Fourier scale transform (FST) that utilizes GFT with the topological isomorphism of an exponential map. Lastly, we propose Generalized Discrete-Time Fourier transform (GDTFT). The DTFT and unilateral z-transform are shown to be the special cases of the proposed GDTFT. The properties of GFT and GDTFT have also been discussed.
    [Show full text]
  • (1.1) «-V (1.2) «"" «"II 7:-7Z—R-77
    A DISCRETE ANALOGUE OF THE WEIERSTRASS TRANSFORM1 EDWARD NORMAN 1. Introduction and definitions. In this note we consider a discrete analogue of the transform ,TÍ-g}*ttg(y)£yi /(*)=/_; This transform may be considered as a convolution; accordingly our analogue will take the form 00 f(n) = £ k(n — m)g(m) —00 where the kernel sequence k(n) is to be appropriately chosen. The choice of k(n) is motivated as follows. One way in which the kernel e~y '* arises in the theory of the con- volution transform is by consideration of the class of kernels whose bilateral Laplace transform is of the form 6*ñ(i--)x- (1.1) «-V -tlak i \ aj When c = 0 we obtain the class of kernels whose analogue was con- sidered by Pollard and Standish [4] where the kernels formed a sub- class of the totally positive sequences. The totally positive sequences can be characterized as sequences having a generating function of the form (1.2) «""■«"II 1 7:-7Z—r-77(1 - a,z)(i - bjZ-1) (see [l]). The factor eaz+h'~ in (1.2) corresponds to the factor e" in (1.1). Letting a = b = v/2 we have the familiar expansion eC/2) (H-*"1) = Y,Im(v)zm Received by the editors February 10, 1959 and, in revised form, October 22, 1959. 1 This work is part of a doctoral thesis done under the direction of Professor Harry Pollard at Cornell University. * See Hirschman and Widder [3] for the theory of the Weierstrass transform. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use596 DISCRETE ANALOGUEOF WEIERSTRASS TRANSFORM 597 where Im(v) is the modified Bessel coefficient of the first kind.
    [Show full text]
  • Introduction to Hyperfunctions and Their Integral Transforms
    [chapter] [chapter] [chapter] 1 2 Introduction to Hyperfunctions and Their Integral Transforms Urs E. Graf 2009 ii Contents Preface ix 1 Introduction to Hyperfunctions 1 1.1 Generalized Functions . 1 1.2 The Concept of a Hyperfunction . 3 1.3 Properties of Hyperfunctions . 13 1.3.1 Linear Substitution . 13 1.3.2 Hyperfunctions of the Type f(φ(x)) . 15 1.3.3 Differentiation . 18 1.3.4 The Shift Operator as a Differential Operator . 25 1.3.5 Parity, Complex Conjugate and Realness . 25 1.3.6 The Equation φ(x)f(x) = h(x)............... 28 1.4 Finite Part Hyperfunctions . 33 1.5 Integrals . 37 1.5.1 Integrals with respect to the Independent Variable . 37 1.5.2 Integrals with respect to a Parameter . 43 1.6 More Familiar Hyperfunctions . 44 1.6.1 Unit-Step, Delta Impulses, Sign, Characteristic Hyper- functions . 44 1.6.2 Integral Powers . 45 1.6.3 Non-integral Powers . 49 1.6.4 Logarithms . 51 1.6.5 Upper and Lower Hyperfunctions . 55 α 1.6.6 The Normalized Power x+=Γ(α + 1) . 58 1.6.7 Hyperfunctions Concentrated at One Point . 61 2 Analytic Properties 63 2.1 Sequences, Series, Limits . 63 2.2 Cauchy-type Integrals . 71 2.3 Projections of Functions . 75 2.3.1 Functions satisfying the H¨olderCondition . 77 2.3.2 Projection Theorems . 78 2.3.3 Convergence Factors . 87 2.3.4 Homologous and Standard Hyperfunctions . 88 2.4 Projections of Hyperfunctions . 91 2.4.1 Holomorphic and Meromorphic Hyperfunctions . 91 2.4.2 Standard Defining Functions .
    [Show full text]
  • Hermite Polynomials 1 Hermite Polynomials
    Hermite polynomials 1 Hermite polynomials In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical analysis as Gaussian quadrature; in finite element methods as shape functions for beams; and in physics, where they give rise to the eigenstates of the quantum harmonic oscillator. They are also used in systems theory in connection with nonlinear operations on Gaussian noise. They were defined by Laplace (1810) [1] though in scarcely recognizable form, and studied in detail by Chebyshev (1859).[2] Chebyshev's work was overlooked and they were named later after Charles Hermite who wrote on the polynomials in 1864 describing them as new.[3] They were consequently not new although in later 1865 papers Hermite was the first to define the multidimensional polynomials. Definition There are two different ways of standardizing the Hermite polynomials: • The "probabilists' Hermite polynomials" are given by , • while the "physicists' Hermite polynomials" are given by . These two definitions are not exactly identical; each one is a rescaling of the other, These are Hermite polynomial sequences of different variances; see the material on variances below. The notation He and H is that used in the standard references Tom H. Koornwinder, Roderick S. C. Wong, and Roelof Koekoek et al. (2010) and Abramowitz & Stegun. The polynomials He are sometimes denoted by H , n n especially in probability theory, because is the probability density function for the normal distribution with expected value 0 and standard deviation 1.
    [Show full text]
  • The Weierstrass Transform on Some Spaces of Type S
    P: ISSN No. 0976-8602 RNI No.UPENG/2012/42622 VOL.-V, ISSUE-III, July-2016 E: ISSN No. 2349 - 9443 Asian Resonance The Weierstrass Transform on Some Spaces of Type S Abstract The main objective of this paper is to study the classical theory of the Weierstrass transform is extended to the Dirac delta function and some of their basic properties. The characterizations of the Weierstrass transform on the Gel'fand-Shilov spaces of type S is shown. Keywords: Weierstrass transform, Fourier transform, Green's function, Dirac delta function. Introduction This present paper, my contribution is to define the Weierstrass transform in the form of Dirac delta function and study some of their basic properties. The characterizations of the Weierstrass transform on the Gel'fand-Shilov spaces of type S is shown. The conventional Weierstrass transform of a suitably restricted function fx() on the real axis R is defined by [5, p. 267] as: 1 (tx )2 (1) W f( x ) f ( x )exp dx . 2 R 4 The Green's function G t x, k of the heat equation for the infinite interval is 1 (tx )2 , where k is positive constant. G t x, k exp 2 k 4k Ashutosh Mahato The limit of as 0 represent the Dirac delta Assistant Professor, 2 function 1 (tx ) Deptt.of Mathematics, (tx ) lim exp . C.V.Raman College of 0 2 k 4k Engineering, Bhubaneswar, So, in terms of Dirac delta function ()tx , the Weierstrass Odisha transform (1) can be rewritten as Wfx ()(,)()(). fxtˆ fx txdx (2) R Aim of the Study/ The problem / Objective of the Study The main objective of this paper is to develop the classical theory of the Weierstrass transform is extended to the Dirac delta function and some of their basic properties.
    [Show full text]
  • Weierstrass Transforms
    JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 GENERALIZED PROPERTIES ON MELLIN - WEIERSTRASS TRANSFORMS Amarnath Kumar Thakur Department of Mathematics Dr.C.V.Raman University, Bilaspur, State, Chhattisgarh Email- [email protected] Gopi Sao Department of Mathematics Dr.C.V.Raman University, Bilaspur, State, Chhattisgarh Email- [email protected] Hetram Suryavanshi Department of Mathematics Dr.C.V.Raman University, Bilaspur, State, Chhattisgarh Email- [email protected] Abstract- In the present paper, we introduce definite integral transforms in operational calculus for the generalized properties on Mellin- Weierstrass associated transforms. These results are derived from the MW Properties These formulas may be considered as promising approaches in expressing in fractional calculus. Keywords – Laplace Transform , Convolution Transform Mellin Transforms , Weierstrass Transforms I. Introduction In mathematical terms the Fourier and Laplace transformations were introduced to solve physical problems. In fact, the first event of change is found by Reiman in which he used to study the famous zeta function. The Finnish mathematician Hjalmar Mellin (1854-1933), who was the first to give an orderly appearance change and its reversal,working in the theory of special functions, he developed applications towards a solution of hypergeometric differential equations and derivation of asymptotic expansions. Mellin's contribution gives a major place to the theory of analytic functions and essentially depends on the Cauchy theorem and the method of residuals. Actually, the Mellin transformation can also be placed in another framework, in which some cases is more closely related to Volume XIII, Issue IX, SEPTEMBER 2020 Page No: 98 JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 original ideas of Reimann's original.In addition to its use in mathematics, Mellin's transformation has been applied in many different ways and areas of Physics and Engineering.
    [Show full text]
  • Asymptotic Expansions of Some Integral Transforms by Using Generalized Functions by Ahmed I, Zayed
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIElY Volume 272, Number 2, August 1982 ASYMPTOTIC EXPANSIONS OF SOME INTEGRAL TRANSFORMS BY USING GENERALIZED FUNCTIONS BY AHMED I, ZAYED ABSTRACT. The technique devised by Wong to derive the asymptotic expansions of multiple Fourier transforms by using the theory of Schwartz distributions is ex- tended to a large class of integral transforms. The extension requires establishing a general procedure to extend these integral transforms to generalized functions. Wong's technique is then applied to some of these integral transforms to obtain their asymptotic expansions. This class of integral transforms encompasses, among others, the Laplace, the Airy, the K and the Hankel transforms. 1. Introduction. Recently, the theory of generalized functions has been introduced into the field of asymptotic expansions of integral transforms; see [18, 19,6]. One of the advantages of this approach is to be able to interpret and to assign values to some divergent integrals. This approach goes back to Lighthill [10] who was the first to use generalized functions to study the asymptotic expansions of Fourier transforms. Borrowing Lighthill's idea, several people were able to derive asymptotic expan- sions for other types of integral transforms such as Laplace [2], Stieltjes [11], Riemann-Liouville fractional integral transforms [12] and Mellin convolution of two algebraically dominated functions [17]. The use of generalized functions in the theory of asymptotic expansions has another advantage; that is, in some cases it can provide explicit expressions for the error terms in shorter and more direct ways than the classical methods [9,11]. However, one should not overemphasize the importance of the generalized functions approach since, for the most part, it is an alternative but not an exclusive technique.
    [Show full text]
  • On the Summability of Series of Hermite Polynomials
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 8,406-422 (1964) On the Summability of Series of Hermite Polynomials G. G. BILODEAU Boston College, Chestnut Hill, Massachusetts Submitted by R. P. Boas I. INTRODUCTION Let d(x) be in L for every finite interval and assume that exists for n = 0, 1, 2, mm*where HJx) is the Hermite polynomial defined by H,(x) = (- 1)” exeDn e& . (1.2) Then r+(x) - 3 a,(2%!)-1 H,(x) . (1.3) n=O It is known (see [l, p. 3811 or [2, p. 2401) that the series in (1.3) converges to q%(x)for suitable restrictions on 4 near x and f 00. The series is also sum- mable to 4(.x) by various methods and under less restrictive conditions on 4. Abel summability was considered in 13, p. 4581, Bore1 summabilities in [4], Cesaro and others in [5]. (See footnote in [2, p. 2341 on ref. 5.) The purpose of this paper is to find a summability method which will sum the series to $(x) under conditions on 4 near x = f 03 which do little more than assume the existence of each of the coefficients a,. In Section II, we discuss a previously used summability and show that the result already known cannot be greatly improved. In Section III another summability method is introduced and the main result of the paper is proved. An example is then given to show that this result is very nearly “best possible” and an application of the result to the inversion of the Weierstrass transform is indicated.
    [Show full text]
  • 75 Inversion Theorem for Laplace-Weierstrass Transform
    International Journal of Research in Engineering and Applied Sciences (IJREAS) Available online at http://euroasiapub.org/journals.php Vol. 6 Issue 10, October - 2016, pp. 75~86 ISSN(O): 2249-3905, ISSN(P) : 2349-6525 | Impact Factor: 6.573 | Thomson Reuters ID: L-5236-2015 Inversion theorem for Laplace-Weierstrass transform V. N. Mahalle1, Assistant Professor, Department of Mathematics, Bar. R.D.I.K.N.K.D. College, Badnera Railway, Maharashtra, India S.S. Mathurkar2, Assistant Professor, Department of Mathematics, Government College of Engineering, Amravati, Maharashtra, India R. D. Taywade3 Assistant Professor, Department of Mathematics, Prof. Ram Meghe Institute of Technology & Research, Badnera, Amravati, Maharashtra, India ABSTRACT: We know that for the application of an integral transform, the main condition is the validity of the inversion theorem which allows one to find an unknown function by knowing its image. Keeping this in view, in the present paper we have proved the inversion theorem by proving some lemmas required for the proof of inversion theorem for Laplace-Weierstrass transform. Also uniqueness theorem is proved. Keywords: Laplace transform, Weierstrass transform, Laplace-Weierstrass transform, testing function space. I. Introduction: In mathematics the Laplace and Weierstrass transform are most important and useful integral transforms. These transforms takes a function of positive real variables t and y to a function of a complex variable s, x respectively. Laplace-Weierstrass transform are usually restricted to functions of t and y with t, y > 0. A consequence of this restriction is that the Laplace-Weierstrass transform of a function is a holomorphic function of the variables s and x.
    [Show full text]